3 * Bessel function of order zero
9 * long double x, y, j0l();
17 * Returns Bessel function of first kind, order zero of the argument.
19 * The domain is divided into two major intervals [0, 2] and
20 * (2, infinity). In the first interval the rational approximation
21 * is J0(x) = 1 - x^2 / 4 + x^4 R(x^2)
22 * The second interval is further partitioned into eight equal segments
25 * J0(x) = sqrt(2/(pi x)) (P0(x) cos(X) - Q0(x) sin(X)),
28 * and the auxiliary functions are given by
30 * J0(x)cos(X) + Y0(x)sin(X) = sqrt( 2/(pi x)) P0(x),
31 * P0(x) = 1 + 1/x^2 R(1/x^2)
33 * Y0(x)cos(X) - J0(x)sin(X) = sqrt( 2/(pi x)) Q0(x),
34 * Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
41 * arithmetic domain # trials peak rms
42 * IEEE 0, 30 100000 1.7e-34 2.4e-35
49 * Bessel function of the second kind, order zero
63 * Returns Bessel function of the second kind, of order
64 * zero, of the argument.
66 * The approximation is the same as for J0(x), and
67 * Y0(x) = sqrt(2/(pi x)) (P0(x) sin(X) + Q0(x) cos(X)).
71 * Absolute error, when y0(x) < 1; else relative error:
73 * arithmetic domain # trials peak rms
74 * IEEE 0, 30 100000 3.0e-34 2.7e-35
78 /* Copyright 2001 by Stephen L. Moshier (moshier@na-net.ornl.gov).
80 This library is free software; you can redistribute it and/or
81 modify it under the terms of the GNU Lesser General Public
82 License as published by the Free Software Foundation; either
83 version 2.1 of the License, or (at your option) any later version.
85 This library is distributed in the hope that it will be useful,
86 but WITHOUT ANY WARRANTY; without even the implied warranty of
87 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
88 Lesser General Public License for more details.
90 You should have received a copy of the GNU Lesser General Public
91 License along with this library; if not, write to the Free Software
92 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
95 #include "math_private.h"
98 static const long double ONEOSQPI
= 5.6418958354775628694807945156077258584405E-1L;
100 static const long double TWOOPI
= 6.3661977236758134307553505349005744813784E-1L;
101 static const long double zero
= 0.0L;
103 /* J0(x) = 1 - x^2/4 + x^2 x^2 R(x^2)
104 Peak relative error 3.4e-37
107 static const long double J0_2N
[NJ0_2N
+ 1] = {
108 3.133239376997663645548490085151484674892E16L
,
109 -5.479944965767990821079467311839107722107E14L
,
110 6.290828903904724265980249871997551894090E12L
,
111 -3.633750176832769659849028554429106299915E10L
,
112 1.207743757532429576399485415069244807022E8L
,
113 -2.107485999925074577174305650549367415465E5L
,
114 1.562826808020631846245296572935547005859E2L
,
117 static const long double J0_2D
[NJ0_2D
+ 1] = {
118 2.005273201278504733151033654496928968261E18L
,
119 2.063038558793221244373123294054149790864E16L
,
120 1.053350447931127971406896594022010524994E14L
,
121 3.496556557558702583143527876385508882310E11L
,
122 8.249114511878616075860654484367133976306E8L
,
123 1.402965782449571800199759247964242790589E6L
,
124 1.619910762853439600957801751815074787351E3L
,
125 /* 1.000000000000000000000000000000000000000E0 */
128 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2),
130 Peak relative error 3.3e-36 */
132 static const long double P16_IN
[NP16_IN
+ 1] = {
133 -1.901689868258117463979611259731176301065E-16L,
134 -1.798743043824071514483008340803573980931E-13L,
135 -6.481746687115262291873324132944647438959E-11L,
136 -1.150651553745409037257197798528294248012E-8L,
137 -1.088408467297401082271185599507222695995E-6L,
138 -5.551996725183495852661022587879817546508E-5L,
139 -1.477286941214245433866838787454880214736E-3L,
140 -1.882877976157714592017345347609200402472E-2L,
141 -9.620983176855405325086530374317855880515E-2L,
142 -1.271468546258855781530458854476627766233E-1L,
145 static const long double P16_ID
[NP16_ID
+ 1] = {
146 2.704625590411544837659891569420764475007E-15L,
147 2.562526347676857624104306349421985403573E-12L,
148 9.259137589952741054108665570122085036246E-10L,
149 1.651044705794378365237454962653430805272E-7L,
150 1.573561544138733044977714063100859136660E-5L,
151 8.134482112334882274688298469629884804056E-4L,
152 2.219259239404080863919375103673593571689E-2L,
153 2.976990606226596289580242451096393862792E-1L,
154 1.713895630454693931742734911930937246254E0L
,
155 3.231552290717904041465898249160757368855E0L
,
156 /* 1.000000000000000000000000000000000000000E0 */
159 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
160 0.0625 <= 1/x <= 0.125
161 Peak relative error 2.4e-35 */
163 static const long double P8_16N
[NP8_16N
+ 1] = {
164 -2.335166846111159458466553806683579003632E-15L,
165 -1.382763674252402720401020004169367089975E-12L,
166 -3.192160804534716696058987967592784857907E-10L,
167 -3.744199606283752333686144670572632116899E-8L,
168 -2.439161236879511162078619292571922772224E-6L,
169 -9.068436986859420951664151060267045346549E-5L,
170 -1.905407090637058116299757292660002697359E-3L,
171 -2.164456143936718388053842376884252978872E-2L,
172 -1.212178415116411222341491717748696499966E-1L,
173 -2.782433626588541494473277445959593334494E-1L,
174 -1.670703190068873186016102289227646035035E-1L,
177 static const long double P8_16D
[NP8_16D
+ 1] = {
178 3.321126181135871232648331450082662856743E-14L,
179 1.971894594837650840586859228510007703641E-11L,
180 4.571144364787008285981633719513897281690E-9L,
181 5.396419143536287457142904742849052402103E-7L,
182 3.551548222385845912370226756036899901549E-5L,
183 1.342353874566932014705609788054598013516E-3L,
184 2.899133293006771317589357444614157734385E-2L,
185 3.455374978185770197704507681491574261545E-1L,
186 2.116616964297512311314454834712634820514E0L
,
187 5.850768316827915470087758636881584174432E0L
,
188 5.655273858938766830855753983631132928968E0L
,
189 /* 1.000000000000000000000000000000000000000E0 */
192 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
193 0.125 <= 1/x <= 0.1875
194 Peak relative error 2.7e-35 */
196 static const long double P5_8N
[NP5_8N
+ 1] = {
197 -1.270478335089770355749591358934012019596E-12L,
198 -4.007588712145412921057254992155810347245E-10L,
199 -4.815187822989597568124520080486652009281E-8L,
200 -2.867070063972764880024598300408284868021E-6L,
201 -9.218742195161302204046454768106063638006E-5L,
202 -1.635746821447052827526320629828043529997E-3L,
203 -1.570376886640308408247709616497261011707E-2L,
204 -7.656484795303305596941813361786219477807E-2L,
205 -1.659371030767513274944805479908858628053E-1L,
206 -1.185340550030955660015841796219919804915E-1L,
207 -8.920026499909994671248893388013790366712E-3L,
210 static const long double P5_8D
[NP5_8D
+ 1] = {
211 1.806902521016705225778045904631543990314E-11L,
212 5.728502760243502431663549179135868966031E-9L,
213 6.938168504826004255287618819550667978450E-7L,
214 4.183769964807453250763325026573037785902E-5L,
215 1.372660678476925468014882230851637878587E-3L,
216 2.516452105242920335873286419212708961771E-2L,
217 2.550502712902647803796267951846557316182E-1L,
218 1.365861559418983216913629123778747617072E0L
,
219 3.523825618308783966723472468855042541407E0L
,
220 3.656365803506136165615111349150536282434E0L
,
221 /* 1.000000000000000000000000000000000000000E0 */
224 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
225 Peak relative error 3.5e-35
226 0.1875 <= 1/x <= 0.25 */
228 static const long double P4_5N
[NP4_5N
+ 1] = {
229 -9.791405771694098960254468859195175708252E-10L,
230 -1.917193059944531970421626610188102836352E-7L,
231 -1.393597539508855262243816152893982002084E-5L,
232 -4.881863490846771259880606911667479860077E-4L,
233 -8.946571245022470127331892085881699269853E-3L,
234 -8.707474232568097513415336886103899434251E-2L,
235 -4.362042697474650737898551272505525973766E-1L,
236 -1.032712171267523975431451359962375617386E0L
,
237 -9.630502683169895107062182070514713702346E-1L,
238 -2.251804386252969656586810309252357233320E-1L,
241 static const long double P4_5D
[NP4_5D
+ 1] = {
242 1.392555487577717669739688337895791213139E-8L,
243 2.748886559120659027172816051276451376854E-6L,
244 2.024717710644378047477189849678576659290E-4L,
245 7.244868609350416002930624752604670292469E-3L,
246 1.373631762292244371102989739300382152416E-1L,
247 1.412298581400224267910294815260613240668E0L
,
248 7.742495637843445079276397723849017617210E0L
,
249 2.138429269198406512028307045259503811861E1L
,
250 2.651547684548423476506826951831712762610E1L
,
251 1.167499382465291931571685222882909166935E1L
,
252 /* 1.000000000000000000000000000000000000000E0 */
255 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
256 Peak relative error 2.3e-36
257 0.25 <= 1/x <= 0.3125 */
259 static const long double P3r2_4N
[NP3r2_4N
+ 1] = {
260 -2.589155123706348361249809342508270121788E-8L,
261 -3.746254369796115441118148490849195516593E-6L,
262 -1.985595497390808544622893738135529701062E-4L,
263 -5.008253705202932091290132760394976551426E-3L,
264 -6.529469780539591572179155511840853077232E-2L,
265 -4.468736064761814602927408833818990271514E-1L,
266 -1.556391252586395038089729428444444823380E0L
,
267 -2.533135309840530224072920725976994981638E0L
,
268 -1.605509621731068453869408718565392869560E0L
,
269 -2.518966692256192789269859830255724429375E-1L,
272 static const long double P3r2_4D
[NP3r2_4D
+ 1] = {
273 3.682353957237979993646169732962573930237E-7L,
274 5.386741661883067824698973455566332102029E-5L,
275 2.906881154171822780345134853794241037053E-3L,
276 7.545832595801289519475806339863492074126E-2L,
277 1.029405357245594877344360389469584526654E0L
,
278 7.565706120589873131187989560509757626725E0L
,
279 2.951172890699569545357692207898667665796E1L
,
280 5.785723537170311456298467310529815457536E1L
,
281 5.095621464598267889126015412522773474467E1L
,
282 1.602958484169953109437547474953308401442E1L
,
283 /* 1.000000000000000000000000000000000000000E0 */
286 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
287 Peak relative error 1.0e-35
288 0.3125 <= 1/x <= 0.375 */
290 static const long double P2r7_3r2N
[NP2r7_3r2N
+ 1] = {
291 -1.917322340814391131073820537027234322550E-7L,
292 -1.966595744473227183846019639723259011906E-5L,
293 -7.177081163619679403212623526632690465290E-4L,
294 -1.206467373860974695661544653741899755695E-2L,
295 -1.008656452188539812154551482286328107316E-1L,
296 -4.216016116408810856620947307438823892707E-1L,
297 -8.378631013025721741744285026537009814161E-1L,
298 -6.973895635309960850033762745957946272579E-1L,
299 -1.797864718878320770670740413285763554812E-1L,
300 -4.098025357743657347681137871388402849581E-3L,
303 static const long double P2r7_3r2D
[NP2r7_3r2D
+ 1] = {
304 2.726858489303036441686496086962545034018E-6L,
305 2.840430827557109238386808968234848081424E-4L,
306 1.063826772041781947891481054529454088832E-2L,
307 1.864775537138364773178044431045514405468E-1L,
308 1.665660052857205170440952607701728254211E0L
,
309 7.723745889544331153080842168958348568395E0L
,
310 1.810726427571829798856428548102077799835E1L
,
311 1.986460672157794440666187503833545388527E1L
,
312 8.645503204552282306364296517220055815488E0L
,
313 /* 1.000000000000000000000000000000000000000E0 */
316 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
317 Peak relative error 1.3e-36
318 0.3125 <= 1/x <= 0.4375 */
320 static const long double P2r3_2r7N
[NP2r3_2r7N
+ 1] = {
321 -1.594642785584856746358609622003310312622E-6L,
322 -1.323238196302221554194031733595194539794E-4L,
323 -3.856087818696874802689922536987100372345E-3L,
324 -5.113241710697777193011470733601522047399E-2L,
325 -3.334229537209911914449990372942022350558E-1L,
326 -1.075703518198127096179198549659283422832E0L
,
327 -1.634174803414062725476343124267110981807E0L
,
328 -1.030133247434119595616826842367268304880E0L
,
329 -1.989811539080358501229347481000707289391E-1L,
330 -3.246859189246653459359775001466924610236E-3L,
333 static const long double P2r3_2r7D
[NP2r3_2r7D
+ 1] = {
334 2.267936634217251403663034189684284173018E-5L,
335 1.918112982168673386858072491437971732237E-3L,
336 5.771704085468423159125856786653868219522E-2L,
337 8.056124451167969333717642810661498890507E-1L,
338 5.687897967531010276788680634413789328776E0L
,
339 2.072596760717695491085444438270778394421E1L
,
340 3.801722099819929988585197088613160496684E1L
,
341 3.254620235902912339534998592085115836829E1L
,
342 1.104847772130720331801884344645060675036E1L
,
343 /* 1.000000000000000000000000000000000000000E0 */
346 /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
347 Peak relative error 1.2e-35
348 0.4375 <= 1/x <= 0.5 */
350 static const long double P2_2r3N
[NP2_2r3N
+ 1] = {
351 -1.001042324337684297465071506097365389123E-4L,
352 -6.289034524673365824853547252689991418981E-3L,
353 -1.346527918018624234373664526930736205806E-1L,
354 -1.268808313614288355444506172560463315102E0L
,
355 -5.654126123607146048354132115649177406163E0L
,
356 -1.186649511267312652171775803270911971693E1L
,
357 -1.094032424931998612551588246779200724257E1L
,
358 -3.728792136814520055025256353193674625267E0L
,
359 -3.000348318524471807839934764596331810608E-1L,
362 static const long double P2_2r3D
[NP2_2r3D
+ 1] = {
363 1.423705538269770974803901422532055612980E-3L,
364 9.171476630091439978533535167485230575894E-2L,
365 2.049776318166637248868444600215942828537E0L
,
366 2.068970329743769804547326701946144899583E1L
,
367 1.025103500560831035592731539565060347709E2L
,
368 2.528088049697570728252145557167066708284E2L
,
369 2.992160327587558573740271294804830114205E2L
,
370 1.540193761146551025832707739468679973036E2L
,
371 2.779516701986912132637672140709452502650E1L
,
372 /* 1.000000000000000000000000000000000000000E0 */
375 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
376 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
377 Peak relative error 2.2e-35
380 static const long double Q16_IN
[NQ16_IN
+ 1] = {
381 2.343640834407975740545326632205999437469E-18L,
382 2.667978112927811452221176781536278257448E-15L,
383 1.178415018484555397390098879501969116536E-12L,
384 2.622049767502719728905924701288614016597E-10L,
385 3.196908059607618864801313380896308968673E-8L,
386 2.179466154171673958770030655199434798494E-6L,
387 8.139959091628545225221976413795645177291E-5L,
388 1.563900725721039825236927137885747138654E-3L,
389 1.355172364265825167113562519307194840307E-2L,
390 3.928058355906967977269780046844768588532E-2L,
391 1.107891967702173292405380993183694932208E-2L,
394 static const long double Q16_ID
[NQ16_ID
+ 1] = {
395 3.199850952578356211091219295199301766718E-17L,
396 3.652601488020654842194486058637953363918E-14L,
397 1.620179741394865258354608590461839031281E-11L,
398 3.629359209474609630056463248923684371426E-9L,
399 4.473680923894354600193264347733477363305E-7L,
400 3.106368086644715743265603656011050476736E-5L,
401 1.198239259946770604954664925153424252622E-3L,
402 2.446041004004283102372887804475767568272E-2L,
403 2.403235525011860603014707768815113698768E-1L,
404 9.491006790682158612266270665136910927149E-1L,
405 /* 1.000000000000000000000000000000000000000E0 */
408 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
409 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
410 Peak relative error 5.1e-36
411 0.0625 <= 1/x <= 0.125 */
413 static const long double Q8_16N
[NQ8_16N
+ 1] = {
414 1.001954266485599464105669390693597125904E-17L,
415 7.545499865295034556206475956620160007849E-15L,
416 2.267838684785673931024792538193202559922E-12L,
417 3.561909705814420373609574999542459912419E-10L,
418 3.216201422768092505214730633842924944671E-8L,
419 1.731194793857907454569364622452058554314E-6L,
420 5.576944613034537050396518509871004586039E-5L,
421 1.051787760316848982655967052985391418146E-3L,
422 1.102852974036687441600678598019883746959E-2L,
423 5.834647019292460494254225988766702933571E-2L,
424 1.290281921604364618912425380717127576529E-1L,
425 7.598886310387075708640370806458926458301E-2L,
428 static const long double Q8_16D
[NQ8_16D
+ 1] = {
429 1.368001558508338469503329967729951830843E-16L,
430 1.034454121857542147020549303317348297289E-13L,
431 3.128109209247090744354764050629381674436E-11L,
432 4.957795214328501986562102573522064468671E-9L,
433 4.537872468606711261992676606899273588899E-7L,
434 2.493639207101727713192687060517509774182E-5L,
435 8.294957278145328349785532236663051405805E-4L,
436 1.646471258966713577374948205279380115839E-2L,
437 1.878910092770966718491814497982191447073E-1L,
438 1.152641605706170353727903052525652504075E0L
,
439 3.383550240669773485412333679367792932235E0L
,
440 3.823875252882035706910024716609908473970E0L
,
441 /* 1.000000000000000000000000000000000000000E0 */
444 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
445 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
446 Peak relative error 3.9e-35
447 0.125 <= 1/x <= 0.1875 */
449 static const long double Q5_8N
[NQ5_8N
+ 1] = {
450 1.750399094021293722243426623211733898747E-13L,
451 6.483426211748008735242909236490115050294E-11L,
452 9.279430665656575457141747875716899958373E-9L,
453 6.696634968526907231258534757736576340266E-7L,
454 2.666560823798895649685231292142838188061E-5L,
455 6.025087697259436271271562769707550594540E-4L,
456 7.652807734168613251901945778921336353485E-3L,
457 5.226269002589406461622551452343519078905E-2L,
458 1.748390159751117658969324896330142895079E-1L,
459 2.378188719097006494782174902213083589660E-1L,
460 8.383984859679804095463699702165659216831E-2L,
463 static const long double Q5_8D
[NQ5_8D
+ 1] = {
464 2.389878229704327939008104855942987615715E-12L,
465 8.926142817142546018703814194987786425099E-10L,
466 1.294065862406745901206588525833274399038E-7L,
467 9.524139899457666250828752185212769682191E-6L,
468 3.908332488377770886091936221573123353489E-4L,
469 9.250427033957236609624199884089916836748E-3L,
470 1.263420066165922645975830877751588421451E-1L,
471 9.692527053860420229711317379861733180654E-1L,
472 3.937813834630430172221329298841520707954E0L
,
473 7.603126427436356534498908111445191312181E0L
,
474 5.670677653334105479259958485084550934305E0L
,
475 /* 1.000000000000000000000000000000000000000E0 */
478 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
479 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
480 Peak relative error 3.2e-35
481 0.1875 <= 1/x <= 0.25 */
483 static const long double Q4_5N
[NQ4_5N
+ 1] = {
484 2.233870042925895644234072357400122854086E-11L,
485 5.146223225761993222808463878999151699792E-9L,
486 4.459114531468296461688753521109797474523E-7L,
487 1.891397692931537975547242165291668056276E-5L,
488 4.279519145911541776938964806470674565504E-4L,
489 5.275239415656560634702073291768904783989E-3L,
490 3.468698403240744801278238473898432608887E-2L,
491 1.138773146337708415188856882915457888274E-1L,
492 1.622717518946443013587108598334636458955E-1L,
493 7.249040006390586123760992346453034628227E-2L,
494 1.941595365256460232175236758506411486667E-3L,
497 static const long double Q4_5D
[NQ4_5D
+ 1] = {
498 3.049977232266999249626430127217988047453E-10L,
499 7.120883230531035857746096928889676144099E-8L,
500 6.301786064753734446784637919554359588859E-6L,
501 2.762010530095069598480766869426308077192E-4L,
502 6.572163250572867859316828886203406361251E-3L,
503 8.752566114841221958200215255461843397776E-2L,
504 6.487654992874805093499285311075289932664E-1L,
505 2.576550017826654579451615283022812801435E0L
,
506 5.056392229924022835364779562707348096036E0L
,
507 4.179770081068251464907531367859072157773E0L
,
508 /* 1.000000000000000000000000000000000000000E0 */
511 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
512 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
513 Peak relative error 1.4e-36
514 0.25 <= 1/x <= 0.3125 */
516 static const long double Q3r2_4N
[NQ3r2_4N
+ 1] = {
517 6.126167301024815034423262653066023684411E-10L,
518 1.043969327113173261820028225053598975128E-7L,
519 6.592927270288697027757438170153763220190E-6L,
520 2.009103660938497963095652951912071336730E-4L,
521 3.220543385492643525985862356352195896964E-3L,
522 2.774405975730545157543417650436941650990E-2L,
523 1.258114008023826384487378016636555041129E-1L,
524 2.811724258266902502344701449984698323860E-1L,
525 2.691837665193548059322831687432415014067E-1L,
526 7.949087384900985370683770525312735605034E-2L,
527 1.229509543620976530030153018986910810747E-3L,
530 static const long double Q3r2_4D
[NQ3r2_4D
+ 1] = {
531 8.364260446128475461539941389210166156568E-9L,
532 1.451301850638956578622154585560759862764E-6L,
533 9.431830010924603664244578867057141839463E-5L,
534 3.004105101667433434196388593004526182741E-3L,
535 5.148157397848271739710011717102773780221E-2L,
536 4.901089301726939576055285374953887874895E-1L,
537 2.581760991981709901216967665934142240346E0L
,
538 7.257105880775059281391729708630912791847E0L
,
539 1.006014717326362868007913423810737369312E1L
,
540 5.879416600465399514404064187445293212470E0L
,
541 /* 1.000000000000000000000000000000000000000E0*/
544 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
545 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
546 Peak relative error 3.8e-36
547 0.3125 <= 1/x <= 0.375 */
549 static const long double Q2r7_3r2N
[NQ2r7_3r2N
+ 1] = {
550 7.584861620402450302063691901886141875454E-8L,
551 9.300939338814216296064659459966041794591E-6L,
552 4.112108906197521696032158235392604947895E-4L,
553 8.515168851578898791897038357239630654431E-3L,
554 8.971286321017307400142720556749573229058E-2L,
555 4.885856732902956303343015636331874194498E-1L,
556 1.334506268733103291656253500506406045846E0L
,
557 1.681207956863028164179042145803851824654E0L
,
558 8.165042692571721959157677701625853772271E-1L,
559 9.805848115375053300608712721986235900715E-2L,
562 static const long double Q2r7_3r2D
[NQ2r7_3r2D
+ 1] = {
563 1.035586492113036586458163971239438078160E-6L,
564 1.301999337731768381683593636500979713689E-4L,
565 5.993695702564527062553071126719088859654E-3L,
566 1.321184892887881883489141186815457808785E-1L,
567 1.528766555485015021144963194165165083312E0L
,
568 9.561463309176490874525827051566494939295E0L
,
569 3.203719484883967351729513662089163356911E1L
,
570 5.497294687660930446641539152123568668447E1L
,
571 4.391158169390578768508675452986948391118E1L
,
572 1.347836630730048077907818943625789418378E1L
,
573 /* 1.000000000000000000000000000000000000000E0 */
576 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
577 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
578 Peak relative error 2.2e-35
579 0.375 <= 1/x <= 0.4375 */
581 static const long double Q2r3_2r7N
[NQ2r3_2r7N
+ 1] = {
582 4.455027774980750211349941766420190722088E-7L,
583 4.031998274578520170631601850866780366466E-5L,
584 1.273987274325947007856695677491340636339E-3L,
585 1.818754543377448509897226554179659122873E-2L,
586 1.266748858326568264126353051352269875352E-1L,
587 4.327578594728723821137731555139472880414E-1L,
588 6.892532471436503074928194969154192615359E-1L,
589 4.490775818438716873422163588640262036506E-1L,
590 8.649615949297322440032000346117031581572E-2L,
591 7.261345286655345047417257611469066147561E-4L,
594 static const long double Q2r3_2r7D
[NQ2r3_2r7D
+ 1] = {
595 6.082600739680555266312417978064954793142E-6L,
596 5.693622538165494742945717226571441747567E-4L,
597 1.901625907009092204458328768129666975975E-2L,
598 2.958689532697857335456896889409923371570E-1L,
599 2.343124711045660081603809437993368799568E0L
,
600 9.665894032187458293568704885528192804376E0L
,
601 2.035273104990617136065743426322454881353E1L
,
602 2.044102010478792896815088858740075165531E1L
,
603 8.445937177863155827844146643468706599304E0L
,
604 /* 1.000000000000000000000000000000000000000E0 */
607 /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
608 Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
609 Peak relative error 3.1e-36
610 0.4375 <= 1/x <= 0.5 */
612 static const long double Q2_2r3N
[NQ2_2r3N
+ 1] = {
613 2.817566786579768804844367382809101929314E-6L,
614 2.122772176396691634147024348373539744935E-4L,
615 5.501378031780457828919593905395747517585E-3L,
616 6.355374424341762686099147452020466524659E-2L,
617 3.539652320122661637429658698954748337223E-1L,
618 9.571721066119617436343740541777014319695E-1L,
619 1.196258777828426399432550698612171955305E0L
,
620 6.069388659458926158392384709893753793967E-1L,
621 9.026746127269713176512359976978248763621E-2L,
622 5.317668723070450235320878117210807236375E-4L,
625 static const long double Q2_2r3D
[NQ2_2r3D
+ 1] = {
626 3.846924354014260866793741072933159380158E-5L,
627 3.017562820057704325510067178327449946763E-3L,
628 8.356305620686867949798885808540444210935E-2L,
629 1.068314930499906838814019619594424586273E0L
,
630 6.900279623894821067017966573640732685233E0L
,
631 2.307667390886377924509090271780839563141E1L
,
632 3.921043465412723970791036825401273528513E1L
,
633 3.167569478939719383241775717095729233436E1L
,
634 1.051023841699200920276198346301543665909E1L
,
635 /* 1.000000000000000000000000000000000000000E0*/
639 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
642 neval (long double x
, const long double *p
, int n
)
657 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
660 deval (long double x
, const long double *p
, int n
)
675 /* Bessel function of the first kind, order zero. */
678 __ieee754_j0l (long double x
)
680 long double xx
, xinv
, z
, p
, q
, c
, s
, cc
, ss
;
697 p
= z
* z
* neval (z
, J0_2N
, NJ0_2N
) / deval (z
, J0_2D
, NJ0_2D
);
711 p
= neval (z
, P16_IN
, NP16_IN
) / deval (z
, P16_ID
, NP16_ID
);
712 q
= neval (z
, Q16_IN
, NQ16_IN
) / deval (z
, Q16_ID
, NQ16_ID
);
716 p
= neval (z
, P8_16N
, NP8_16N
) / deval (z
, P8_16D
, NP8_16D
);
717 q
= neval (z
, Q8_16N
, NQ8_16N
) / deval (z
, Q8_16D
, NQ8_16D
);
720 else if (xinv
<= 0.1875)
722 p
= neval (z
, P5_8N
, NP5_8N
) / deval (z
, P5_8D
, NP5_8D
);
723 q
= neval (z
, Q5_8N
, NQ5_8N
) / deval (z
, Q5_8D
, NQ5_8D
);
727 p
= neval (z
, P4_5N
, NP4_5N
) / deval (z
, P4_5D
, NP4_5D
);
728 q
= neval (z
, Q4_5N
, NQ4_5N
) / deval (z
, Q4_5D
, NQ4_5D
);
731 else /* if (xinv <= 0.5) */
737 p
= neval (z
, P3r2_4N
, NP3r2_4N
) / deval (z
, P3r2_4D
, NP3r2_4D
);
738 q
= neval (z
, Q3r2_4N
, NQ3r2_4N
) / deval (z
, Q3r2_4D
, NQ3r2_4D
);
742 p
= neval (z
, P2r7_3r2N
, NP2r7_3r2N
)
743 / deval (z
, P2r7_3r2D
, NP2r7_3r2D
);
744 q
= neval (z
, Q2r7_3r2N
, NQ2r7_3r2N
)
745 / deval (z
, Q2r7_3r2D
, NQ2r7_3r2D
);
748 else if (xinv
<= 0.4375)
750 p
= neval (z
, P2r3_2r7N
, NP2r3_2r7N
)
751 / deval (z
, P2r3_2r7D
, NP2r3_2r7D
);
752 q
= neval (z
, Q2r3_2r7N
, NQ2r3_2r7N
)
753 / deval (z
, Q2r3_2r7D
, NQ2r3_2r7D
);
757 p
= neval (z
, P2_2r3N
, NP2_2r3N
) / deval (z
, P2_2r3D
, NP2_2r3D
);
758 q
= neval (z
, Q2_2r3N
, NQ2_2r3N
) / deval (z
, Q2_2r3D
, NQ2_2r3D
);
763 q
= q
- 0.125L * xinv
;
765 cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
766 = 1/sqrt(2) * (cos(x) + sin(x))
767 sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
768 = 1/sqrt(2) * (sin(x) - cos(x))
769 sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
771 __sincosl (xx
, &s
, &c
);
774 z
= -__cosl (xx
+ xx
);
779 z
= ONEOSQPI
* (p
* cc
- q
* ss
) / __ieee754_sqrtl (xx
);
784 /* Y0(x) = 2/pi * log(x) * J0(x) + R(x^2)
785 Peak absolute error 1.7e-36 (relative where Y0 > 1)
788 static long double Y0_2N
[NY0_2N
+ 1] = {
789 -1.062023609591350692692296993537002558155E19L
,
790 2.542000883190248639104127452714966858866E19L
,
791 -1.984190771278515324281415820316054696545E18L
,
792 4.982586044371592942465373274440222033891E16L
,
793 -5.529326354780295177243773419090123407550E14L
,
794 3.013431465522152289279088265336861140391E12L
,
795 -7.959436160727126750732203098982718347785E9L
,
796 8.230845651379566339707130644134372793322E6L
,
799 static long double Y0_2D
[NY0_2D
+ 1] = {
800 1.438972634353286978700329883122253752192E20L
,
801 1.856409101981569254247700169486907405500E18L
,
802 1.219693352678218589553725579802986255614E16L
,
803 5.389428943282838648918475915779958097958E13L
,
804 1.774125762108874864433872173544743051653E11L
,
805 4.522104832545149534808218252434693007036E8L
,
806 8.872187401232943927082914504125234454930E5L
,
807 1.251945613186787532055610876304669413955E3L
,
808 /* 1.000000000000000000000000000000000000000E0 */
812 /* Bessel function of the second kind, order zero. */
815 __ieee754_y0l(long double x
)
817 long double xx
, xinv
, z
, p
, q
, c
, s
, cc
, ss
;
829 return (zero
/ (zero
* x
));
830 return -HUGE_VALL
+ x
;
837 p
= neval (z
, Y0_2N
, NY0_2N
) / deval (z
, Y0_2D
, NY0_2D
);
838 p
= TWOOPI
* __ieee754_logl (x
) * __ieee754_j0l (x
) + p
;
850 p
= neval (z
, P16_IN
, NP16_IN
) / deval (z
, P16_ID
, NP16_ID
);
851 q
= neval (z
, Q16_IN
, NQ16_IN
) / deval (z
, Q16_ID
, NQ16_ID
);
855 p
= neval (z
, P8_16N
, NP8_16N
) / deval (z
, P8_16D
, NP8_16D
);
856 q
= neval (z
, Q8_16N
, NQ8_16N
) / deval (z
, Q8_16D
, NQ8_16D
);
859 else if (xinv
<= 0.1875)
861 p
= neval (z
, P5_8N
, NP5_8N
) / deval (z
, P5_8D
, NP5_8D
);
862 q
= neval (z
, Q5_8N
, NQ5_8N
) / deval (z
, Q5_8D
, NQ5_8D
);
866 p
= neval (z
, P4_5N
, NP4_5N
) / deval (z
, P4_5D
, NP4_5D
);
867 q
= neval (z
, Q4_5N
, NQ4_5N
) / deval (z
, Q4_5D
, NQ4_5D
);
870 else /* if (xinv <= 0.5) */
876 p
= neval (z
, P3r2_4N
, NP3r2_4N
) / deval (z
, P3r2_4D
, NP3r2_4D
);
877 q
= neval (z
, Q3r2_4N
, NQ3r2_4N
) / deval (z
, Q3r2_4D
, NQ3r2_4D
);
881 p
= neval (z
, P2r7_3r2N
, NP2r7_3r2N
)
882 / deval (z
, P2r7_3r2D
, NP2r7_3r2D
);
883 q
= neval (z
, Q2r7_3r2N
, NQ2r7_3r2N
)
884 / deval (z
, Q2r7_3r2D
, NQ2r7_3r2D
);
887 else if (xinv
<= 0.4375)
889 p
= neval (z
, P2r3_2r7N
, NP2r3_2r7N
)
890 / deval (z
, P2r3_2r7D
, NP2r3_2r7D
);
891 q
= neval (z
, Q2r3_2r7N
, NQ2r3_2r7N
)
892 / deval (z
, Q2r3_2r7D
, NQ2r3_2r7D
);
896 p
= neval (z
, P2_2r3N
, NP2_2r3N
) / deval (z
, P2_2r3D
, NP2_2r3D
);
897 q
= neval (z
, Q2_2r3N
, NQ2_2r3N
) / deval (z
, Q2_2r3D
, NQ2_2r3D
);
902 q
= q
- 0.125L * xinv
;
904 cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
905 = 1/sqrt(2) * (cos(x) + sin(x))
906 sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
907 = 1/sqrt(2) * (sin(x) - cos(x))
908 sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
910 __sincosl (x
, &s
, &c
);
918 z
= ONEOSQPI
* (p
* ss
+ q
* cc
) / __ieee754_sqrtl (x
);