* sysdeps/powerpc/fpu/fenv_libc.h: Add libm_hidden_proto for
[glibc.git] / sysdeps / ieee754 / ldbl-128 / e_j0l.c
blobf2353729162319a72df6eb47fa181e8ae945e113
1 /* j0l.c
3 * Bessel function of order zero
7 * SYNOPSIS:
9 * long double x, y, j0l();
11 * y = j0l( x );
15 * DESCRIPTION:
17 * Returns Bessel function of first kind, order zero of the argument.
19 * The domain is divided into two major intervals [0, 2] and
20 * (2, infinity). In the first interval the rational approximation
21 * is J0(x) = 1 - x^2 / 4 + x^4 R(x^2)
22 * The second interval is further partitioned into eight equal segments
23 * of 1/x.
25 * J0(x) = sqrt(2/(pi x)) (P0(x) cos(X) - Q0(x) sin(X)),
26 * X = x - pi/4,
28 * and the auxiliary functions are given by
30 * J0(x)cos(X) + Y0(x)sin(X) = sqrt( 2/(pi x)) P0(x),
31 * P0(x) = 1 + 1/x^2 R(1/x^2)
33 * Y0(x)cos(X) - J0(x)sin(X) = sqrt( 2/(pi x)) Q0(x),
34 * Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
38 * ACCURACY:
40 * Absolute error:
41 * arithmetic domain # trials peak rms
42 * IEEE 0, 30 100000 1.7e-34 2.4e-35
47 /* y0l.c
49 * Bessel function of the second kind, order zero
53 * SYNOPSIS:
55 * double x, y, y0l();
57 * y = y0l( x );
61 * DESCRIPTION:
63 * Returns Bessel function of the second kind, of order
64 * zero, of the argument.
66 * The approximation is the same as for J0(x), and
67 * Y0(x) = sqrt(2/(pi x)) (P0(x) sin(X) + Q0(x) cos(X)).
69 * ACCURACY:
71 * Absolute error, when y0(x) < 1; else relative error:
73 * arithmetic domain # trials peak rms
74 * IEEE 0, 30 100000 3.0e-34 2.7e-35
78 /* Copyright 2001 by Stephen L. Moshier (moshier@na-net.ornl.gov).
80 This library is free software; you can redistribute it and/or
81 modify it under the terms of the GNU Lesser General Public
82 License as published by the Free Software Foundation; either
83 version 2.1 of the License, or (at your option) any later version.
85 This library is distributed in the hope that it will be useful,
86 but WITHOUT ANY WARRANTY; without even the implied warranty of
87 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
88 Lesser General Public License for more details.
90 You should have received a copy of the GNU Lesser General Public
91 License along with this library; if not, write to the Free Software
92 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
94 #include "math.h"
95 #include "math_private.h"
97 /* 1 / sqrt(pi) */
98 static const long double ONEOSQPI = 5.6418958354775628694807945156077258584405E-1L;
99 /* 2 / pi */
100 static const long double TWOOPI = 6.3661977236758134307553505349005744813784E-1L;
101 static const long double zero = 0.0L;
103 /* J0(x) = 1 - x^2/4 + x^2 x^2 R(x^2)
104 Peak relative error 3.4e-37
105 0 <= x <= 2 */
106 #define NJ0_2N 6
107 static const long double J0_2N[NJ0_2N + 1] = {
108 3.133239376997663645548490085151484674892E16L,
109 -5.479944965767990821079467311839107722107E14L,
110 6.290828903904724265980249871997551894090E12L,
111 -3.633750176832769659849028554429106299915E10L,
112 1.207743757532429576399485415069244807022E8L,
113 -2.107485999925074577174305650549367415465E5L,
114 1.562826808020631846245296572935547005859E2L,
116 #define NJ0_2D 6
117 static const long double J0_2D[NJ0_2D + 1] = {
118 2.005273201278504733151033654496928968261E18L,
119 2.063038558793221244373123294054149790864E16L,
120 1.053350447931127971406896594022010524994E14L,
121 3.496556557558702583143527876385508882310E11L,
122 8.249114511878616075860654484367133976306E8L,
123 1.402965782449571800199759247964242790589E6L,
124 1.619910762853439600957801751815074787351E3L,
125 /* 1.000000000000000000000000000000000000000E0 */
128 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2),
129 0 <= 1/x <= .0625
130 Peak relative error 3.3e-36 */
131 #define NP16_IN 9
132 static const long double P16_IN[NP16_IN + 1] = {
133 -1.901689868258117463979611259731176301065E-16L,
134 -1.798743043824071514483008340803573980931E-13L,
135 -6.481746687115262291873324132944647438959E-11L,
136 -1.150651553745409037257197798528294248012E-8L,
137 -1.088408467297401082271185599507222695995E-6L,
138 -5.551996725183495852661022587879817546508E-5L,
139 -1.477286941214245433866838787454880214736E-3L,
140 -1.882877976157714592017345347609200402472E-2L,
141 -9.620983176855405325086530374317855880515E-2L,
142 -1.271468546258855781530458854476627766233E-1L,
144 #define NP16_ID 9
145 static const long double P16_ID[NP16_ID + 1] = {
146 2.704625590411544837659891569420764475007E-15L,
147 2.562526347676857624104306349421985403573E-12L,
148 9.259137589952741054108665570122085036246E-10L,
149 1.651044705794378365237454962653430805272E-7L,
150 1.573561544138733044977714063100859136660E-5L,
151 8.134482112334882274688298469629884804056E-4L,
152 2.219259239404080863919375103673593571689E-2L,
153 2.976990606226596289580242451096393862792E-1L,
154 1.713895630454693931742734911930937246254E0L,
155 3.231552290717904041465898249160757368855E0L,
156 /* 1.000000000000000000000000000000000000000E0 */
159 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
160 0.0625 <= 1/x <= 0.125
161 Peak relative error 2.4e-35 */
162 #define NP8_16N 10
163 static const long double P8_16N[NP8_16N + 1] = {
164 -2.335166846111159458466553806683579003632E-15L,
165 -1.382763674252402720401020004169367089975E-12L,
166 -3.192160804534716696058987967592784857907E-10L,
167 -3.744199606283752333686144670572632116899E-8L,
168 -2.439161236879511162078619292571922772224E-6L,
169 -9.068436986859420951664151060267045346549E-5L,
170 -1.905407090637058116299757292660002697359E-3L,
171 -2.164456143936718388053842376884252978872E-2L,
172 -1.212178415116411222341491717748696499966E-1L,
173 -2.782433626588541494473277445959593334494E-1L,
174 -1.670703190068873186016102289227646035035E-1L,
176 #define NP8_16D 10
177 static const long double P8_16D[NP8_16D + 1] = {
178 3.321126181135871232648331450082662856743E-14L,
179 1.971894594837650840586859228510007703641E-11L,
180 4.571144364787008285981633719513897281690E-9L,
181 5.396419143536287457142904742849052402103E-7L,
182 3.551548222385845912370226756036899901549E-5L,
183 1.342353874566932014705609788054598013516E-3L,
184 2.899133293006771317589357444614157734385E-2L,
185 3.455374978185770197704507681491574261545E-1L,
186 2.116616964297512311314454834712634820514E0L,
187 5.850768316827915470087758636881584174432E0L,
188 5.655273858938766830855753983631132928968E0L,
189 /* 1.000000000000000000000000000000000000000E0 */
192 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
193 0.125 <= 1/x <= 0.1875
194 Peak relative error 2.7e-35 */
195 #define NP5_8N 10
196 static const long double P5_8N[NP5_8N + 1] = {
197 -1.270478335089770355749591358934012019596E-12L,
198 -4.007588712145412921057254992155810347245E-10L,
199 -4.815187822989597568124520080486652009281E-8L,
200 -2.867070063972764880024598300408284868021E-6L,
201 -9.218742195161302204046454768106063638006E-5L,
202 -1.635746821447052827526320629828043529997E-3L,
203 -1.570376886640308408247709616497261011707E-2L,
204 -7.656484795303305596941813361786219477807E-2L,
205 -1.659371030767513274944805479908858628053E-1L,
206 -1.185340550030955660015841796219919804915E-1L,
207 -8.920026499909994671248893388013790366712E-3L,
209 #define NP5_8D 9
210 static const long double P5_8D[NP5_8D + 1] = {
211 1.806902521016705225778045904631543990314E-11L,
212 5.728502760243502431663549179135868966031E-9L,
213 6.938168504826004255287618819550667978450E-7L,
214 4.183769964807453250763325026573037785902E-5L,
215 1.372660678476925468014882230851637878587E-3L,
216 2.516452105242920335873286419212708961771E-2L,
217 2.550502712902647803796267951846557316182E-1L,
218 1.365861559418983216913629123778747617072E0L,
219 3.523825618308783966723472468855042541407E0L,
220 3.656365803506136165615111349150536282434E0L,
221 /* 1.000000000000000000000000000000000000000E0 */
224 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
225 Peak relative error 3.5e-35
226 0.1875 <= 1/x <= 0.25 */
227 #define NP4_5N 9
228 static const long double P4_5N[NP4_5N + 1] = {
229 -9.791405771694098960254468859195175708252E-10L,
230 -1.917193059944531970421626610188102836352E-7L,
231 -1.393597539508855262243816152893982002084E-5L,
232 -4.881863490846771259880606911667479860077E-4L,
233 -8.946571245022470127331892085881699269853E-3L,
234 -8.707474232568097513415336886103899434251E-2L,
235 -4.362042697474650737898551272505525973766E-1L,
236 -1.032712171267523975431451359962375617386E0L,
237 -9.630502683169895107062182070514713702346E-1L,
238 -2.251804386252969656586810309252357233320E-1L,
240 #define NP4_5D 9
241 static const long double P4_5D[NP4_5D + 1] = {
242 1.392555487577717669739688337895791213139E-8L,
243 2.748886559120659027172816051276451376854E-6L,
244 2.024717710644378047477189849678576659290E-4L,
245 7.244868609350416002930624752604670292469E-3L,
246 1.373631762292244371102989739300382152416E-1L,
247 1.412298581400224267910294815260613240668E0L,
248 7.742495637843445079276397723849017617210E0L,
249 2.138429269198406512028307045259503811861E1L,
250 2.651547684548423476506826951831712762610E1L,
251 1.167499382465291931571685222882909166935E1L,
252 /* 1.000000000000000000000000000000000000000E0 */
255 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
256 Peak relative error 2.3e-36
257 0.25 <= 1/x <= 0.3125 */
258 #define NP3r2_4N 9
259 static const long double P3r2_4N[NP3r2_4N + 1] = {
260 -2.589155123706348361249809342508270121788E-8L,
261 -3.746254369796115441118148490849195516593E-6L,
262 -1.985595497390808544622893738135529701062E-4L,
263 -5.008253705202932091290132760394976551426E-3L,
264 -6.529469780539591572179155511840853077232E-2L,
265 -4.468736064761814602927408833818990271514E-1L,
266 -1.556391252586395038089729428444444823380E0L,
267 -2.533135309840530224072920725976994981638E0L,
268 -1.605509621731068453869408718565392869560E0L,
269 -2.518966692256192789269859830255724429375E-1L,
271 #define NP3r2_4D 9
272 static const long double P3r2_4D[NP3r2_4D + 1] = {
273 3.682353957237979993646169732962573930237E-7L,
274 5.386741661883067824698973455566332102029E-5L,
275 2.906881154171822780345134853794241037053E-3L,
276 7.545832595801289519475806339863492074126E-2L,
277 1.029405357245594877344360389469584526654E0L,
278 7.565706120589873131187989560509757626725E0L,
279 2.951172890699569545357692207898667665796E1L,
280 5.785723537170311456298467310529815457536E1L,
281 5.095621464598267889126015412522773474467E1L,
282 1.602958484169953109437547474953308401442E1L,
283 /* 1.000000000000000000000000000000000000000E0 */
286 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
287 Peak relative error 1.0e-35
288 0.3125 <= 1/x <= 0.375 */
289 #define NP2r7_3r2N 9
290 static const long double P2r7_3r2N[NP2r7_3r2N + 1] = {
291 -1.917322340814391131073820537027234322550E-7L,
292 -1.966595744473227183846019639723259011906E-5L,
293 -7.177081163619679403212623526632690465290E-4L,
294 -1.206467373860974695661544653741899755695E-2L,
295 -1.008656452188539812154551482286328107316E-1L,
296 -4.216016116408810856620947307438823892707E-1L,
297 -8.378631013025721741744285026537009814161E-1L,
298 -6.973895635309960850033762745957946272579E-1L,
299 -1.797864718878320770670740413285763554812E-1L,
300 -4.098025357743657347681137871388402849581E-3L,
302 #define NP2r7_3r2D 8
303 static const long double P2r7_3r2D[NP2r7_3r2D + 1] = {
304 2.726858489303036441686496086962545034018E-6L,
305 2.840430827557109238386808968234848081424E-4L,
306 1.063826772041781947891481054529454088832E-2L,
307 1.864775537138364773178044431045514405468E-1L,
308 1.665660052857205170440952607701728254211E0L,
309 7.723745889544331153080842168958348568395E0L,
310 1.810726427571829798856428548102077799835E1L,
311 1.986460672157794440666187503833545388527E1L,
312 8.645503204552282306364296517220055815488E0L,
313 /* 1.000000000000000000000000000000000000000E0 */
316 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
317 Peak relative error 1.3e-36
318 0.3125 <= 1/x <= 0.4375 */
319 #define NP2r3_2r7N 9
320 static const long double P2r3_2r7N[NP2r3_2r7N + 1] = {
321 -1.594642785584856746358609622003310312622E-6L,
322 -1.323238196302221554194031733595194539794E-4L,
323 -3.856087818696874802689922536987100372345E-3L,
324 -5.113241710697777193011470733601522047399E-2L,
325 -3.334229537209911914449990372942022350558E-1L,
326 -1.075703518198127096179198549659283422832E0L,
327 -1.634174803414062725476343124267110981807E0L,
328 -1.030133247434119595616826842367268304880E0L,
329 -1.989811539080358501229347481000707289391E-1L,
330 -3.246859189246653459359775001466924610236E-3L,
332 #define NP2r3_2r7D 8
333 static const long double P2r3_2r7D[NP2r3_2r7D + 1] = {
334 2.267936634217251403663034189684284173018E-5L,
335 1.918112982168673386858072491437971732237E-3L,
336 5.771704085468423159125856786653868219522E-2L,
337 8.056124451167969333717642810661498890507E-1L,
338 5.687897967531010276788680634413789328776E0L,
339 2.072596760717695491085444438270778394421E1L,
340 3.801722099819929988585197088613160496684E1L,
341 3.254620235902912339534998592085115836829E1L,
342 1.104847772130720331801884344645060675036E1L,
343 /* 1.000000000000000000000000000000000000000E0 */
346 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
347 Peak relative error 1.2e-35
348 0.4375 <= 1/x <= 0.5 */
349 #define NP2_2r3N 8
350 static const long double P2_2r3N[NP2_2r3N + 1] = {
351 -1.001042324337684297465071506097365389123E-4L,
352 -6.289034524673365824853547252689991418981E-3L,
353 -1.346527918018624234373664526930736205806E-1L,
354 -1.268808313614288355444506172560463315102E0L,
355 -5.654126123607146048354132115649177406163E0L,
356 -1.186649511267312652171775803270911971693E1L,
357 -1.094032424931998612551588246779200724257E1L,
358 -3.728792136814520055025256353193674625267E0L,
359 -3.000348318524471807839934764596331810608E-1L,
361 #define NP2_2r3D 8
362 static const long double P2_2r3D[NP2_2r3D + 1] = {
363 1.423705538269770974803901422532055612980E-3L,
364 9.171476630091439978533535167485230575894E-2L,
365 2.049776318166637248868444600215942828537E0L,
366 2.068970329743769804547326701946144899583E1L,
367 1.025103500560831035592731539565060347709E2L,
368 2.528088049697570728252145557167066708284E2L,
369 2.992160327587558573740271294804830114205E2L,
370 1.540193761146551025832707739468679973036E2L,
371 2.779516701986912132637672140709452502650E1L,
372 /* 1.000000000000000000000000000000000000000E0 */
375 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
376 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
377 Peak relative error 2.2e-35
378 0 <= 1/x <= .0625 */
379 #define NQ16_IN 10
380 static const long double Q16_IN[NQ16_IN + 1] = {
381 2.343640834407975740545326632205999437469E-18L,
382 2.667978112927811452221176781536278257448E-15L,
383 1.178415018484555397390098879501969116536E-12L,
384 2.622049767502719728905924701288614016597E-10L,
385 3.196908059607618864801313380896308968673E-8L,
386 2.179466154171673958770030655199434798494E-6L,
387 8.139959091628545225221976413795645177291E-5L,
388 1.563900725721039825236927137885747138654E-3L,
389 1.355172364265825167113562519307194840307E-2L,
390 3.928058355906967977269780046844768588532E-2L,
391 1.107891967702173292405380993183694932208E-2L,
393 #define NQ16_ID 9
394 static const long double Q16_ID[NQ16_ID + 1] = {
395 3.199850952578356211091219295199301766718E-17L,
396 3.652601488020654842194486058637953363918E-14L,
397 1.620179741394865258354608590461839031281E-11L,
398 3.629359209474609630056463248923684371426E-9L,
399 4.473680923894354600193264347733477363305E-7L,
400 3.106368086644715743265603656011050476736E-5L,
401 1.198239259946770604954664925153424252622E-3L,
402 2.446041004004283102372887804475767568272E-2L,
403 2.403235525011860603014707768815113698768E-1L,
404 9.491006790682158612266270665136910927149E-1L,
405 /* 1.000000000000000000000000000000000000000E0 */
408 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
409 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
410 Peak relative error 5.1e-36
411 0.0625 <= 1/x <= 0.125 */
412 #define NQ8_16N 11
413 static const long double Q8_16N[NQ8_16N + 1] = {
414 1.001954266485599464105669390693597125904E-17L,
415 7.545499865295034556206475956620160007849E-15L,
416 2.267838684785673931024792538193202559922E-12L,
417 3.561909705814420373609574999542459912419E-10L,
418 3.216201422768092505214730633842924944671E-8L,
419 1.731194793857907454569364622452058554314E-6L,
420 5.576944613034537050396518509871004586039E-5L,
421 1.051787760316848982655967052985391418146E-3L,
422 1.102852974036687441600678598019883746959E-2L,
423 5.834647019292460494254225988766702933571E-2L,
424 1.290281921604364618912425380717127576529E-1L,
425 7.598886310387075708640370806458926458301E-2L,
427 #define NQ8_16D 11
428 static const long double Q8_16D[NQ8_16D + 1] = {
429 1.368001558508338469503329967729951830843E-16L,
430 1.034454121857542147020549303317348297289E-13L,
431 3.128109209247090744354764050629381674436E-11L,
432 4.957795214328501986562102573522064468671E-9L,
433 4.537872468606711261992676606899273588899E-7L,
434 2.493639207101727713192687060517509774182E-5L,
435 8.294957278145328349785532236663051405805E-4L,
436 1.646471258966713577374948205279380115839E-2L,
437 1.878910092770966718491814497982191447073E-1L,
438 1.152641605706170353727903052525652504075E0L,
439 3.383550240669773485412333679367792932235E0L,
440 3.823875252882035706910024716609908473970E0L,
441 /* 1.000000000000000000000000000000000000000E0 */
444 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
445 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
446 Peak relative error 3.9e-35
447 0.125 <= 1/x <= 0.1875 */
448 #define NQ5_8N 10
449 static const long double Q5_8N[NQ5_8N + 1] = {
450 1.750399094021293722243426623211733898747E-13L,
451 6.483426211748008735242909236490115050294E-11L,
452 9.279430665656575457141747875716899958373E-9L,
453 6.696634968526907231258534757736576340266E-7L,
454 2.666560823798895649685231292142838188061E-5L,
455 6.025087697259436271271562769707550594540E-4L,
456 7.652807734168613251901945778921336353485E-3L,
457 5.226269002589406461622551452343519078905E-2L,
458 1.748390159751117658969324896330142895079E-1L,
459 2.378188719097006494782174902213083589660E-1L,
460 8.383984859679804095463699702165659216831E-2L,
462 #define NQ5_8D 10
463 static const long double Q5_8D[NQ5_8D + 1] = {
464 2.389878229704327939008104855942987615715E-12L,
465 8.926142817142546018703814194987786425099E-10L,
466 1.294065862406745901206588525833274399038E-7L,
467 9.524139899457666250828752185212769682191E-6L,
468 3.908332488377770886091936221573123353489E-4L,
469 9.250427033957236609624199884089916836748E-3L,
470 1.263420066165922645975830877751588421451E-1L,
471 9.692527053860420229711317379861733180654E-1L,
472 3.937813834630430172221329298841520707954E0L,
473 7.603126427436356534498908111445191312181E0L,
474 5.670677653334105479259958485084550934305E0L,
475 /* 1.000000000000000000000000000000000000000E0 */
478 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
479 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
480 Peak relative error 3.2e-35
481 0.1875 <= 1/x <= 0.25 */
482 #define NQ4_5N 10
483 static const long double Q4_5N[NQ4_5N + 1] = {
484 2.233870042925895644234072357400122854086E-11L,
485 5.146223225761993222808463878999151699792E-9L,
486 4.459114531468296461688753521109797474523E-7L,
487 1.891397692931537975547242165291668056276E-5L,
488 4.279519145911541776938964806470674565504E-4L,
489 5.275239415656560634702073291768904783989E-3L,
490 3.468698403240744801278238473898432608887E-2L,
491 1.138773146337708415188856882915457888274E-1L,
492 1.622717518946443013587108598334636458955E-1L,
493 7.249040006390586123760992346453034628227E-2L,
494 1.941595365256460232175236758506411486667E-3L,
496 #define NQ4_5D 9
497 static const long double Q4_5D[NQ4_5D + 1] = {
498 3.049977232266999249626430127217988047453E-10L,
499 7.120883230531035857746096928889676144099E-8L,
500 6.301786064753734446784637919554359588859E-6L,
501 2.762010530095069598480766869426308077192E-4L,
502 6.572163250572867859316828886203406361251E-3L,
503 8.752566114841221958200215255461843397776E-2L,
504 6.487654992874805093499285311075289932664E-1L,
505 2.576550017826654579451615283022812801435E0L,
506 5.056392229924022835364779562707348096036E0L,
507 4.179770081068251464907531367859072157773E0L,
508 /* 1.000000000000000000000000000000000000000E0 */
511 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
512 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
513 Peak relative error 1.4e-36
514 0.25 <= 1/x <= 0.3125 */
515 #define NQ3r2_4N 10
516 static const long double Q3r2_4N[NQ3r2_4N + 1] = {
517 6.126167301024815034423262653066023684411E-10L,
518 1.043969327113173261820028225053598975128E-7L,
519 6.592927270288697027757438170153763220190E-6L,
520 2.009103660938497963095652951912071336730E-4L,
521 3.220543385492643525985862356352195896964E-3L,
522 2.774405975730545157543417650436941650990E-2L,
523 1.258114008023826384487378016636555041129E-1L,
524 2.811724258266902502344701449984698323860E-1L,
525 2.691837665193548059322831687432415014067E-1L,
526 7.949087384900985370683770525312735605034E-2L,
527 1.229509543620976530030153018986910810747E-3L,
529 #define NQ3r2_4D 9
530 static const long double Q3r2_4D[NQ3r2_4D + 1] = {
531 8.364260446128475461539941389210166156568E-9L,
532 1.451301850638956578622154585560759862764E-6L,
533 9.431830010924603664244578867057141839463E-5L,
534 3.004105101667433434196388593004526182741E-3L,
535 5.148157397848271739710011717102773780221E-2L,
536 4.901089301726939576055285374953887874895E-1L,
537 2.581760991981709901216967665934142240346E0L,
538 7.257105880775059281391729708630912791847E0L,
539 1.006014717326362868007913423810737369312E1L,
540 5.879416600465399514404064187445293212470E0L,
541 /* 1.000000000000000000000000000000000000000E0*/
544 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
545 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
546 Peak relative error 3.8e-36
547 0.3125 <= 1/x <= 0.375 */
548 #define NQ2r7_3r2N 9
549 static const long double Q2r7_3r2N[NQ2r7_3r2N + 1] = {
550 7.584861620402450302063691901886141875454E-8L,
551 9.300939338814216296064659459966041794591E-6L,
552 4.112108906197521696032158235392604947895E-4L,
553 8.515168851578898791897038357239630654431E-3L,
554 8.971286321017307400142720556749573229058E-2L,
555 4.885856732902956303343015636331874194498E-1L,
556 1.334506268733103291656253500506406045846E0L,
557 1.681207956863028164179042145803851824654E0L,
558 8.165042692571721959157677701625853772271E-1L,
559 9.805848115375053300608712721986235900715E-2L,
561 #define NQ2r7_3r2D 9
562 static const long double Q2r7_3r2D[NQ2r7_3r2D + 1] = {
563 1.035586492113036586458163971239438078160E-6L,
564 1.301999337731768381683593636500979713689E-4L,
565 5.993695702564527062553071126719088859654E-3L,
566 1.321184892887881883489141186815457808785E-1L,
567 1.528766555485015021144963194165165083312E0L,
568 9.561463309176490874525827051566494939295E0L,
569 3.203719484883967351729513662089163356911E1L,
570 5.497294687660930446641539152123568668447E1L,
571 4.391158169390578768508675452986948391118E1L,
572 1.347836630730048077907818943625789418378E1L,
573 /* 1.000000000000000000000000000000000000000E0 */
576 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
577 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
578 Peak relative error 2.2e-35
579 0.375 <= 1/x <= 0.4375 */
580 #define NQ2r3_2r7N 9
581 static const long double Q2r3_2r7N[NQ2r3_2r7N + 1] = {
582 4.455027774980750211349941766420190722088E-7L,
583 4.031998274578520170631601850866780366466E-5L,
584 1.273987274325947007856695677491340636339E-3L,
585 1.818754543377448509897226554179659122873E-2L,
586 1.266748858326568264126353051352269875352E-1L,
587 4.327578594728723821137731555139472880414E-1L,
588 6.892532471436503074928194969154192615359E-1L,
589 4.490775818438716873422163588640262036506E-1L,
590 8.649615949297322440032000346117031581572E-2L,
591 7.261345286655345047417257611469066147561E-4L,
593 #define NQ2r3_2r7D 8
594 static const long double Q2r3_2r7D[NQ2r3_2r7D + 1] = {
595 6.082600739680555266312417978064954793142E-6L,
596 5.693622538165494742945717226571441747567E-4L,
597 1.901625907009092204458328768129666975975E-2L,
598 2.958689532697857335456896889409923371570E-1L,
599 2.343124711045660081603809437993368799568E0L,
600 9.665894032187458293568704885528192804376E0L,
601 2.035273104990617136065743426322454881353E1L,
602 2.044102010478792896815088858740075165531E1L,
603 8.445937177863155827844146643468706599304E0L,
604 /* 1.000000000000000000000000000000000000000E0 */
607 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
608 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
609 Peak relative error 3.1e-36
610 0.4375 <= 1/x <= 0.5 */
611 #define NQ2_2r3N 9
612 static const long double Q2_2r3N[NQ2_2r3N + 1] = {
613 2.817566786579768804844367382809101929314E-6L,
614 2.122772176396691634147024348373539744935E-4L,
615 5.501378031780457828919593905395747517585E-3L,
616 6.355374424341762686099147452020466524659E-2L,
617 3.539652320122661637429658698954748337223E-1L,
618 9.571721066119617436343740541777014319695E-1L,
619 1.196258777828426399432550698612171955305E0L,
620 6.069388659458926158392384709893753793967E-1L,
621 9.026746127269713176512359976978248763621E-2L,
622 5.317668723070450235320878117210807236375E-4L,
624 #define NQ2_2r3D 8
625 static const long double Q2_2r3D[NQ2_2r3D + 1] = {
626 3.846924354014260866793741072933159380158E-5L,
627 3.017562820057704325510067178327449946763E-3L,
628 8.356305620686867949798885808540444210935E-2L,
629 1.068314930499906838814019619594424586273E0L,
630 6.900279623894821067017966573640732685233E0L,
631 2.307667390886377924509090271780839563141E1L,
632 3.921043465412723970791036825401273528513E1L,
633 3.167569478939719383241775717095729233436E1L,
634 1.051023841699200920276198346301543665909E1L,
635 /* 1.000000000000000000000000000000000000000E0*/
639 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
641 static long double
642 neval (long double x, const long double *p, int n)
644 long double y;
646 p += n;
647 y = *p--;
650 y = y * x + *p--;
652 while (--n > 0);
653 return y;
657 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
659 static long double
660 deval (long double x, const long double *p, int n)
662 long double y;
664 p += n;
665 y = x + *p--;
668 y = y * x + *p--;
670 while (--n > 0);
671 return y;
675 /* Bessel function of the first kind, order zero. */
677 long double
678 __ieee754_j0l (long double x)
680 long double xx, xinv, z, p, q, c, s, cc, ss;
682 if (! finitel (x))
684 if (x != x)
685 return x;
686 else
687 return 0.0L;
689 if (x == 0.0L)
690 return 1.0L;
692 xx = fabsl (x);
693 if (xx <= 2.0L)
695 /* 0 <= x <= 2 */
696 z = xx * xx;
697 p = z * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
698 p -= 0.25L * z;
699 p += 1.0L;
700 return p;
703 xinv = 1.0L / xx;
704 z = xinv * xinv;
705 if (xinv <= 0.25)
707 if (xinv <= 0.125)
709 if (xinv <= 0.0625)
711 p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
712 q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
714 else
716 p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
717 q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
720 else if (xinv <= 0.1875)
722 p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
723 q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
725 else
727 p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
728 q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
730 } /* .25 */
731 else /* if (xinv <= 0.5) */
733 if (xinv <= 0.375)
735 if (xinv <= 0.3125)
737 p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
738 q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
740 else
742 p = neval (z, P2r7_3r2N, NP2r7_3r2N)
743 / deval (z, P2r7_3r2D, NP2r7_3r2D);
744 q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
745 / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
748 else if (xinv <= 0.4375)
750 p = neval (z, P2r3_2r7N, NP2r3_2r7N)
751 / deval (z, P2r3_2r7D, NP2r3_2r7D);
752 q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
753 / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
755 else
757 p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
758 q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
761 p = 1.0L + z * p;
762 q = z * xinv * q;
763 q = q - 0.125L * xinv;
764 /* X = x - pi/4
765 cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
766 = 1/sqrt(2) * (cos(x) + sin(x))
767 sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
768 = 1/sqrt(2) * (sin(x) - cos(x))
769 sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
770 cf. Fdlibm. */
771 __sincosl (xx, &s, &c);
772 ss = s - c;
773 cc = s + c;
774 z = -__cosl (xx + xx);
775 if ((s * c) < 0)
776 cc = z / ss;
777 else
778 ss = z / cc;
779 z = ONEOSQPI * (p * cc - q * ss) / __ieee754_sqrtl (xx);
780 return z;
784 /* Y0(x) = 2/pi * log(x) * J0(x) + R(x^2)
785 Peak absolute error 1.7e-36 (relative where Y0 > 1)
786 0 <= x <= 2 */
787 #define NY0_2N 7
788 static long double Y0_2N[NY0_2N + 1] = {
789 -1.062023609591350692692296993537002558155E19L,
790 2.542000883190248639104127452714966858866E19L,
791 -1.984190771278515324281415820316054696545E18L,
792 4.982586044371592942465373274440222033891E16L,
793 -5.529326354780295177243773419090123407550E14L,
794 3.013431465522152289279088265336861140391E12L,
795 -7.959436160727126750732203098982718347785E9L,
796 8.230845651379566339707130644134372793322E6L,
798 #define NY0_2D 7
799 static long double Y0_2D[NY0_2D + 1] = {
800 1.438972634353286978700329883122253752192E20L,
801 1.856409101981569254247700169486907405500E18L,
802 1.219693352678218589553725579802986255614E16L,
803 5.389428943282838648918475915779958097958E13L,
804 1.774125762108874864433872173544743051653E11L,
805 4.522104832545149534808218252434693007036E8L,
806 8.872187401232943927082914504125234454930E5L,
807 1.251945613186787532055610876304669413955E3L,
808 /* 1.000000000000000000000000000000000000000E0 */
812 /* Bessel function of the second kind, order zero. */
814 long double
815 __ieee754_y0l(long double x)
817 long double xx, xinv, z, p, q, c, s, cc, ss;
819 if (! finitel (x))
821 if (x != x)
822 return x;
823 else
824 return 0.0L;
826 if (x <= 0.0L)
828 if (x < 0.0L)
829 return (zero / (zero * x));
830 return -HUGE_VALL + x;
832 xx = fabsl (x);
833 if (xx <= 2.0L)
835 /* 0 <= x <= 2 */
836 z = xx * xx;
837 p = neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
838 p = TWOOPI * __ieee754_logl (x) * __ieee754_j0l (x) + p;
839 return p;
842 xinv = 1.0L / xx;
843 z = xinv * xinv;
844 if (xinv <= 0.25)
846 if (xinv <= 0.125)
848 if (xinv <= 0.0625)
850 p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
851 q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
853 else
855 p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
856 q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
859 else if (xinv <= 0.1875)
861 p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
862 q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
864 else
866 p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
867 q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
869 } /* .25 */
870 else /* if (xinv <= 0.5) */
872 if (xinv <= 0.375)
874 if (xinv <= 0.3125)
876 p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
877 q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
879 else
881 p = neval (z, P2r7_3r2N, NP2r7_3r2N)
882 / deval (z, P2r7_3r2D, NP2r7_3r2D);
883 q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
884 / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
887 else if (xinv <= 0.4375)
889 p = neval (z, P2r3_2r7N, NP2r3_2r7N)
890 / deval (z, P2r3_2r7D, NP2r3_2r7D);
891 q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
892 / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
894 else
896 p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
897 q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
900 p = 1.0L + z * p;
901 q = z * xinv * q;
902 q = q - 0.125L * xinv;
903 /* X = x - pi/4
904 cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
905 = 1/sqrt(2) * (cos(x) + sin(x))
906 sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
907 = 1/sqrt(2) * (sin(x) - cos(x))
908 sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
909 cf. Fdlibm. */
910 __sincosl (x, &s, &c);
911 ss = s - c;
912 cc = s + c;
913 z = -__cosl (x + x);
914 if ((s * c) < 0)
915 cc = z / ss;
916 else
917 ss = z / cc;
918 z = ONEOSQPI * (p * ss + q * cc) / __ieee754_sqrtl (x);
919 return z;