malloc: Remove __malloc_initialize_hook from the API [BZ #19564]
[glibc.git] / sysdeps / ieee754 / dbl-64 / e_sqrt.c
blob8304a2bb6324acc6be7a9c20b6521aed84193c64
1 /*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001-2016 Free Software Foundation, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 /*********************************************************************/
20 /* MODULE_NAME: uroot.c */
21 /* */
22 /* FUNCTION: usqrt */
23 /* */
24 /* FILES NEEDED: dla.h endian.h mydefs.h */
25 /* uroot.tbl */
26 /* */
27 /* An ultimate sqrt routine. Given an IEEE double machine number x */
28 /* it computes the correctly rounded (to nearest) value of square */
29 /* root of x. */
30 /* Assumption: Machine arithmetic operations are performed in */
31 /* round to nearest mode of IEEE 754 standard. */
32 /* */
33 /*********************************************************************/
35 #include "endian.h"
36 #include "mydefs.h"
37 #include <dla.h>
38 #include "MathLib.h"
39 #include "root.tbl"
40 #include <math_private.h>
42 /*********************************************************************/
43 /* An ultimate sqrt routine. Given an IEEE double machine number x */
44 /* it computes the correctly rounded (to nearest) value of square */
45 /* root of x. */
46 /*********************************************************************/
47 double
48 __ieee754_sqrt (double x)
50 static const double
51 rt0 = 9.99999999859990725855365213134618E-01,
52 rt1 = 4.99999999495955425917856814202739E-01,
53 rt2 = 3.75017500867345182581453026130850E-01,
54 rt3 = 3.12523626554518656309172508769531E-01;
55 static const double big = 134217728.0;
56 double y, t, del, res, res1, hy, z, zz, p, hx, tx, ty, s;
57 mynumber a, c = { { 0, 0 } };
58 int4 k;
60 a.x = x;
61 k = a.i[HIGH_HALF];
62 a.i[HIGH_HALF] = (k & 0x001fffff) | 0x3fe00000;
63 t = inroot[(k & 0x001fffff) >> 14];
64 s = a.x;
65 /*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/
66 if (k > 0x000fffff && k < 0x7ff00000)
68 int rm = __fegetround ();
69 fenv_t env;
70 libc_feholdexcept_setround (&env, FE_TONEAREST);
71 double ret;
72 y = 1.0 - t * (t * s);
73 t = t * (rt0 + y * (rt1 + y * (rt2 + y * rt3)));
74 c.i[HIGH_HALF] = 0x20000000 + ((k & 0x7fe00000) >> 1);
75 y = t * s;
76 hy = (y + big) - big;
77 del = 0.5 * t * ((s - hy * hy) - (y - hy) * (y + hy));
78 res = y + del;
79 if (res == (res + 1.002 * ((y - res) + del)))
80 ret = res * c.x;
81 else
83 res1 = res + 1.5 * ((y - res) + del);
84 EMULV (res, res1, z, zz, p, hx, tx, hy, ty); /* (z+zz)=res*res1 */
85 res = ((((z - s) + zz) < 0) ? max (res, res1) :
86 min (res, res1));
87 ret = res * c.x;
89 math_force_eval (ret);
90 libc_fesetenv (&env);
91 double dret = x / ret;
92 if (dret != ret)
94 double force_inexact = 1.0 / 3.0;
95 math_force_eval (force_inexact);
96 /* The square root is inexact, ret is the round-to-nearest
97 value which may need adjusting for other rounding
98 modes. */
99 switch (rm)
101 #ifdef FE_UPWARD
102 case FE_UPWARD:
103 if (dret > ret)
104 ret = (res + 0x1p-1022) * c.x;
105 break;
106 #endif
108 #ifdef FE_DOWNWARD
109 case FE_DOWNWARD:
110 #endif
111 #ifdef FE_TOWARDZERO
112 case FE_TOWARDZERO:
113 #endif
114 #if defined FE_DOWNWARD || defined FE_TOWARDZERO
115 if (dret < ret)
116 ret = (res - 0x1p-1022) * c.x;
117 break;
118 #endif
120 default:
121 break;
124 /* Otherwise (x / ret == ret), either the square root was exact or
125 the division was inexact. */
126 return ret;
128 else
130 if ((k & 0x7ff00000) == 0x7ff00000)
131 return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
132 if (x == 0)
133 return x; /* sqrt(+0)=+0, sqrt(-0)=-0 */
134 if (k < 0)
135 return (x - x) / (x - x); /* sqrt(-ve)=sNaN */
136 return 0x1p-256 * __ieee754_sqrt (x * 0x1p512);
139 strong_alias (__ieee754_sqrt, __sqrt_finite)