malloc: Remove __malloc_initialize_hook from the API [BZ #19564]
[glibc.git] / sysdeps / ieee754 / dbl-64 / e_remainder.c
bloba445e74b5cd52a4345a47ed0eda23fdb4402e753
1 /*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001-2016 Free Software Foundation, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 /**************************************************************************/
20 /* MODULE_NAME urem.c */
21 /* */
22 /* FUNCTION: uremainder */
23 /* */
24 /* An ultimate remainder routine. Given two IEEE double machine numbers x */
25 /* ,y it computes the correctly rounded (to nearest) value of remainder */
26 /* of dividing x by y. */
27 /* Assumption: Machine arithmetic operations are performed in */
28 /* round to nearest mode of IEEE 754 standard. */
29 /* */
30 /* ************************************************************************/
32 #include "endian.h"
33 #include "mydefs.h"
34 #include "urem.h"
35 #include "MathLib.h"
36 #include <math.h>
37 #include <math_private.h>
39 /**************************************************************************/
40 /* An ultimate remainder routine. Given two IEEE double machine numbers x */
41 /* ,y it computes the correctly rounded (to nearest) value of remainder */
42 /**************************************************************************/
43 double
44 __ieee754_remainder (double x, double y)
46 double z, d, xx;
47 int4 kx, ky, n, nn, n1, m1, l;
48 mynumber u, t, w = { { 0, 0 } }, v = { { 0, 0 } }, ww = { { 0, 0 } }, r;
49 u.x = x;
50 t.x = y;
51 kx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign for x*/
52 t.i[HIGH_HALF] &= 0x7fffffff; /*no sign for y */
53 ky = t.i[HIGH_HALF];
54 /*------ |x| < 2^1023 and 2^-970 < |y| < 2^1024 ------------------*/
55 if (kx < 0x7fe00000 && ky < 0x7ff00000 && ky >= 0x03500000)
57 SET_RESTORE_ROUND_NOEX (FE_TONEAREST);
58 if (kx + 0x00100000 < ky)
59 return x;
60 if ((kx - 0x01500000) < ky)
62 z = x / t.x;
63 v.i[HIGH_HALF] = t.i[HIGH_HALF];
64 d = (z + big.x) - big.x;
65 xx = (x - d * v.x) - d * (t.x - v.x);
66 if (d - z != 0.5 && d - z != -0.5)
67 return (xx != 0) ? xx : ((x > 0) ? ZERO.x : nZERO.x);
68 else
70 if (fabs (xx) > 0.5 * t.x)
71 return (z > d) ? xx - t.x : xx + t.x;
72 else
73 return xx;
75 } /* (kx<(ky+0x01500000)) */
76 else
78 r.x = 1.0 / t.x;
79 n = t.i[HIGH_HALF];
80 nn = (n & 0x7ff00000) + 0x01400000;
81 w.i[HIGH_HALF] = n;
82 ww.x = t.x - w.x;
83 l = (kx - nn) & 0xfff00000;
84 n1 = ww.i[HIGH_HALF];
85 m1 = r.i[HIGH_HALF];
86 while (l > 0)
88 r.i[HIGH_HALF] = m1 - l;
89 z = u.x * r.x;
90 w.i[HIGH_HALF] = n + l;
91 ww.i[HIGH_HALF] = (n1) ? n1 + l : n1;
92 d = (z + big.x) - big.x;
93 u.x = (u.x - d * w.x) - d * ww.x;
94 l = (u.i[HIGH_HALF] & 0x7ff00000) - nn;
96 r.i[HIGH_HALF] = m1;
97 w.i[HIGH_HALF] = n;
98 ww.i[HIGH_HALF] = n1;
99 z = u.x * r.x;
100 d = (z + big.x) - big.x;
101 u.x = (u.x - d * w.x) - d * ww.x;
102 if (fabs (u.x) < 0.5 * t.x)
103 return (u.x != 0) ? u.x : ((x > 0) ? ZERO.x : nZERO.x);
104 else
105 if (fabs (u.x) > 0.5 * t.x)
106 return (d > z) ? u.x + t.x : u.x - t.x;
107 else
109 z = u.x / t.x; d = (z + big.x) - big.x;
110 return ((u.x - d * w.x) - d * ww.x);
113 } /* (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000) */
114 else
116 if (kx < 0x7fe00000 && ky < 0x7ff00000 && (ky > 0 || t.i[LOW_HALF] != 0))
118 y = fabs (y) * t128.x;
119 z = __ieee754_remainder (x, y) * t128.x;
120 z = __ieee754_remainder (z, y) * tm128.x;
121 return z;
123 else
125 if ((kx & 0x7ff00000) == 0x7fe00000 && ky < 0x7ff00000 &&
126 (ky > 0 || t.i[LOW_HALF] != 0))
128 y = fabs (y);
129 z = 2.0 * __ieee754_remainder (0.5 * x, y);
130 d = fabs (z);
131 if (d <= fabs (d - y))
132 return z;
133 else if (d == y)
134 return 0.0 * x;
135 else
136 return (z > 0) ? z - y : z + y;
138 else /* if x is too big */
140 if (ky == 0 && t.i[LOW_HALF] == 0) /* y = 0 */
141 return (x * y) / (x * y);
142 else if (kx >= 0x7ff00000 /* x not finite */
143 || (ky > 0x7ff00000 /* y is NaN */
144 || (ky == 0x7ff00000 && t.i[LOW_HALF] != 0)))
145 return (x * y) / (x * y);
146 else
147 return x;
152 strong_alias (__ieee754_remainder, __remainder_finite)