1 /* @(#)e_jn.c 5.1 93/09/24 */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static char rcsid
[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
18 * __ieee754_jn(n, x), __ieee754_yn(n, x)
19 * floating point Bessel's function of the 1st and 2nd kind
23 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
24 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25 * Note 2. About jn(n,x), yn(n,x)
26 * For n=0, j0(x) is called,
27 * for n=1, j1(x) is called,
28 * for n<x, forward recursion us used starting
29 * from values of j0(x) and j1(x).
30 * for n>x, a continued fraction approximation to
31 * j(n,x)/j(n-1,x) is evaluated and then backward
32 * recursion is used starting from a supposed value
33 * for j(n,x). The resulting value of j(0,x) is
34 * compared with the actual value to correct the
35 * supposed value of j(n,x).
37 * yn(n,x) is similar in all respects, except
38 * that forward recursion is used for all
44 #include "math_private.h"
51 invsqrtpi
= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
52 two
= 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
53 one
= 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
56 static const double zero
= 0.00000000000000000000e+00;
58 static double zero
= 0.00000000000000000000e+00;
62 double __ieee754_jn(int n
, double x
)
64 double __ieee754_jn(n
,x
)
68 int32_t i
,hx
,ix
,lx
, sgn
;
69 double a
, b
, temp
, di
;
72 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
73 * Thus, J(-n,x) = J(n,-x)
75 EXTRACT_WORDS(hx
,lx
,x
);
77 /* if J(n,NaN) is NaN */
78 if((ix
|((u_int32_t
)(lx
|-lx
))>>31)>0x7ff00000) return x
+x
;
84 if(n
==0) return(__ieee754_j0(x
));
85 if(n
==1) return(__ieee754_j1(x
));
86 sgn
= (n
&1)&(hx
>>31); /* even n -- 0, odd n -- sign(x) */
88 if((ix
|lx
)==0||ix
>=0x7ff00000) /* if x is 0 or inf */
90 else if((double)n
<=x
) {
91 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
92 if(ix
>=0x52D00000) { /* x > 2**302 */
94 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
95 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
96 * Let s=sin(x), c=cos(x),
97 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
99 * n sin(xn)*sqt2 cos(xn)*sqt2
100 * ----------------------------------
108 __sincos (x
, &s
, &c
);
110 case 0: temp
= c
+ s
; break;
111 case 1: temp
= -c
+ s
; break;
112 case 2: temp
= -c
- s
; break;
113 case 3: temp
= c
- s
; break;
115 b
= invsqrtpi
*temp
/__ieee754_sqrt(x
);
121 b
= b
*((double)(i
+i
)/x
) - a
; /* avoid underflow */
126 if(ix
<0x3e100000) { /* x < 2**-29 */
127 /* x is tiny, return the first Taylor expansion of J(n,x)
128 * J(n,x) = 1/n!*(x/2)^n - ...
130 if(n
>33) /* underflow */
133 temp
= x
*0.5; b
= temp
;
134 for (a
=one
,i
=2;i
<=n
;i
++) {
135 a
*= (double)i
; /* a = n! */
136 b
*= temp
; /* b = (x/2)^n */
141 /* use backward recurrence */
143 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
144 * 2n - 2(n+1) - 2(n+2)
147 * (for large x) = ---- ------ ------ .....
149 * -- - ------ - ------ -
152 * Let w = 2n/x and h=2/x, then the above quotient
153 * is equal to the continued fraction:
155 * = -----------------------
157 * w - -----------------
162 * To determine how many terms needed, let
163 * Q(0) = w, Q(1) = w(w+h) - 1,
164 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
165 * When Q(k) > 1e4 good for single
166 * When Q(k) > 1e9 good for double
167 * When Q(k) > 1e17 good for quadruple
171 double q0
,q1
,h
,tmp
; int32_t k
,m
;
172 w
= (n
+n
)/(double)x
; h
= 2.0/(double)x
;
173 q0
= w
; z
= w
+h
; q1
= w
*z
- 1.0; k
=1;
181 for(t
=zero
, i
= 2*(n
+k
); i
>=m
; i
-= 2) t
= one
/(i
/x
-t
);
184 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
185 * Hence, if n*(log(2n/x)) > ...
186 * single 8.8722839355e+01
187 * double 7.09782712893383973096e+02
188 * long double 1.1356523406294143949491931077970765006170e+04
189 * then recurrent value may overflow and the result is
190 * likely underflow to zero
194 tmp
= tmp
*__ieee754_log(fabs(v
*tmp
));
195 if(tmp
<7.09782712893383973096e+02) {
196 for(i
=n
-1,di
=(double)(i
+i
);i
>0;i
--){
204 for(i
=n
-1,di
=(double)(i
+i
);i
>0;i
--){
210 /* scale b to avoid spurious overflow */
218 b
= (t
*__ieee754_j0(x
)/b
);
221 if(sgn
==1) return -b
; else return b
;
225 double __ieee754_yn(int n
, double x
)
227 double __ieee754_yn(n
,x
)
235 EXTRACT_WORDS(hx
,lx
,x
);
237 /* if Y(n,NaN) is NaN */
238 if((ix
|((u_int32_t
)(lx
|-lx
))>>31)>0x7ff00000) return x
+x
;
239 if((ix
|lx
)==0) return -one
/zero
;
240 if(hx
<0) return zero
/zero
;
244 sign
= 1 - ((n
&1)<<1);
246 if(n
==0) return(__ieee754_y0(x
));
247 if(n
==1) return(sign
*__ieee754_y1(x
));
248 if(ix
==0x7ff00000) return zero
;
249 if(ix
>=0x52D00000) { /* x > 2**302 */
251 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
252 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
253 * Let s=sin(x), c=cos(x),
254 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
256 * n sin(xn)*sqt2 cos(xn)*sqt2
257 * ----------------------------------
265 __sincos (x
, &s
, &c
);
267 case 0: temp
= s
- c
; break;
268 case 1: temp
= -s
- c
; break;
269 case 2: temp
= -s
+ c
; break;
270 case 3: temp
= s
+ c
; break;
272 b
= invsqrtpi
*temp
/__ieee754_sqrt(x
);
277 /* quit if b is -inf */
278 GET_HIGH_WORD(high
,b
);
279 for(i
=1;i
<n
&&high
!=0xfff00000;i
++){
281 b
= ((double)(i
+i
)/x
)*b
- a
;
282 GET_HIGH_WORD(high
,b
);
286 if(sign
>0) return b
; else return -b
;