Fix spelling errors in sysdeps/powerpc files.
[glibc.git] / sysdeps / powerpc / powerpc32 / power4 / fpu / slowpow.c
blob7c97d958170d1f74ce13b32b18e71f8df4ae787c
1 /*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001-2013 Free Software Foundation, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 /*************************************************************************/
20 /* MODULE_NAME:slowpow.c */
21 /* */
22 /* FUNCTION:slowpow */
23 /* */
24 /*FILES NEEDED:mpa.h */
25 /* mpa.c mpexp.c mplog.c halfulp.c */
26 /* */
27 /* Given two IEEE double machine numbers y,x , routine computes the */
28 /* correctly rounded (to nearest) value of x^y. Result calculated by */
29 /* multiplication (in halfulp.c) or if result isn't accurate enough */
30 /* then routine converts x and y into multi-precision doubles and */
31 /* recompute. */
32 /*************************************************************************/
34 #include "mpa.h"
35 #include <math_private.h>
37 void __mpexp (mp_no * x, mp_no * y, int p);
38 void __mplog (mp_no * x, mp_no * y, int p);
39 double ulog (double);
40 double __halfulp (double x, double y);
42 double
43 __slowpow (double x, double y, double z)
45 double res, res1;
46 long double ldw, ldz, ldpp;
47 static const long double ldeps = 0x4.0p-96;
49 res = __halfulp (x, y); /* halfulp() returns -10 or x^y */
50 if (res >= 0)
51 return res; /* if result was really computed by halfulp */
52 /* else, if result was not really computed by halfulp */
54 /* Compute pow as long double, 106 bits */
55 ldz = __ieee754_logl ((long double) x);
56 ldw = (long double) y *ldz;
57 ldpp = __ieee754_expl (ldw);
58 res = (double) (ldpp + ldeps);
59 res1 = (double) (ldpp - ldeps);
61 if (res != res1) /* if result still not accurate enough */
62 { /* use mpa for higher precision. */
63 mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1;
64 static const mp_no eps = { -3, {1.0, 4.0} };
65 int p;
67 p = 10; /* p=precision 240 bits */
68 __dbl_mp (x, &mpx, p);
69 __dbl_mp (y, &mpy, p);
70 __dbl_mp (z, &mpz, p);
71 __mplog (&mpx, &mpz, p); /* log(x) = z */
72 __mul (&mpy, &mpz, &mpw, p); /* y * z =w */
73 __mpexp (&mpw, &mpp, p); /* e^w =pp */
74 __add (&mpp, &eps, &mpr, p); /* pp+eps =r */
75 __mp_dbl (&mpr, &res, p);
76 __sub (&mpp, &eps, &mpr1, p); /* pp -eps =r1 */
77 __mp_dbl (&mpr1, &res1, p); /* converting into double precision */
78 if (res == res1)
79 return res;
81 /* if we get here result wasn't calculated exactly, continue for
82 more exact calculation using 768 bits. */
83 p = 32;
84 __dbl_mp (x, &mpx, p);
85 __dbl_mp (y, &mpy, p);
86 __dbl_mp (z, &mpz, p);
87 __mplog (&mpx, &mpz, p); /* log(c)=z */
88 __mul (&mpy, &mpz, &mpw, p); /* y*z =w */
89 __mpexp (&mpw, &mpp, p); /* e^w=pp */
90 __mp_dbl (&mpp, &res, p); /* converting into double precision */
92 return res;