initial import
[glibc.git] / sysdeps / generic / expm1.c
bloba738d124c841c2d355b8e9b81e3e8d03da137e57
1 /*
2 * Copyright (c) 1985, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
34 #ifndef lint
35 static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93";
36 #endif /* not lint */
38 /* EXPM1(X)
39 * RETURN THE EXPONENTIAL OF X MINUS ONE
40 * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
41 * CODED IN C BY K.C. NG, 1/19/85;
42 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
44 * Required system supported functions:
45 * scalb(x,n)
46 * copysign(x,y)
47 * finite(x)
49 * Kernel function:
50 * exp__E(x,c)
52 * Method:
53 * 1. Argument Reduction: given the input x, find r and integer k such
54 * that
55 * x = k*ln2 + r, |r| <= 0.5*ln2 .
56 * r will be represented as r := z+c for better accuracy.
58 * 2. Compute EXPM1(r)=exp(r)-1 by
60 * EXPM1(r=z+c) := z + exp__E(z,c)
62 * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
64 * Remarks:
65 * 1. When k=1 and z < -0.25, we use the following formula for
66 * better accuracy:
67 * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
68 * 2. To avoid rounding error in 1-2^-k where k is large, we use
69 * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
70 * when k>56.
72 * Special cases:
73 * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
74 * EXPM1(-INF)= -1;
75 * for finite argument, only EXPM1(0)=0 is exact.
77 * Accuracy:
78 * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
79 * 1,166,000 random arguments on a VAX, the maximum observed error was
80 * .872 ulps (units of the last place).
82 * Constants:
83 * The hexadecimal values are the intended ones for the following constants.
84 * The decimal values may be used, provided that the compiler will convert
85 * from decimal to binary accurately enough to produce the hexadecimal values
86 * shown.
89 #include "mathimpl.h"
91 vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
92 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
93 vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
94 vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
96 ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
97 ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76)
98 ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
99 ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
101 #ifdef vccast
102 #define ln2hi vccast(ln2hi)
103 #define ln2lo vccast(ln2lo)
104 #define lnhuge vccast(lnhuge)
105 #define invln2 vccast(invln2)
106 #endif
108 double expm1(x)
109 double x;
111 const static double one=1.0, half=1.0/2.0;
112 double z,hi,lo,c;
113 int k;
114 #if defined(vax)||defined(tahoe)
115 static prec=56;
116 #else /* defined(vax)||defined(tahoe) */
117 static prec=53;
118 #endif /* defined(vax)||defined(tahoe) */
120 #if !defined(vax)&&!defined(tahoe)
121 if(x!=x) return(x); /* x is NaN */
122 #endif /* !defined(vax)&&!defined(tahoe) */
124 if( x <= lnhuge ) {
125 if( x >= -40.0 ) {
127 /* argument reduction : x - k*ln2 */
128 k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
129 hi=x-k*ln2hi ;
130 z=hi-(lo=k*ln2lo);
131 c=(hi-z)-lo;
133 if(k==0) return(z+__exp__E(z,c));
134 if(k==1)
135 if(z< -0.25)
136 {x=z+half;x +=__exp__E(z,c); return(x+x);}
137 else
138 {z+=__exp__E(z,c); x=half+z; return(x+x);}
139 /* end of k=1 */
141 else {
142 if(k<=prec)
143 { x=one-scalb(one,-k); z += __exp__E(z,c);}
144 else if(k<100)
145 { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
146 else
147 { x = __exp__E(z,c)+z; z=one;}
149 return (scalb(x+z,k));
152 /* end of x > lnunfl */
154 else
155 /* expm1(-big#) rounded to -1 (inexact) */
156 if(finite(x))
157 { ln2hi+ln2lo; return(-one);}
159 /* expm1(-INF) is -1 */
160 else return(-one);
162 /* end of x < lnhuge */
164 else
165 /* expm1(INF) is INF, expm1(+big#) overflows to INF */
166 return( finite(x) ? scalb(one,5000) : x);
169 weak_alias (__expm1, expm1)