4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 //*********************************************************************
43 // 10/01/01 Initial version
44 // 10/10/01 Performance inproved
45 // 12/11/01 Changed huges_logp to not be global
46 // 01/02/02 Corrected .restore syntax
47 // 05/20/02 Cleaned up namespace and sf0 syntax
48 // 08/14/02 Changed mli templates to mlx
49 // 02/06/03 Reorganized data tables
50 // 03/31/05 Reformatted delimiters between data tables
52 //*********************************************************************
55 //==============================================================
56 // long double acoshl(long double);
58 // Overview of operation
59 //==============================================================
63 // Return acoshl(x) = 0;
66 // Return acoshl(x) = Nan (Domain error, error handler call with tag 135);
68 // 3. x = [S,Q]Nan or +INF
69 // Return acoshl(x) = x + x;
71 // 4. 'Near 1': 1 < x < 1+1/8
72 // Return acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)),
73 // where y = 1, P(y)/Q(y) - rational approximation
75 // 5. 'Huges': x > 0.5*2^64
76 // Return acoshl(x) = (logl(2*x-1));
78 // 6. 'Main path': 1+1/8 < x < 0.5*2^64
79 // b_hi + b_lo = x + sqrt(x^2 - 1);
80 // acoshl(x) = logl_special(b_hi, b_lo);
82 // Algorithm description
83 //==============================================================
85 // I. Near 1 path algorithm
86 // **************************************************************
87 // The formula is acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)),
88 // where y = 1, P(y)/Q(y) - rational approximation
90 // 1) y = x - 1, y2 = 2 * y
92 // 2) Compute in parallel sqrtl(2*y) and P(y)/Q(y)
93 // a) sqrtl computation method described below (main path algorithm, item 2))
94 // As result we obtain (gg+gl) - multiprecision result
95 // as pair of double extended values
96 // b) P(y) and Q(y) calculated without any extra precision manipulations
98 // y = frcpa(Q) initial approximation of 1/Q
99 // z = P*y initial approximation of P/Q
104 // y1 = y + y*e2 = y + y*(e+e^2)
107 // y2 = y + y1*e3 = y + y*(e+e^2+..+e^6)
111 // xx = z + r*y2 high part of a/b
115 // xl = r1*y3 low part of a/b
117 // 3) res = sqrt(2*y) - sqrt(2*y)*(P(y)/Q(y)) =
118 // = (gg+gl) - (gg + gl)*(xx+xl);
120 // a) hh = gg*xx; hl = gg*xl; lh = gl*xx; ll = gl*xl;
121 // b) res = ((((gl + ll) + lh) + hl) + hh) + gg;
122 // (exactly in this order)
124 // II. Main path algorithm
125 // ( thanks to Peter Markstein for the idea of sqrt(x^2+1) computation! )
126 // **********************************************************************
128 // There are 3 parts of x+sqrt(x^2-1) computation:
130 // 1) m2 = (m2_hi+m2_lo) = x^2-1 obtaining
131 // ------------------------------------
132 // m2_hi = x2_hi - 1, where x2_hi = x * x;
133 // m2_lo = x2_lo + p1_lo, where
134 // x2_lo = FMS(x*x-x2_hi),
135 // p1_lo = (1 + m2_hi) - x2_hi;
137 // 2) g = (g_hi+g_lo) = sqrt(m2) = sqrt(m2_hi+m2_lo)
138 // ----------------------------------------------
139 // r = invsqrt(m2_hi) (8-bit reciprocal square root approximation);
140 // g = m2_hi * r (first 8 bit-approximation of sqrt);
144 // g = g * e + g (second 16 bit-approximation of sqrt);
148 // g = g * e + g (third 32 bit-approximation of sqrt);
152 // g_hi = g * e + g (fourth 64 bit-approximation of sqrt);
154 // Remainder computation:
156 // d = (m2_hi - g_hi * g_hi) + m2_lo;
159 // 3) b = (b_hi + b_lo) = x + g, where g = (g_hi + g_lo) = sqrt(x^2-1)
160 // -------------------------------------------------------------------
161 // b_hi = (g_hi + x) + gl;
162 // b_lo = (x - b_hi) + g_hi + gl;
164 // Now we pass b presented as sum b_hi + b_lo to special version
165 // of logl function which accept a pair of arguments as
166 // mutiprecision value.
168 // Special log algorithm overview
169 // ================================
170 // Here we use a table lookup method. The basic idea is that in
171 // order to compute logl(Arg) for an argument Arg in [1,2),
172 // we construct a value G such that G*Arg is close to 1 and that
173 // logl(1/G) is obtainable easily from a table of values calculated
176 // logl(Arg) = logl(1/G) + logl((G*Arg - 1))
178 // Because |G*Arg - 1| is small, the second term on the right hand
179 // side can be approximated by a short polynomial. We elaborate
180 // this method in four steps.
182 // Step 0: Initialization
184 // We need to calculate logl( X+1 ). Obtain N, S_hi such that
186 // X = 2^N * ( S_hi + S_lo ) exactly
188 // where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
189 // that |S_lo| <= ulp(S_hi).
191 // For the special version of logl: S_lo = b_lo
192 // !-----------------------------------------------!
194 // Step 1: Argument Reduction
196 // Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
198 // G := G_1 * G_2 * G_3
199 // r := (G * S_hi - 1) + G * S_lo
201 // These G_j's have the property that the product is exactly
202 // representable and that |r| < 2^(-12) as a result.
204 // Step 2: Approximation
206 // logl(1 + r) is approximated by a short polynomial poly(r).
208 // Step 3: Reconstruction
210 // Finally, logl( X ) = logl( X+1 ) is given by
212 // logl( X ) = logl( 2^N * (S_hi + S_lo) )
213 // ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
214 // ~=~ N*logl(2) + logl(1/G) + poly(r).
216 // For detailed description see logl or log1pl function, regular path.
219 //==============================================================
220 // Floating Point registers used:
222 // f32 -> f95 (64 registers)
224 // General registers used:
225 // r32 -> r67 (36 registers)
227 // Predicate registers used:
229 // p7 for 'NaNs, Inf' path
230 // p8 for 'near 1' path
231 // p9 for 'huges' path
235 //*********************************************************************
236 // IEEE Special Conditions:
238 // acoshl(+inf) = +inf
239 // acoshl(-inf) = QNaN
241 // acoshl(x<1) = QNaN
242 // acoshl(SNaN) = QNaN
243 // acoshl(QNaN) = QNaN
247 //==============================================================
252 // Near 1 path rational approximation coefficients
253 LOCAL_OBJECT_START(Poly_P)
254 data8 0xB0978143F695D40F, 0x3FF1 // .84205539791447100108478906277453574946e-4
255 data8 0xB9800D841A8CAD29, 0x3FF6 // .28305085180397409672905983082168721069e-2
256 data8 0xC889F455758C1725, 0x3FF9 // .24479844297887530847660233111267222945e-1
257 data8 0x9BE1DFF006F45F12, 0x3FFB // .76114415657565879842941751209926938306e-1
258 data8 0x9E34AF4D372861E0, 0x3FFB // .77248925727776366270605984806795850504e-1
259 data8 0xF3DC502AEE14C4AE, 0x3FA6 // .3077953476682583606615438814166025592e-26
260 LOCAL_OBJECT_END(Poly_P)
263 LOCAL_OBJECT_START(Poly_Q)
264 data8 0xF76E3FD3C7680357, 0x3FF1 // .11798413344703621030038719253730708525e-3
265 data8 0xD107D2E7273263AE, 0x3FF7 // .63791065024872525660782716786703188820e-2
266 data8 0xB609BE5CDE206AEF, 0x3FFB // .88885771950814004376363335821980079985e-1
267 data8 0xF7DEACAC28067C8A, 0x3FFD // .48412074662702495416825113623936037072302
268 data8 0x8F9BE5890CEC7E38, 0x3FFF // 1.1219450873557867470217771071068369729526
269 data8 0xED4F06F3D2BC92D1, 0x3FFE // .92698710873331639524734537734804056798748
270 LOCAL_OBJECT_END(Poly_Q)
273 LOCAL_OBJECT_START(Constants_Q)
274 data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
275 data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
276 data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
277 data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
278 data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
279 data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
280 LOCAL_OBJECT_END(Constants_Q)
283 LOCAL_OBJECT_START(Constants_Z_1)
300 LOCAL_OBJECT_END(Constants_Z_1)
302 // G1 and H1 - IEEE single and h1 - IEEE double
303 LOCAL_OBJECT_START(Constants_G_H_h1)
304 data4 0x3F800000,0x00000000
305 data8 0x0000000000000000
306 data4 0x3F70F0F0,0x3D785196
307 data8 0x3DA163A6617D741C
308 data4 0x3F638E38,0x3DF13843
309 data8 0x3E2C55E6CBD3D5BB
310 data4 0x3F579430,0x3E2FF9A0
311 data8 0xBE3EB0BFD86EA5E7
312 data4 0x3F4CCCC8,0x3E647FD6
313 data8 0x3E2E6A8C86B12760
314 data4 0x3F430C30,0x3E8B3AE7
315 data8 0x3E47574C5C0739BA
316 data4 0x3F3A2E88,0x3EA30C68
317 data8 0x3E20E30F13E8AF2F
318 data4 0x3F321640,0x3EB9CEC8
319 data8 0xBE42885BF2C630BD
320 data4 0x3F2AAAA8,0x3ECF9927
321 data8 0x3E497F3497E577C6
322 data4 0x3F23D708,0x3EE47FC5
323 data8 0x3E3E6A6EA6B0A5AB
324 data4 0x3F1D89D8,0x3EF8947D
325 data8 0xBDF43E3CD328D9BE
326 data4 0x3F17B420,0x3F05F3A1
327 data8 0x3E4094C30ADB090A
328 data4 0x3F124920,0x3F0F4303
329 data8 0xBE28FBB2FC1FE510
330 data4 0x3F0D3DC8,0x3F183EBF
331 data8 0x3E3A789510FDE3FA
332 data4 0x3F088888,0x3F20EC80
333 data8 0x3E508CE57CC8C98F
334 data4 0x3F042108,0x3F29516A
335 data8 0xBE534874A223106C
336 LOCAL_OBJECT_END(Constants_G_H_h1)
339 LOCAL_OBJECT_START(Constants_Z_2)
356 LOCAL_OBJECT_END(Constants_Z_2)
358 // G2 and H2 - IEEE single and h2 - IEEE double
359 LOCAL_OBJECT_START(Constants_G_H_h2)
360 data4 0x3F800000,0x00000000
361 data8 0x0000000000000000
362 data4 0x3F7F00F8,0x3B7F875D
363 data8 0x3DB5A11622C42273
364 data4 0x3F7E03F8,0x3BFF015B
365 data8 0x3DE620CF21F86ED3
366 data4 0x3F7D08E0,0x3C3EE393
367 data8 0xBDAFA07E484F34ED
368 data4 0x3F7C0FC0,0x3C7E0586
369 data8 0xBDFE07F03860BCF6
370 data4 0x3F7B1880,0x3C9E75D2
371 data8 0x3DEA370FA78093D6
372 data4 0x3F7A2328,0x3CBDC97A
373 data8 0x3DFF579172A753D0
374 data4 0x3F792FB0,0x3CDCFE47
375 data8 0x3DFEBE6CA7EF896B
376 data4 0x3F783E08,0x3CFC15D0
377 data8 0x3E0CF156409ECB43
378 data4 0x3F774E38,0x3D0D874D
379 data8 0xBE0B6F97FFEF71DF
380 data4 0x3F766038,0x3D1CF49B
381 data8 0xBE0804835D59EEE8
382 data4 0x3F757400,0x3D2C531D
383 data8 0x3E1F91E9A9192A74
384 data4 0x3F748988,0x3D3BA322
385 data8 0xBE139A06BF72A8CD
386 data4 0x3F73A0D0,0x3D4AE46F
387 data8 0x3E1D9202F8FBA6CF
388 data4 0x3F72B9D0,0x3D5A1756
389 data8 0xBE1DCCC4BA796223
390 data4 0x3F71D488,0x3D693B9D
391 data8 0xBE049391B6B7C239
392 LOCAL_OBJECT_END(Constants_G_H_h2)
394 // G3 and H3 - IEEE single and h3 - IEEE double
395 LOCAL_OBJECT_START(Constants_G_H_h3)
396 data4 0x3F7FFC00,0x38800100
397 data8 0x3D355595562224CD
398 data4 0x3F7FF400,0x39400480
399 data8 0x3D8200A206136FF6
400 data4 0x3F7FEC00,0x39A00640
401 data8 0x3DA4D68DE8DE9AF0
402 data4 0x3F7FE400,0x39E00C41
403 data8 0xBD8B4291B10238DC
404 data4 0x3F7FDC00,0x3A100A21
405 data8 0xBD89CCB83B1952CA
406 data4 0x3F7FD400,0x3A300F22
407 data8 0xBDB107071DC46826
408 data4 0x3F7FCC08,0x3A4FF51C
409 data8 0x3DB6FCB9F43307DB
410 data4 0x3F7FC408,0x3A6FFC1D
411 data8 0xBD9B7C4762DC7872
412 data4 0x3F7FBC10,0x3A87F20B
413 data8 0xBDC3725E3F89154A
414 data4 0x3F7FB410,0x3A97F68B
415 data8 0xBD93519D62B9D392
416 data4 0x3F7FAC18,0x3AA7EB86
417 data8 0x3DC184410F21BD9D
418 data4 0x3F7FA420,0x3AB7E101
419 data8 0xBDA64B952245E0A6
420 data4 0x3F7F9C20,0x3AC7E701
421 data8 0x3DB4B0ECAABB34B8
422 data4 0x3F7F9428,0x3AD7DD7B
423 data8 0x3D9923376DC40A7E
424 data4 0x3F7F8C30,0x3AE7D474
425 data8 0x3DC6E17B4F2083D3
426 data4 0x3F7F8438,0x3AF7CBED
427 data8 0x3DAE314B811D4394
428 data4 0x3F7F7C40,0x3B03E1F3
429 data8 0xBDD46F21B08F2DB1
430 data4 0x3F7F7448,0x3B0BDE2F
431 data8 0xBDDC30A46D34522B
432 data4 0x3F7F6C50,0x3B13DAAA
433 data8 0x3DCB0070B1F473DB
434 data4 0x3F7F6458,0x3B1BD766
435 data8 0xBDD65DDC6AD282FD
436 data4 0x3F7F5C68,0x3B23CC5C
437 data8 0xBDCDAB83F153761A
438 data4 0x3F7F5470,0x3B2BC997
439 data8 0xBDDADA40341D0F8F
440 data4 0x3F7F4C78,0x3B33C711
441 data8 0x3DCD1BD7EBC394E8
442 data4 0x3F7F4488,0x3B3BBCC6
443 data8 0xBDC3532B52E3E695
444 data4 0x3F7F3C90,0x3B43BAC0
445 data8 0xBDA3961EE846B3DE
446 data4 0x3F7F34A0,0x3B4BB0F4
447 data8 0xBDDADF06785778D4
448 data4 0x3F7F2CA8,0x3B53AF6D
449 data8 0x3DCC3ED1E55CE212
450 data4 0x3F7F24B8,0x3B5BA620
451 data8 0xBDBA31039E382C15
452 data4 0x3F7F1CC8,0x3B639D12
453 data8 0x3D635A0B5C5AF197
454 data4 0x3F7F14D8,0x3B6B9444
455 data8 0xBDDCCB1971D34EFC
456 data4 0x3F7F0CE0,0x3B7393BC
457 data8 0x3DC7450252CD7ADA
458 data4 0x3F7F04F0,0x3B7B8B6D
459 data8 0xBDB68F177D7F2A42
460 LOCAL_OBJECT_END(Constants_G_H_h3)
463 //==============================================================
465 // Floating Point Registers
514 // Special logl registers
545 FR_2_to_minus_N = f86
585 // Error handler registers
590 // General Purpose Registers
592 // General prolog registers
599 // Near 1 path registers
603 // Special logl registers
630 // Added for unwind support
638 GR_Parameter_RESULT = r66
639 GR_Parameter_TAG = r67
644 GLOBAL_LIBM_ENTRY(acoshl)
647 alloc GR_PFS = ar.pfs,0,32,4,0 // Local frame allocation
648 fcmp.lt.s1 p11, p0 = FR_Arg, f1 // if arg is less than 1
649 mov GR_Half = 0xfffe // 0.5's exp
652 addl GR_Poly_Q = @ltoff(Poly_Q), gp // Address of Q-coeff table
653 fma.s1 FR_X2 = FR_Arg, FR_Arg, f0 // Obtain x^2
654 addl GR_Poly_P = @ltoff(Poly_P), gp // Address of P-coeff table
658 getf.d GR_Arg = FR_Arg // get argument as double (int64)
659 fma.s0 FR_Two = f1, f1, f1 // construct 2.0
660 addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp // logl tables
664 movl GR_TwoP63 = 0x43E8000000000000 // 0.5*2^63 (huge arguments)
668 ld8 GR_Poly_P = [GR_Poly_P] // get actual P-coeff table address
669 fcmp.eq.s1 p10, p0 = FR_Arg, f1 // if arg == 1 (return 0)
673 ld8 GR_Poly_Q = [GR_Poly_Q] // get actual Q-coeff table address
674 movl GR_OneP125 = 0x3FF2000000000000 // 1.125 (near 1 path bound)
678 ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
679 fclass.m p7,p0 = FR_Arg, 0xe3 // if arg NaN inf
680 cmp.le p9, p0 = GR_TwoP63, GR_Arg // if arg > 0.5*2^63 ('huges')
683 cmp.ge p8, p0 = GR_OneP125, GR_Arg // if arg<1.125 -near 1 path
684 fms.s1 FR_XM1 = FR_Arg, f1, f1 // X0 = X-1 (for near 1 path)
685 (p11) br.cond.spnt acoshl_lt_pone // error branch (less than 1)
689 setf.exp FR_Half = GR_Half // construct 0.5
690 (p9) setf.s FR_XLog_Lo = r0 // Low of logl arg=0 (Huges path)
691 mov GR_exp_mask = 0x1FFFF // Create exponent mask
695 (p8) ldfe FR_PP5 = [GR_Poly_P],16 // Load P5
696 (p8) ldfe FR_QQ5 = [GR_Poly_Q],16 // Load Q5
697 fms.s1 FR_M2 = FR_X2, f1, f1 // m2 = x^2 - 1
701 (p8) ldfe FR_QQ4 = [GR_Poly_Q],16 // Load Q4
702 fms.s1 FR_M2L = FR_Arg, FR_Arg, FR_X2 // low part of
703 // m2 = fma(X*X - m2)
704 add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
707 (p8) ldfe FR_PP4 = [GR_Poly_P],16 // Load P4
708 (p7) fma.s0 FR_Res = FR_Arg,f1,FR_Arg // r = a + a (Nan, Inf)
709 (p7) br.ret.spnt b0 // return (Nan, Inf)
713 (p8) ldfe FR_PP3 = [GR_Poly_P],16 // Load P3
715 add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
718 (p8) ldfe FR_QQ3 = [GR_Poly_Q],16 // Load Q3
719 (p9) fms.s1 FR_XLog_Hi = FR_Two, FR_Arg, f1 // Hi of log arg = 2*X-1
720 (p9) br.cond.spnt huges_logl // special version of log
725 (p8) ldfe FR_PP2 = [GR_Poly_P],16 // Load P2
726 (p8) fma.s1 FR_2XM1 = FR_Two, FR_XM1, f0 // 2X0 = 2 * X0
727 add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
730 (p8) ldfe FR_QQ2 = [GR_Poly_Q],16 // Load Q2
731 (p10) fma.s0 FR_Res = f0,f1,f0 // r = 0 (arg = 1)
732 (p10) br.ret.spnt b0 // return (arg = 1)
736 (p8) ldfe FR_PP1 = [GR_Poly_P],16 // Load P1
737 (p8) ldfe FR_QQ1 = [GR_Poly_Q],16 // Load Q1
738 add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
743 (p8) ldfe FR_PP0 = [GR_Poly_P] // Load P0
744 fma.s1 FR_Tmp = f1, f1, FR_M2 // Tmp = 1 + m2
745 add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
748 (p8) ldfe FR_QQ0 = [GR_Poly_Q]
750 (p8) br.cond.spnt near_1 // near 1 path
753 ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
755 mov GR_Bias = 0x0FFFF // Create exponent bias
759 frsqrta.s1 FR_Rcp, p0 = FR_M2 // Rcp = 1/m2 reciprocal appr.
764 ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
765 fms.s1 FR_Tmp = FR_X2, f1, FR_Tmp // Tmp = x^2 - Tmp
770 ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
771 fma.s1 FR_GG = FR_Rcp, FR_M2, f0 // g = Rcp * m2
772 // 8 bit Newton Raphson iteration
777 fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp
781 ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
782 fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
787 fma.s1 FR_M2L = FR_Tmp, f1, FR_M2L // low part of m2 = Tmp+m2l
792 ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
793 fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
794 // 16 bit Newton Raphson iteration
799 fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
804 ldfe FR_Q1 = [GR_ad_q] // Load Q1
805 fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
810 fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
811 // 32 bit Newton Raphson iteration
816 fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
822 fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
828 fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
829 // 64 bit Newton Raphson iteration
834 fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
840 fnma.s1 FR_DD = FR_GG, FR_GG, FR_M2 // Remainder d = g * g - p2
845 fma.s1 FR_XLog_Hi = FR_Arg, f1, FR_GG // bh = z + gh
851 fma.s1 FR_DD = FR_DD, f1, FR_M2L // add p2l: d = d + p2l
856 getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
858 mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
863 fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h
864 extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
868 fma.s1 FR_XLog_Hi = FR_DD, FR_HH, FR_XLog_Hi // bh = bh + gl
875 shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
876 shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
877 extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
881 ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
887 ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
894 fms.s1 FR_XLog_Lo = FR_Arg, f1, FR_XLog_Hi // bl = x - bh
895 pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
898 // WE CANNOT USE GR_X_1 IN NEXT 3 CYCLES BECAUSE OF POSSIBLE 10 CLOCKS STALL!
909 fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x+1|
915 getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
916 ldfd FR_h = [GR_ad_tbl_1] // Load h_1
923 extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
927 shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
928 fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GG // bl = bl + gg
929 mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
932 shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
934 sub GR_N = GR_N, GR_Bias // sub bias from exp
938 ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
939 ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
940 sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
944 ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
950 setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
951 setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
952 pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
955 // WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!)
956 // BECAUSE OF POSSIBLE 10 CLOCKS STALL!
957 // (Just nops added - nothing to do here)
961 fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GL // bl = bl + gl
978 extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
982 shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
988 ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
994 ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
995 fcvt.xf FR_float_N = FR_float_N
1001 fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
1006 fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
1012 fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
1017 fma.s1 FR_S_lo = FR_XLog_Lo, FR_2_to_minus_N, f0 //S_lo=S_lo*2^(-N)
1023 fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
1028 fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
1034 fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
1040 fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
1045 fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
1051 fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h=N*log2_lo+h
1056 fma.s1 FR_r = FR_G, FR_S_lo, FR_r // r=G*S_lo+(G*S_hi-1)
1062 fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
1067 fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
1073 fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
1078 fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
1084 fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
1090 fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
1096 fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo
1097 // Y_lo=poly_hi+poly_lo
1103 fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
1104 br.ret.sptk b0 // Common exit for 2^-7 < x < inf
1110 getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
1111 mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
1116 add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
1118 add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
1121 add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
1123 add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
1127 add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
1129 extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
1133 shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
1135 extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
1139 ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
1141 mov GR_exp_mask = 0x1FFFF // Create exponent mask
1144 shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
1146 mov GR_Bias = 0x0FFFF // Create exponent bias
1150 ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
1151 fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x|
1156 getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
1157 ldfd FR_h = [GR_ad_tbl_1] // Load h_1
1162 ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
1164 pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
1168 ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
1169 sub GR_N = GR_N, GR_Bias
1170 mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
1174 ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
1176 sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
1180 ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
1181 setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
1186 ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
1188 extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
1192 ldfe FR_Q1 = [GR_ad_q] // Load Q1
1193 shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
1198 ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
1199 shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
1204 ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
1210 ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
1211 setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
1218 pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1*Z_2
1221 // WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!)
1222 // BECAUSE OF POSSIBLE 10 CLOCKS STALL!
1223 // (Just nops added - nothing to do here)
1246 extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
1250 shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
1251 fcvt.xf FR_float_N = FR_float_N
1256 ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
1262 ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
1263 fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
1268 fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
1275 fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
1280 fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2)*G_3
1285 fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2)+H_3
1291 fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
1297 fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
1302 fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
1308 fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N*log2_lo+h
1314 fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
1319 fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
1325 fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
1330 fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
1336 fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
1342 fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
1347 fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo=poly_hi+poly_lo
1352 fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
1353 br.ret.sptk b0 // Common exit
1357 // NEAR ONE INTERVAL
1361 frsqrta.s1 FR_Rcp, p0 = FR_2XM1 // Rcp = 1/x reciprocal appr. &SQRT&
1367 fma.s1 FR_PV6 = FR_PP5, FR_XM1, FR_PP4 // pv6 = P5*xm1+P4 $POLY$
1372 fma.s1 FR_QV6 = FR_QQ5, FR_XM1, FR_QQ4 // qv6 = Q5*xm1+Q4 $POLY$
1378 fma.s1 FR_PV4 = FR_PP3, FR_XM1, FR_PP2 // pv4 = P3*xm1+P2 $POLY$
1383 fma.s1 FR_QV4 = FR_QQ3, FR_XM1, FR_QQ2 // qv4 = Q3*xm1+Q2 $POLY$
1389 fma.s1 FR_XM12 = FR_XM1, FR_XM1, f0 // xm1^2 = xm1 * xm1 $POLY$
1395 fma.s1 FR_PV2 = FR_PP1, FR_XM1, FR_PP0 // pv2 = P1*xm1+P0 $POLY$
1400 fma.s1 FR_QV2 = FR_QQ1, FR_XM1, FR_QQ0 // qv2 = Q1*xm1+Q0 $POLY$
1406 fma.s1 FR_GG = FR_Rcp, FR_2XM1, f0 // g = Rcp * x &SQRT&
1411 fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp &SQRT&
1418 fma.s1 FR_PV3 = FR_XM12, FR_PV6, FR_PV4//pv3=pv6*xm1^2+pv4 $POLY$
1423 fma.s1 FR_QV3 = FR_XM12, FR_QV6, FR_QV4//qv3=qv6*xm1^2+qv4 $POLY$
1430 fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT&
1436 fma.s1 FR_PP = FR_XM12, FR_PV3, FR_PV2 //pp=pv3*xm1^2+pv2 $POLY$
1441 fma.s1 FR_QQ = FR_XM12, FR_QV3, FR_QV2 //qq=qv3*xm1^2+qv2 $POLY$
1447 fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT&
1452 fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
1458 frcpa.s1 FR_Y0,p0 = f1,FR_QQ // y = frcpa(b) #DIV#
1463 fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g*h &SQRT&
1469 fma.s1 FR_Q0 = FR_PP,FR_Y0,f0 // q = a*y #DIV#
1474 fnma.s1 FR_E0 = FR_Y0,FR_QQ,f1 // e = 1 - b*y #DIV#
1480 fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT&
1485 fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
1491 fma.s1 FR_E2 = FR_E0,FR_E0,FR_E0 // e2 = e+e^2 #DIV#
1496 fma.s1 FR_E1 = FR_E0,FR_E0,f0 // e1 = e^2 #DIV#
1502 fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT&
1507 fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT&
1513 fma.s1 FR_Y1 = FR_Y0,FR_E2,FR_Y0 // y1 = y+y*e2 #DIV#
1518 fma.s1 FR_E3 = FR_E1,FR_E1,FR_E0 // e3 = e+e1^2 #DIV#
1524 fma.s1 FR_GG = FR_DD, FR_HH, FR_GG // g = d * h + g &SQRT&
1529 fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
1535 fma.s1 FR_Y2 = FR_Y1,FR_E3,FR_Y0 // y2 = y+y1*e3 #DIV#
1540 fnma.s1 FR_R0 = FR_QQ,FR_Q0,FR_PP // r = a-b*q #DIV#
1546 fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT&
1552 fnma.s1 FR_E4 = FR_QQ,FR_Y2,f1 // e4 = 1-b*y2 #DIV#
1557 fma.s1 FR_X_Hi = FR_R0,FR_Y2,FR_Q0 // x = q+r*y2 #DIV#
1563 fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h &SQRT&
1569 fma.s1 FR_Y3 = FR_Y2,FR_E4,FR_Y2 // y3 = y2+y2*e4 #DIV#
1574 fnma.s1 FR_R1 = FR_QQ,FR_X_Hi,FR_PP // r1 = a-b*x #DIV#
1580 fma.s1 FR_HH = FR_GG, FR_X_Hi, f0 // hh = gg * x_hi
1585 fma.s1 FR_LH = FR_GL, FR_X_Hi, f0 // lh = gl * x_hi
1591 fma.s1 FR_X_lo = FR_R1,FR_Y3,f0 // x_lo = r1*y3 #DIV#
1597 fma.s1 FR_LL = FR_GL, FR_X_lo, f0 // ll = gl*x_lo
1602 fma.s1 FR_HL = FR_GG, FR_X_lo, f0 // hl = gg * x_lo
1608 fms.s1 FR_Res = FR_GL, f1, FR_LL // res = gl + ll
1614 fms.s1 FR_Res = FR_Res, f1, FR_LH // res = res + lh
1620 fms.s1 FR_Res = FR_Res, f1, FR_HL // res = res + hl
1626 fms.s1 FR_Res = FR_Res, f1, FR_HH // res = res + hh
1632 fma.s0 FR_Res = FR_Res, f1, FR_GG // result = res + gg
1633 br.ret.sptk b0 // Exit for near 1 path
1635 // NEAR ONE INTERVAL END
1643 fmerge.s FR_Arg_X = FR_Arg, FR_Arg
1647 mov GR_Parameter_TAG = 135
1648 frcpa.s0 FR_Res,p0 = f0,f0 // get QNaN,and raise invalid
1649 br.cond.sptk __libm_error_region // exit if x < 1.0
1652 GLOBAL_LIBM_END(acoshl)
1656 LOCAL_LIBM_ENTRY(__libm_error_region)
1659 add GR_Parameter_Y = -32,sp // Parameter 2 value
1661 .save ar.pfs,GR_SAVE_PFS
1662 mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
1666 add sp = -64,sp // Create new stack
1668 mov GR_SAVE_GP = gp // Save gp
1672 stfe [GR_Parameter_Y] = FR_Arg_Y,16 // Parameter 2 to stack
1673 add GR_Parameter_X = 16,sp // Parameter 1 address
1675 mov GR_SAVE_B0 = b0 // Save b0
1680 stfe [GR_Parameter_X] = FR_Arg_X // Parameter 1 to stack
1681 add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
1685 stfe [GR_Parameter_Y] = FR_Res // Parameter 3 to stack
1686 add GR_Parameter_Y = -16,GR_Parameter_Y
1687 br.call.sptk b0 = __libm_error_support# // Error handling function
1693 add GR_Parameter_RESULT = 48,sp
1697 ldfe f8 = [GR_Parameter_RESULT] // Get return res
1699 add sp = 64,sp // Restore stack pointer
1700 mov b0 = GR_SAVE_B0 // Restore return address
1704 mov gp = GR_SAVE_GP // Restore gp
1705 mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
1706 br.ret.sptk b0 // Return
1709 LOCAL_LIBM_END(__libm_error_region#)
1711 .type __libm_error_support#,@function
1712 .global __libm_error_support#