2 * Copyright (c) 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid
[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
39 #endif /* LIBC_SCCS and not lint */
45 * Page manipulation for hashing package.
57 #include <sys/types.h>
75 static u_int32_t
*fetch_bitmap
__P((HTAB
*, int));
76 static u_int32_t first_free
__P((u_int32_t
));
77 static int open_temp
__P((HTAB
*));
78 static u_int16_t overflow_page
__P((HTAB
*));
79 static void putpair
__P((char *, const DBT
*, const DBT
*));
80 static void squeeze_key
__P((u_int16_t
*, const DBT
*, const DBT
*));
82 __P((HTAB
*, u_int32_t
, BUFHEAD
*, BUFHEAD
*, int, int));
84 #define PAGE_INIT(P) { \
85 ((u_int16_t *)(P))[0] = 0; \
86 ((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
87 ((u_int16_t *)(P))[2] = hashp->BSIZE; \
91 * This is called AFTER we have verified that there is room on the page for
92 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
100 register u_int16_t
*bp
, n
, off
;
104 /* Enter the key first. */
107 off
= OFFSET(bp
) - key
->size
;
108 memmove(p
+ off
, key
->data
, key
->size
);
113 memmove(p
+ off
, val
->data
, val
->size
);
116 /* Adjust page info. */
118 bp
[n
+ 1] = off
- ((n
+ 3) * sizeof(u_int16_t
));
128 __delpair(hashp
, bufp
, ndx
)
133 register u_int16_t
*bp
, newoff
;
137 bp
= (u_int16_t
*)bufp
->page
;
140 if (bp
[ndx
+ 1] < REAL_KEY
)
141 return (__big_delete(hashp
, bufp
));
143 newoff
= bp
[ndx
- 1];
145 newoff
= hashp
->BSIZE
;
146 pairlen
= newoff
- bp
[ndx
+ 1];
148 if (ndx
!= (n
- 1)) {
149 /* Hard Case -- need to shuffle keys */
151 register char *src
= bufp
->page
+ (int)OFFSET(bp
);
152 register char *dst
= src
+ (int)pairlen
;
153 memmove(dst
, src
, bp
[ndx
+ 1] - OFFSET(bp
));
155 /* Now adjust the pointers */
156 for (i
= ndx
+ 2; i
<= n
; i
+= 2) {
157 if (bp
[i
+ 1] == OVFLPAGE
) {
159 bp
[i
- 1] = bp
[i
+ 1];
161 bp
[i
- 2] = bp
[i
] + pairlen
;
162 bp
[i
- 1] = bp
[i
+ 1] + pairlen
;
166 /* Finally adjust the page data */
167 bp
[n
] = OFFSET(bp
) + pairlen
;
168 bp
[n
- 1] = bp
[n
+ 1] + pairlen
+ 2 * sizeof(u_int16_t
);
172 bufp
->flags
|= BUF_MOD
;
181 __split_page(hashp
, obucket
, nbucket
)
183 u_int32_t obucket
, nbucket
;
185 register BUFHEAD
*new_bufp
, *old_bufp
;
186 register u_int16_t
*ino
;
190 u_int16_t copyto
, diff
, off
, moved
;
193 copyto
= (u_int16_t
)hashp
->BSIZE
;
194 off
= (u_int16_t
)hashp
->BSIZE
;
195 old_bufp
= __get_buf(hashp
, obucket
, NULL
, 0);
196 if (old_bufp
== NULL
)
198 new_bufp
= __get_buf(hashp
, nbucket
, NULL
, 0);
199 if (new_bufp
== NULL
)
202 old_bufp
->flags
|= (BUF_MOD
| BUF_PIN
);
203 new_bufp
->flags
|= (BUF_MOD
| BUF_PIN
);
205 ino
= (u_int16_t
*)(op
= old_bufp
->page
);
210 for (n
= 1, ndx
= 1; n
< ino
[0]; n
+= 2) {
211 if (ino
[n
+ 1] < REAL_KEY
) {
212 retval
= ugly_split(hashp
, obucket
, old_bufp
, new_bufp
,
213 (int)copyto
, (int)moved
);
214 old_bufp
->flags
&= ~BUF_PIN
;
215 new_bufp
->flags
&= ~BUF_PIN
;
219 key
.data
= (u_char
*)op
+ ino
[n
];
220 key
.size
= off
- ino
[n
];
222 if (__call_hash(hashp
, key
.data
, key
.size
) == obucket
) {
223 /* Don't switch page */
226 copyto
= ino
[n
+ 1] + diff
;
227 memmove(op
+ copyto
, op
+ ino
[n
+ 1],
229 ino
[ndx
] = copyto
+ ino
[n
] - ino
[n
+ 1];
230 ino
[ndx
+ 1] = copyto
;
236 val
.data
= (u_char
*)op
+ ino
[n
+ 1];
237 val
.size
= ino
[n
] - ino
[n
+ 1];
238 putpair(np
, &key
, &val
);
245 /* Now clean up the page */
247 FREESPACE(ino
) = copyto
- sizeof(u_int16_t
) * (ino
[0] + 3);
248 OFFSET(ino
) = copyto
;
251 (void)fprintf(stderr
, "split %d/%d\n",
252 ((u_int16_t
*)np
)[0] / 2,
253 ((u_int16_t
*)op
)[0] / 2);
255 /* unpin both pages */
256 old_bufp
->flags
&= ~BUF_PIN
;
257 new_bufp
->flags
&= ~BUF_PIN
;
262 * Called when we encounter an overflow or big key/data page during split
263 * handling. This is special cased since we have to begin checking whether
264 * the key/data pairs fit on their respective pages and because we may need
265 * overflow pages for both the old and new pages.
267 * The first page might be a page with regular key/data pairs in which case
268 * we have a regular overflow condition and just need to go on to the next
269 * page or it might be a big key/data pair in which case we need to fix the
277 ugly_split(hashp
, obucket
, old_bufp
, new_bufp
, copyto
, moved
)
279 u_int32_t obucket
; /* Same as __split_page. */
280 BUFHEAD
*old_bufp
, *new_bufp
;
281 int copyto
; /* First byte on page which contains key/data values. */
282 int moved
; /* Number of pairs moved to new page. */
284 register BUFHEAD
*bufp
; /* Buffer header for ino */
285 register u_int16_t
*ino
; /* Page keys come off of */
286 register u_int16_t
*np
; /* New page */
287 register u_int16_t
*op
; /* Page keys go on to if they aren't moving */
289 BUFHEAD
*last_bfp
; /* Last buf header OVFL needing to be freed */
292 u_int16_t n
, off
, ov_addr
, scopyto
;
293 char *cino
; /* Character value of ino */
296 ino
= (u_int16_t
*)old_bufp
->page
;
297 np
= (u_int16_t
*)new_bufp
->page
;
298 op
= (u_int16_t
*)old_bufp
->page
;
300 scopyto
= (u_int16_t
)copyto
; /* ANSI */
304 if (ino
[2] < REAL_KEY
&& ino
[2] != OVFLPAGE
) {
305 if (__big_split(hashp
, old_bufp
,
306 new_bufp
, bufp
, bufp
->addr
, obucket
, &ret
))
311 op
= (u_int16_t
*)old_bufp
->page
;
315 np
= (u_int16_t
*)new_bufp
->page
;
319 cino
= (char *)bufp
->page
;
320 ino
= (u_int16_t
*)cino
;
321 last_bfp
= ret
.nextp
;
322 } else if (ino
[n
+ 1] == OVFLPAGE
) {
325 * Fix up the old page -- the extra 2 are the fields
326 * which contained the overflow information.
328 ino
[0] -= (moved
+ 2);
330 scopyto
- sizeof(u_int16_t
) * (ino
[0] + 3);
331 OFFSET(ino
) = scopyto
;
333 bufp
= __get_buf(hashp
, ov_addr
, bufp
, 0);
337 ino
= (u_int16_t
*)bufp
->page
;
339 scopyto
= hashp
->BSIZE
;
343 __free_ovflpage(hashp
, last_bfp
);
346 /* Move regular sized pairs of there are any */
348 for (n
= 1; (n
< ino
[0]) && (ino
[n
+ 1] >= REAL_KEY
); n
+= 2) {
350 key
.data
= (u_char
*)cino
+ ino
[n
];
351 key
.size
= off
- ino
[n
];
352 val
.data
= (u_char
*)cino
+ ino
[n
+ 1];
353 val
.size
= ino
[n
] - ino
[n
+ 1];
356 if (__call_hash(hashp
, key
.data
, key
.size
) == obucket
) {
357 /* Keep on old page */
358 if (PAIRFITS(op
, (&key
), (&val
)))
359 putpair((char *)op
, &key
, &val
);
362 __add_ovflpage(hashp
, old_bufp
);
365 op
= (u_int16_t
*)old_bufp
->page
;
366 putpair((char *)op
, &key
, &val
);
368 old_bufp
->flags
|= BUF_MOD
;
370 /* Move to new page */
371 if (PAIRFITS(np
, (&key
), (&val
)))
372 putpair((char *)np
, &key
, &val
);
375 __add_ovflpage(hashp
, new_bufp
);
378 np
= (u_int16_t
*)new_bufp
->page
;
379 putpair((char *)np
, &key
, &val
);
381 new_bufp
->flags
|= BUF_MOD
;
386 __free_ovflpage(hashp
, last_bfp
);
391 * Add the given pair to the page
398 __addel(hashp
, bufp
, key
, val
)
401 const DBT
*key
, *val
;
403 register u_int16_t
*bp
, *sop
;
406 bp
= (u_int16_t
*)bufp
->page
;
408 while (bp
[0] && (bp
[2] < REAL_KEY
|| bp
[bp
[0]] < REAL_KEY
))
410 if (bp
[2] == FULL_KEY_DATA
&& bp
[0] == 2)
411 /* This is the last page of a big key/data pair
412 and we need to add another page */
414 else if (bp
[2] < REAL_KEY
&& bp
[bp
[0]] != OVFLPAGE
) {
415 bufp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
418 bp
= (u_int16_t
*)bufp
->page
;
420 /* Try to squeeze key on this page */
421 if (FREESPACE(bp
) > PAIRSIZE(key
, val
)) {
422 squeeze_key(bp
, key
, val
);
425 bufp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
428 bp
= (u_int16_t
*)bufp
->page
;
431 if (PAIRFITS(bp
, key
, val
))
432 putpair(bufp
->page
, key
, val
);
435 bufp
= __add_ovflpage(hashp
, bufp
);
438 sop
= (u_int16_t
*)bufp
->page
;
440 if (PAIRFITS(sop
, key
, val
))
441 putpair((char *)sop
, key
, val
);
443 if (__big_insert(hashp
, bufp
, key
, val
))
446 bufp
->flags
|= BUF_MOD
;
448 * If the average number of keys per bucket exceeds the fill factor,
453 (hashp
->NKEYS
/ (hashp
->MAX_BUCKET
+ 1) > hashp
->FFACTOR
))
454 return (__expand_table(hashp
));
465 __add_ovflpage(hashp
, bufp
)
469 register u_int16_t
*sp
;
470 u_int16_t ndx
, ovfl_num
;
474 sp
= (u_int16_t
*)bufp
->page
;
476 /* Check if we are dynamically determining the fill factor */
477 if (hashp
->FFACTOR
== DEF_FFACTOR
) {
478 hashp
->FFACTOR
= sp
[0] >> 1;
479 if (hashp
->FFACTOR
< MIN_FFACTOR
)
480 hashp
->FFACTOR
= MIN_FFACTOR
;
482 bufp
->flags
|= BUF_MOD
;
483 ovfl_num
= overflow_page(hashp
);
486 tmp2
= bufp
->ovfl
? bufp
->ovfl
->addr
: 0;
488 if (!ovfl_num
|| !(bufp
->ovfl
= __get_buf(hashp
, ovfl_num
, bufp
, 1)))
490 bufp
->ovfl
->flags
|= BUF_MOD
;
492 (void)fprintf(stderr
, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
493 tmp1
, tmp2
, bufp
->ovfl
->addr
);
497 * Since a pair is allocated on a page only if there's room to add
498 * an overflow page, we know that the OVFL information will fit on
501 sp
[ndx
+ 4] = OFFSET(sp
);
502 sp
[ndx
+ 3] = FREESPACE(sp
) - OVFLSIZE
;
503 sp
[ndx
+ 1] = ovfl_num
;
504 sp
[ndx
+ 2] = OVFLPAGE
;
506 #ifdef HASH_STATISTICS
514 * 0 indicates SUCCESS
515 * -1 indicates FAILURE
518 __get_page(hashp
, p
, bucket
, is_bucket
, is_disk
, is_bitmap
)
522 int is_bucket
, is_disk
, is_bitmap
;
524 register int fd
, page
, size
;
531 if ((fd
== -1) || !is_disk
) {
536 page
= BUCKET_TO_PAGE(bucket
);
538 page
= OADDR_TO_PAGE(bucket
);
539 if ((lseek(fd
, (off_t
)page
<< hashp
->BSHIFT
, SEEK_SET
) == -1) ||
540 ((rsize
= read(fd
, p
, size
)) == -1))
544 bp
[0] = 0; /* We hit the EOF, so initialize a new page */
550 if (!is_bitmap
&& !bp
[0]) {
553 if (hashp
->LORDER
!= BYTE_ORDER
) {
557 max
= hashp
->BSIZE
>> 2; /* divide by 4 */
558 for (i
= 0; i
< max
; i
++)
559 M_32_SWAP(((int *)p
)[i
]);
563 for (i
= 1; i
<= max
; i
++)
571 * Write page p to disk
578 __put_page(hashp
, p
, bucket
, is_bucket
, is_bitmap
)
582 int is_bucket
, is_bitmap
;
584 register int fd
, page
, size
;
588 if ((hashp
->fp
== -1) && open_temp(hashp
))
592 if (hashp
->LORDER
!= BYTE_ORDER
) {
597 max
= hashp
->BSIZE
>> 2; /* divide by 4 */
598 for (i
= 0; i
< max
; i
++)
599 M_32_SWAP(((int *)p
)[i
]);
601 max
= ((u_int16_t
*)p
)[0] + 2;
602 for (i
= 0; i
<= max
; i
++)
603 M_16_SWAP(((u_int16_t
*)p
)[i
]);
607 page
= BUCKET_TO_PAGE(bucket
);
609 page
= OADDR_TO_PAGE(bucket
);
610 if ((lseek(fd
, (off_t
)page
<< hashp
->BSHIFT
, SEEK_SET
) == -1) ||
611 ((wsize
= write(fd
, p
, size
)) == -1))
621 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
623 * Initialize a new bitmap page. Bitmap pages are left in memory
624 * once they are read in.
627 __ibitmap(hashp
, pnum
, nbits
, ndx
)
629 int pnum
, nbits
, ndx
;
632 int clearbytes
, clearints
;
634 if ((ip
= (u_int32_t
*)malloc(hashp
->BSIZE
)) == NULL
)
637 clearints
= ((nbits
- 1) >> INT_BYTE_SHIFT
) + 1;
638 clearbytes
= clearints
<< INT_TO_BYTE
;
639 (void)memset((char *)ip
, 0, clearbytes
);
640 (void)memset(((char *)ip
) + clearbytes
, 0xFF,
641 hashp
->BSIZE
- clearbytes
);
642 ip
[clearints
- 1] = ALL_SET
<< (nbits
& BYTE_MASK
);
644 hashp
->BITMAPS
[ndx
] = (u_int16_t
)pnum
;
645 hashp
->mapp
[ndx
] = ip
;
653 register u_int32_t i
, mask
;
656 for (i
= 0; i
< BITS_PER_MAP
; i
++) {
668 register u_int32_t
*freep
;
669 register int max_free
, offset
, splitnum
;
671 int bit
, first_page
, free_bit
, free_page
, i
, in_use_bits
, j
;
675 splitnum
= hashp
->OVFL_POINT
;
676 max_free
= hashp
->SPARES
[splitnum
];
678 free_page
= (max_free
- 1) >> (hashp
->BSHIFT
+ BYTE_SHIFT
);
679 free_bit
= (max_free
- 1) & ((hashp
->BSIZE
<< BYTE_SHIFT
) - 1);
681 /* Look through all the free maps to find the first free block */
682 first_page
= hashp
->LAST_FREED
>>(hashp
->BSHIFT
+ BYTE_SHIFT
);
683 for ( i
= first_page
; i
<= free_page
; i
++ ) {
684 if (!(freep
= (u_int32_t
*)hashp
->mapp
[i
]) &&
685 !(freep
= fetch_bitmap(hashp
, i
)))
688 in_use_bits
= free_bit
;
690 in_use_bits
= (hashp
->BSIZE
<< BYTE_SHIFT
) - 1;
692 if (i
== first_page
) {
693 bit
= hashp
->LAST_FREED
&
694 ((hashp
->BSIZE
<< BYTE_SHIFT
) - 1);
695 j
= bit
/ BITS_PER_MAP
;
696 bit
= bit
& ~(BITS_PER_MAP
- 1);
701 for (; bit
<= in_use_bits
; j
++, bit
+= BITS_PER_MAP
)
702 if (freep
[j
] != ALL_SET
)
706 /* No Free Page Found */
707 hashp
->LAST_FREED
= hashp
->SPARES
[splitnum
];
708 hashp
->SPARES
[splitnum
]++;
709 offset
= hashp
->SPARES
[splitnum
] -
710 (splitnum
? hashp
->SPARES
[splitnum
- 1] : 0);
712 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
713 if (offset
> SPLITMASK
) {
714 if (++splitnum
>= NCACHED
) {
715 (void)write(STDERR_FILENO
, OVMSG
, sizeof(OVMSG
) - 1);
718 hashp
->OVFL_POINT
= splitnum
;
719 hashp
->SPARES
[splitnum
] = hashp
->SPARES
[splitnum
-1];
720 hashp
->SPARES
[splitnum
-1]--;
724 /* Check if we need to allocate a new bitmap page */
725 if (free_bit
== (hashp
->BSIZE
<< BYTE_SHIFT
) - 1) {
727 if (free_page
>= NCACHED
) {
728 (void)write(STDERR_FILENO
, OVMSG
, sizeof(OVMSG
) - 1);
732 * This is tricky. The 1 indicates that you want the new page
733 * allocated with 1 clear bit. Actually, you are going to
734 * allocate 2 pages from this map. The first is going to be
735 * the map page, the second is the overflow page we were
736 * looking for. The init_bitmap routine automatically, sets
737 * the first bit of itself to indicate that the bitmap itself
738 * is in use. We would explicitly set the second bit, but
739 * don't have to if we tell init_bitmap not to leave it clear
740 * in the first place.
743 (int)OADDR_OF(splitnum
, offset
), 1, free_page
))
745 hashp
->SPARES
[splitnum
]++;
750 if (offset
> SPLITMASK
) {
751 if (++splitnum
>= NCACHED
) {
752 (void)write(STDERR_FILENO
, OVMSG
,
756 hashp
->OVFL_POINT
= splitnum
;
757 hashp
->SPARES
[splitnum
] = hashp
->SPARES
[splitnum
-1];
758 hashp
->SPARES
[splitnum
-1]--;
763 * Free_bit addresses the last used bit. Bump it to address
764 * the first available bit.
767 SETBIT(freep
, free_bit
);
770 /* Calculate address of the new overflow page */
771 addr
= OADDR_OF(splitnum
, offset
);
773 (void)fprintf(stderr
, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
774 addr
, free_bit
, free_page
);
779 bit
= bit
+ first_free(freep
[j
]);
786 * Bits are addressed starting with 0, but overflow pages are addressed
787 * beginning at 1. Bit is a bit addressnumber, so we need to increment
788 * it to convert it to a page number.
790 bit
= 1 + bit
+ (i
* (hashp
->BSIZE
<< BYTE_SHIFT
));
791 if (bit
>= hashp
->LAST_FREED
)
792 hashp
->LAST_FREED
= bit
- 1;
794 /* Calculate the split number for this page */
795 for (i
= 0; (i
< splitnum
) && (bit
> hashp
->SPARES
[i
]); i
++);
796 offset
= (i
? bit
- hashp
->SPARES
[i
- 1] : bit
);
797 if (offset
>= SPLITMASK
)
798 return (0); /* Out of overflow pages */
799 addr
= OADDR_OF(i
, offset
);
801 (void)fprintf(stderr
, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
805 /* Allocate and return the overflow page */
810 * Mark this overflow page as free.
813 __free_ovflpage(hashp
, obufp
)
817 register u_int16_t addr
;
819 int bit_address
, free_page
, free_bit
;
824 (void)fprintf(stderr
, "Freeing %d\n", addr
);
826 ndx
= (((u_int16_t
)addr
) >> SPLITSHIFT
);
828 (ndx
? hashp
->SPARES
[ndx
- 1] : 0) + (addr
& SPLITMASK
) - 1;
829 if (bit_address
< hashp
->LAST_FREED
)
830 hashp
->LAST_FREED
= bit_address
;
831 free_page
= (bit_address
>> (hashp
->BSHIFT
+ BYTE_SHIFT
));
832 free_bit
= bit_address
& ((hashp
->BSIZE
<< BYTE_SHIFT
) - 1);
834 if (!(freep
= hashp
->mapp
[free_page
]))
835 freep
= fetch_bitmap(hashp
, free_page
);
838 * This had better never happen. It means we tried to read a bitmap
839 * that has already had overflow pages allocated off it, and we
840 * failed to read it from the file.
845 CLRBIT(freep
, free_bit
);
847 (void)fprintf(stderr
, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
848 obufp
->addr
, free_bit
, free_page
);
850 __reclaim_buf(hashp
, obufp
);
863 static char namestr
[] = "_hashXXXXXX";
865 /* Block signals; make sure file goes away at process exit. */
866 (void)sigfillset(&set
);
867 (void)sigprocmask(SIG_BLOCK
, &set
, &oset
);
868 if ((hashp
->fp
= mkstemp(namestr
)) != -1) {
869 (void)unlink(namestr
);
870 (void)fcntl(hashp
->fp
, F_SETFD
, 1);
872 (void)sigprocmask(SIG_SETMASK
, &oset
, (sigset_t
*)NULL
);
873 return (hashp
->fp
!= -1 ? 0 : -1);
877 * We have to know that the key will fit, but the last entry on the page is
878 * an overflow pair, so we need to shift things.
881 squeeze_key(sp
, key
, val
)
883 const DBT
*key
, *val
;
886 u_int16_t free_space
, n
, off
, pageno
;
890 free_space
= FREESPACE(sp
);
896 memmove(p
+ off
, key
->data
, key
->size
);
899 memmove(p
+ off
, val
->data
, val
->size
);
902 sp
[n
+ 2] = OVFLPAGE
;
903 FREESPACE(sp
) = free_space
- PAIRSIZE(key
, val
);
908 fetch_bitmap(hashp
, ndx
)
912 if (ndx
>= hashp
->nmaps
)
914 if ((hashp
->mapp
[ndx
] = (u_int32_t
*)malloc(hashp
->BSIZE
)) == NULL
)
916 if (__get_page(hashp
,
917 (char *)hashp
->mapp
[ndx
], hashp
->BITMAPS
[ndx
], 0, 1, 1)) {
918 free(hashp
->mapp
[ndx
]);
921 return (hashp
->mapp
[ndx
]);
932 (void)fprintf(stderr
, "%d ", addr
);
933 bufp
= __get_buf(hashp
, addr
, NULL
, 0);
934 bp
= (short *)bufp
->page
;
935 while (bp
[0] && ((bp
[bp
[0]] == OVFLPAGE
) ||
936 ((bp
[0] > 2) && bp
[2] < REAL_KEY
))) {
937 oaddr
= bp
[bp
[0] - 1];
938 (void)fprintf(stderr
, "%d ", (int)oaddr
);
939 bufp
= __get_buf(hashp
, (int)oaddr
, bufp
, 0);
940 bp
= (short *)bufp
->page
;
942 (void)fprintf(stderr
, "\n");