powerpc: Fix POWER9 implies
[glibc.git] / manual / arith.texi
blob23b93736aceff82d7a8466c8639ce90a4272ec81
1 @node Arithmetic, Date and Time, Mathematics, Top
2 @c %MENU% Low level arithmetic functions
3 @chapter Arithmetic Functions
5 This chapter contains information about functions for doing basic
6 arithmetic operations, such as splitting a float into its integer and
7 fractional parts or retrieving the imaginary part of a complex value.
8 These functions are declared in the header files @file{math.h} and
9 @file{complex.h}.
11 @menu
12 * Integers::                    Basic integer types and concepts
13 * Integer Division::            Integer division with guaranteed rounding.
14 * Floating Point Numbers::      Basic concepts.  IEEE 754.
15 * Floating Point Classes::      The five kinds of floating-point number.
16 * Floating Point Errors::       When something goes wrong in a calculation.
17 * Rounding::                    Controlling how results are rounded.
18 * Control Functions::           Saving and restoring the FPU's state.
19 * Arithmetic Functions::        Fundamental operations provided by the library.
20 * Complex Numbers::             The types.  Writing complex constants.
21 * Operations on Complex::       Projection, conjugation, decomposition.
22 * Parsing of Numbers::          Converting strings to numbers.
23 * System V Number Conversion::  An archaic way to convert numbers to strings.
24 @end menu
26 @node Integers
27 @section Integers
28 @cindex integer
30 The C language defines several integer data types: integer, short integer,
31 long integer, and character, all in both signed and unsigned varieties.
32 The GNU C compiler extends the language to contain long long integers
33 as well.
34 @cindex signedness
36 The C integer types were intended to allow code to be portable among
37 machines with different inherent data sizes (word sizes), so each type
38 may have different ranges on different machines.  The problem with
39 this is that a program often needs to be written for a particular range
40 of integers, and sometimes must be written for a particular size of
41 storage, regardless of what machine the program runs on.
43 To address this problem, @theglibc{} contains C type definitions
44 you can use to declare integers that meet your exact needs.  Because the
45 @glibcadj{} header files are customized to a specific machine, your
46 program source code doesn't have to be.
48 These @code{typedef}s are in @file{stdint.h}.
49 @pindex stdint.h
51 If you require that an integer be represented in exactly N bits, use one
52 of the following types, with the obvious mapping to bit size and signedness:
54 @itemize @bullet
55 @item int8_t
56 @item int16_t
57 @item int32_t
58 @item int64_t
59 @item uint8_t
60 @item uint16_t
61 @item uint32_t
62 @item uint64_t
63 @end itemize
65 If your C compiler and target machine do not allow integers of a certain
66 size, the corresponding above type does not exist.
68 If you don't need a specific storage size, but want the smallest data
69 structure with @emph{at least} N bits, use one of these:
71 @itemize @bullet
72 @item int_least8_t
73 @item int_least16_t
74 @item int_least32_t
75 @item int_least64_t
76 @item uint_least8_t
77 @item uint_least16_t
78 @item uint_least32_t
79 @item uint_least64_t
80 @end itemize
82 If you don't need a specific storage size, but want the data structure
83 that allows the fastest access while having at least N bits (and
84 among data structures with the same access speed, the smallest one), use
85 one of these:
87 @itemize @bullet
88 @item int_fast8_t
89 @item int_fast16_t
90 @item int_fast32_t
91 @item int_fast64_t
92 @item uint_fast8_t
93 @item uint_fast16_t
94 @item uint_fast32_t
95 @item uint_fast64_t
96 @end itemize
98 If you want an integer with the widest range possible on the platform on
99 which it is being used, use one of the following.  If you use these,
100 you should write code that takes into account the variable size and range
101 of the integer.
103 @itemize @bullet
104 @item intmax_t
105 @item uintmax_t
106 @end itemize
108 @Theglibc{} also provides macros that tell you the maximum and
109 minimum possible values for each integer data type.  The macro names
110 follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
111 @code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
112 @code{INTMAX_MAX}, @code{INTMAX_MIN}.  Note that there are no macros for
113 unsigned integer minima.  These are always zero.
114 @cindex maximum possible integer
115 @cindex minimum possible integer
117 There are similar macros for use with C's built in integer types which
118 should come with your C compiler.  These are described in @ref{Data Type
119 Measurements}.
121 Don't forget you can use the C @code{sizeof} function with any of these
122 data types to get the number of bytes of storage each uses.
125 @node Integer Division
126 @section Integer Division
127 @cindex integer division functions
129 This section describes functions for performing integer division.  These
130 functions are redundant when GNU CC is used, because in GNU C the
131 @samp{/} operator always rounds towards zero.  But in other C
132 implementations, @samp{/} may round differently with negative arguments.
133 @code{div} and @code{ldiv} are useful because they specify how to round
134 the quotient: towards zero.  The remainder has the same sign as the
135 numerator.
137 These functions are specified to return a result @var{r} such that the value
138 @code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
139 @var{numerator}.
141 @pindex stdlib.h
142 To use these facilities, you should include the header file
143 @file{stdlib.h} in your program.
145 @comment stdlib.h
146 @comment ISO
147 @deftp {Data Type} div_t
148 This is a structure type used to hold the result returned by the @code{div}
149 function.  It has the following members:
151 @table @code
152 @item int quot
153 The quotient from the division.
155 @item int rem
156 The remainder from the division.
157 @end table
158 @end deftp
160 @comment stdlib.h
161 @comment ISO
162 @deftypefun div_t div (int @var{numerator}, int @var{denominator})
163 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
164 @c Functions in this section are pure, and thus safe.
165 This function @code{div} computes the quotient and remainder from
166 the division of @var{numerator} by @var{denominator}, returning the
167 result in a structure of type @code{div_t}.
169 If the result cannot be represented (as in a division by zero), the
170 behavior is undefined.
172 Here is an example, albeit not a very useful one.
174 @smallexample
175 div_t result;
176 result = div (20, -6);
177 @end smallexample
179 @noindent
180 Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
181 @end deftypefun
183 @comment stdlib.h
184 @comment ISO
185 @deftp {Data Type} ldiv_t
186 This is a structure type used to hold the result returned by the @code{ldiv}
187 function.  It has the following members:
189 @table @code
190 @item long int quot
191 The quotient from the division.
193 @item long int rem
194 The remainder from the division.
195 @end table
197 (This is identical to @code{div_t} except that the components are of
198 type @code{long int} rather than @code{int}.)
199 @end deftp
201 @comment stdlib.h
202 @comment ISO
203 @deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
204 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
205 The @code{ldiv} function is similar to @code{div}, except that the
206 arguments are of type @code{long int} and the result is returned as a
207 structure of type @code{ldiv_t}.
208 @end deftypefun
210 @comment stdlib.h
211 @comment ISO
212 @deftp {Data Type} lldiv_t
213 This is a structure type used to hold the result returned by the @code{lldiv}
214 function.  It has the following members:
216 @table @code
217 @item long long int quot
218 The quotient from the division.
220 @item long long int rem
221 The remainder from the division.
222 @end table
224 (This is identical to @code{div_t} except that the components are of
225 type @code{long long int} rather than @code{int}.)
226 @end deftp
228 @comment stdlib.h
229 @comment ISO
230 @deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
231 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
232 The @code{lldiv} function is like the @code{div} function, but the
233 arguments are of type @code{long long int} and the result is returned as
234 a structure of type @code{lldiv_t}.
236 The @code{lldiv} function was added in @w{ISO C99}.
237 @end deftypefun
239 @comment inttypes.h
240 @comment ISO
241 @deftp {Data Type} imaxdiv_t
242 This is a structure type used to hold the result returned by the @code{imaxdiv}
243 function.  It has the following members:
245 @table @code
246 @item intmax_t quot
247 The quotient from the division.
249 @item intmax_t rem
250 The remainder from the division.
251 @end table
253 (This is identical to @code{div_t} except that the components are of
254 type @code{intmax_t} rather than @code{int}.)
256 See @ref{Integers} for a description of the @code{intmax_t} type.
258 @end deftp
260 @comment inttypes.h
261 @comment ISO
262 @deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
263 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
264 The @code{imaxdiv} function is like the @code{div} function, but the
265 arguments are of type @code{intmax_t} and the result is returned as
266 a structure of type @code{imaxdiv_t}.
268 See @ref{Integers} for a description of the @code{intmax_t} type.
270 The @code{imaxdiv} function was added in @w{ISO C99}.
271 @end deftypefun
274 @node Floating Point Numbers
275 @section Floating Point Numbers
276 @cindex floating point
277 @cindex IEEE 754
278 @cindex IEEE floating point
280 Most computer hardware has support for two different kinds of numbers:
281 integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
282 floating-point numbers.  Floating-point numbers have three parts: the
283 @dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}.  The real
284 number represented by a floating-point value is given by
285 @tex
286 $(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
287 @end tex
288 @ifnottex
289 @math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
290 @end ifnottex
291 where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
292 the mantissa.  @xref{Floating Point Concepts}, for details.  (It is
293 possible to have a different @dfn{base} for the exponent, but all modern
294 hardware uses @math{2}.)
296 Floating-point numbers can represent a finite subset of the real
297 numbers.  While this subset is large enough for most purposes, it is
298 important to remember that the only reals that can be represented
299 exactly are rational numbers that have a terminating binary expansion
300 shorter than the width of the mantissa.  Even simple fractions such as
301 @math{1/5} can only be approximated by floating point.
303 Mathematical operations and functions frequently need to produce values
304 that are not representable.  Often these values can be approximated
305 closely enough for practical purposes, but sometimes they can't.
306 Historically there was no way to tell when the results of a calculation
307 were inaccurate.  Modern computers implement the @w{IEEE 754} standard
308 for numerical computations, which defines a framework for indicating to
309 the program when the results of calculation are not trustworthy.  This
310 framework consists of a set of @dfn{exceptions} that indicate why a
311 result could not be represented, and the special values @dfn{infinity}
312 and @dfn{not a number} (NaN).
314 @node Floating Point Classes
315 @section Floating-Point Number Classification Functions
316 @cindex floating-point classes
317 @cindex classes, floating-point
318 @pindex math.h
320 @w{ISO C99} defines macros that let you determine what sort of
321 floating-point number a variable holds.
323 @comment math.h
324 @comment ISO
325 @deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
326 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
327 This is a generic macro which works on all floating-point types and
328 which returns a value of type @code{int}.  The possible values are:
330 @vtable @code
331 @item FP_NAN
332 The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
333 and NaN})
334 @item FP_INFINITE
335 The value of @var{x} is either plus or minus infinity (@pxref{Infinity
336 and NaN})
337 @item FP_ZERO
338 The value of @var{x} is zero.  In floating-point formats like @w{IEEE
339 754}, where zero can be signed, this value is also returned if
340 @var{x} is negative zero.
341 @item FP_SUBNORMAL
342 Numbers whose absolute value is too small to be represented in the
343 normal format are represented in an alternate, @dfn{denormalized} format
344 (@pxref{Floating Point Concepts}).  This format is less precise but can
345 represent values closer to zero.  @code{fpclassify} returns this value
346 for values of @var{x} in this alternate format.
347 @item FP_NORMAL
348 This value is returned for all other values of @var{x}.  It indicates
349 that there is nothing special about the number.
350 @end vtable
352 @end deftypefn
354 @code{fpclassify} is most useful if more than one property of a number
355 must be tested.  There are more specific macros which only test one
356 property at a time.  Generally these macros execute faster than
357 @code{fpclassify}, since there is special hardware support for them.
358 You should therefore use the specific macros whenever possible.
360 @comment math.h
361 @comment ISO
362 @deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
363 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
364 This macro returns a nonzero value if @var{x} is finite: not plus or
365 minus infinity, and not NaN.  It is equivalent to
367 @smallexample
368 (fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
369 @end smallexample
371 @code{isfinite} is implemented as a macro which accepts any
372 floating-point type.
373 @end deftypefn
375 @comment math.h
376 @comment ISO
377 @deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
378 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
379 This macro returns a nonzero value if @var{x} is finite and normalized.
380 It is equivalent to
382 @smallexample
383 (fpclassify (x) == FP_NORMAL)
384 @end smallexample
385 @end deftypefn
387 @comment math.h
388 @comment ISO
389 @deftypefn {Macro} int isnan (@emph{float-type} @var{x})
390 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
391 This macro returns a nonzero value if @var{x} is NaN.  It is equivalent
394 @smallexample
395 (fpclassify (x) == FP_NAN)
396 @end smallexample
397 @end deftypefn
399 @comment math.h
400 @comment ISO
401 @deftypefn {Macro} int issignaling (@emph{float-type} @var{x})
402 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
403 This macro returns a nonzero value if @var{x} is a signaling NaN
404 (sNaN).  It is from TS 18661-1:2014.
405 @end deftypefn
407 Another set of floating-point classification functions was provided by
408 BSD.  @Theglibc{} also supports these functions; however, we
409 recommend that you use the ISO C99 macros in new code.  Those are standard
410 and will be available more widely.  Also, since they are macros, you do
411 not have to worry about the type of their argument.
413 @comment math.h
414 @comment BSD
415 @deftypefun int isinf (double @var{x})
416 @comment math.h
417 @comment BSD
418 @deftypefunx int isinff (float @var{x})
419 @comment math.h
420 @comment BSD
421 @deftypefunx int isinfl (long double @var{x})
422 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
423 This function returns @code{-1} if @var{x} represents negative infinity,
424 @code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
425 @end deftypefun
427 @comment math.h
428 @comment BSD
429 @deftypefun int isnan (double @var{x})
430 @comment math.h
431 @comment BSD
432 @deftypefunx int isnanf (float @var{x})
433 @comment math.h
434 @comment BSD
435 @deftypefunx int isnanl (long double @var{x})
436 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
437 This function returns a nonzero value if @var{x} is a ``not a number''
438 value, and zero otherwise.
440 @strong{NB:} The @code{isnan} macro defined by @w{ISO C99} overrides
441 the BSD function.  This is normally not a problem, because the two
442 routines behave identically.  However, if you really need to get the BSD
443 function for some reason, you can write
445 @smallexample
446 (isnan) (x)
447 @end smallexample
448 @end deftypefun
450 @comment math.h
451 @comment BSD
452 @deftypefun int finite (double @var{x})
453 @comment math.h
454 @comment BSD
455 @deftypefunx int finitef (float @var{x})
456 @comment math.h
457 @comment BSD
458 @deftypefunx int finitel (long double @var{x})
459 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
460 This function returns a nonzero value if @var{x} is finite or a ``not a
461 number'' value, and zero otherwise.
462 @end deftypefun
464 @strong{Portability Note:} The functions listed in this section are BSD
465 extensions.
468 @node Floating Point Errors
469 @section Errors in Floating-Point Calculations
471 @menu
472 * FP Exceptions::               IEEE 754 math exceptions and how to detect them.
473 * Infinity and NaN::            Special values returned by calculations.
474 * Status bit operations::       Checking for exceptions after the fact.
475 * Math Error Reporting::        How the math functions report errors.
476 @end menu
478 @node FP Exceptions
479 @subsection FP Exceptions
480 @cindex exception
481 @cindex signal
482 @cindex zero divide
483 @cindex division by zero
484 @cindex inexact exception
485 @cindex invalid exception
486 @cindex overflow exception
487 @cindex underflow exception
489 The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
490 during a calculation.  Each corresponds to a particular sort of error,
491 such as overflow.
493 When exceptions occur (when exceptions are @dfn{raised}, in the language
494 of the standard), one of two things can happen.  By default the
495 exception is simply noted in the floating-point @dfn{status word}, and
496 the program continues as if nothing had happened.  The operation
497 produces a default value, which depends on the exception (see the table
498 below).  Your program can check the status word to find out which
499 exceptions happened.
501 Alternatively, you can enable @dfn{traps} for exceptions.  In that case,
502 when an exception is raised, your program will receive the @code{SIGFPE}
503 signal.  The default action for this signal is to terminate the
504 program.  @xref{Signal Handling}, for how you can change the effect of
505 the signal.
507 @findex matherr
508 In the System V math library, the user-defined function @code{matherr}
509 is called when certain exceptions occur inside math library functions.
510 However, the Unix98 standard deprecates this interface.  We support it
511 for historical compatibility, but recommend that you do not use it in
512 new programs.  When this interface is used, exceptions may not be
513 raised.
515 @noindent
516 The exceptions defined in @w{IEEE 754} are:
518 @table @samp
519 @item Invalid Operation
520 This exception is raised if the given operands are invalid for the
521 operation to be performed.  Examples are
522 (see @w{IEEE 754}, @w{section 7}):
523 @enumerate
524 @item
525 Addition or subtraction: @math{@infinity{} - @infinity{}}.  (But
526 @math{@infinity{} + @infinity{} = @infinity{}}).
527 @item
528 Multiplication: @math{0 @mul{} @infinity{}}.
529 @item
530 Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
531 @item
532 Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
533 infinite.
534 @item
535 Square root if the operand is less then zero.  More generally, any
536 mathematical function evaluated outside its domain produces this
537 exception.
538 @item
539 Conversion of a floating-point number to an integer or decimal
540 string, when the number cannot be represented in the target format (due
541 to overflow, infinity, or NaN).
542 @item
543 Conversion of an unrecognizable input string.
544 @item
545 Comparison via predicates involving @math{<} or @math{>}, when one or
546 other of the operands is NaN.  You can prevent this exception by using
547 the unordered comparison functions instead; see @ref{FP Comparison Functions}.
548 @end enumerate
550 If the exception does not trap, the result of the operation is NaN.
552 @item Division by Zero
553 This exception is raised when a finite nonzero number is divided
554 by zero.  If no trap occurs the result is either @math{+@infinity{}} or
555 @math{-@infinity{}}, depending on the signs of the operands.
557 @item Overflow
558 This exception is raised whenever the result cannot be represented
559 as a finite value in the precision format of the destination.  If no trap
560 occurs the result depends on the sign of the intermediate result and the
561 current rounding mode (@w{IEEE 754}, @w{section 7.3}):
562 @enumerate
563 @item
564 Round to nearest carries all overflows to @math{@infinity{}}
565 with the sign of the intermediate result.
566 @item
567 Round toward @math{0} carries all overflows to the largest representable
568 finite number with the sign of the intermediate result.
569 @item
570 Round toward @math{-@infinity{}} carries positive overflows to the
571 largest representable finite number and negative overflows to
572 @math{-@infinity{}}.
574 @item
575 Round toward @math{@infinity{}} carries negative overflows to the
576 most negative representable finite number and positive overflows
577 to @math{@infinity{}}.
578 @end enumerate
580 Whenever the overflow exception is raised, the inexact exception is also
581 raised.
583 @item Underflow
584 The underflow exception is raised when an intermediate result is too
585 small to be calculated accurately, or if the operation's result rounded
586 to the destination precision is too small to be normalized.
588 When no trap is installed for the underflow exception, underflow is
589 signaled (via the underflow flag) only when both tininess and loss of
590 accuracy have been detected.  If no trap handler is installed the
591 operation continues with an imprecise small value, or zero if the
592 destination precision cannot hold the small exact result.
594 @item Inexact
595 This exception is signalled if a rounded result is not exact (such as
596 when calculating the square root of two) or a result overflows without
597 an overflow trap.
598 @end table
600 @node Infinity and NaN
601 @subsection Infinity and NaN
602 @cindex infinity
603 @cindex not a number
604 @cindex NaN
606 @w{IEEE 754} floating point numbers can represent positive or negative
607 infinity, and @dfn{NaN} (not a number).  These three values arise from
608 calculations whose result is undefined or cannot be represented
609 accurately.  You can also deliberately set a floating-point variable to
610 any of them, which is sometimes useful.  Some examples of calculations
611 that produce infinity or NaN:
613 @ifnottex
614 @smallexample
615 @math{1/0 = @infinity{}}
616 @math{log (0) = -@infinity{}}
617 @math{sqrt (-1) = NaN}
618 @end smallexample
619 @end ifnottex
620 @tex
621 $${1\over0} = \infty$$
622 $$\log 0 = -\infty$$
623 $$\sqrt{-1} = \hbox{NaN}$$
624 @end tex
626 When a calculation produces any of these values, an exception also
627 occurs; see @ref{FP Exceptions}.
629 The basic operations and math functions all accept infinity and NaN and
630 produce sensible output.  Infinities propagate through calculations as
631 one would expect: for example, @math{2 + @infinity{} = @infinity{}},
632 @math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}.  NaN, on
633 the other hand, infects any calculation that involves it.  Unless the
634 calculation would produce the same result no matter what real value
635 replaced NaN, the result is NaN.
637 In comparison operations, positive infinity is larger than all values
638 except itself and NaN, and negative infinity is smaller than all values
639 except itself and NaN.  NaN is @dfn{unordered}: it is not equal to,
640 greater than, or less than anything, @emph{including itself}. @code{x ==
641 x} is false if the value of @code{x} is NaN.  You can use this to test
642 whether a value is NaN or not, but the recommended way to test for NaN
643 is with the @code{isnan} function (@pxref{Floating Point Classes}).  In
644 addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
645 exception when applied to NaNs.
647 @file{math.h} defines macros that allow you to explicitly set a variable
648 to infinity or NaN.
650 @comment math.h
651 @comment ISO
652 @deftypevr Macro float INFINITY
653 An expression representing positive infinity.  It is equal to the value
654 produced  by mathematical operations like @code{1.0 / 0.0}.
655 @code{-INFINITY} represents negative infinity.
657 You can test whether a floating-point value is infinite by comparing it
658 to this macro.  However, this is not recommended; you should use the
659 @code{isfinite} macro instead.  @xref{Floating Point Classes}.
661 This macro was introduced in the @w{ISO C99} standard.
662 @end deftypevr
664 @comment math.h
665 @comment GNU
666 @deftypevr Macro float NAN
667 An expression representing a value which is ``not a number''.  This
668 macro is a GNU extension, available only on machines that support the
669 ``not a number'' value---that is to say, on all machines that support
670 IEEE floating point.
672 You can use @samp{#ifdef NAN} to test whether the machine supports
673 NaN.  (Of course, you must arrange for GNU extensions to be visible,
674 such as by defining @code{_GNU_SOURCE}, and then you must include
675 @file{math.h}.)
676 @end deftypevr
678 @w{IEEE 754} also allows for another unusual value: negative zero.  This
679 value is produced when you divide a positive number by negative
680 infinity, or when a negative result is smaller than the limits of
681 representation.
683 @node Status bit operations
684 @subsection Examining the FPU status word
686 @w{ISO C99} defines functions to query and manipulate the
687 floating-point status word.  You can use these functions to check for
688 untrapped exceptions when it's convenient, rather than worrying about
689 them in the middle of a calculation.
691 These constants represent the various @w{IEEE 754} exceptions.  Not all
692 FPUs report all the different exceptions.  Each constant is defined if
693 and only if the FPU you are compiling for supports that exception, so
694 you can test for FPU support with @samp{#ifdef}.  They are defined in
695 @file{fenv.h}.
697 @vtable @code
698 @comment fenv.h
699 @comment ISO
700 @item FE_INEXACT
701  The inexact exception.
702 @comment fenv.h
703 @comment ISO
704 @item FE_DIVBYZERO
705  The divide by zero exception.
706 @comment fenv.h
707 @comment ISO
708 @item FE_UNDERFLOW
709  The underflow exception.
710 @comment fenv.h
711 @comment ISO
712 @item FE_OVERFLOW
713  The overflow exception.
714 @comment fenv.h
715 @comment ISO
716 @item FE_INVALID
717  The invalid exception.
718 @end vtable
720 The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
721 which are supported by the FP implementation.
723 These functions allow you to clear exception flags, test for exceptions,
724 and save and restore the set of exceptions flagged.
726 @comment fenv.h
727 @comment ISO
728 @deftypefun int feclearexcept (int @var{excepts})
729 @safety{@prelim{}@mtsafe{}@assafe{@assposix{}}@acsafe{@acsposix{}}}
730 @c The other functions in this section that modify FP status register
731 @c mostly do so with non-atomic load-modify-store sequences, but since
732 @c the register is thread-specific, this should be fine, and safe for
733 @c cancellation.  As long as the FP environment is restored before the
734 @c signal handler returns control to the interrupted thread (like any
735 @c kernel should do), the functions are also safe for use in signal
736 @c handlers.
737 This function clears all of the supported exception flags indicated by
738 @var{excepts}.
740 The function returns zero in case the operation was successful, a
741 non-zero value otherwise.
742 @end deftypefun
744 @comment fenv.h
745 @comment ISO
746 @deftypefun int feraiseexcept (int @var{excepts})
747 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
748 This function raises the supported exceptions indicated by
749 @var{excepts}.  If more than one exception bit in @var{excepts} is set
750 the order in which the exceptions are raised is undefined except that
751 overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
752 raised before inexact (@code{FE_INEXACT}).  Whether for overflow or
753 underflow the inexact exception is also raised is also implementation
754 dependent.
756 The function returns zero in case the operation was successful, a
757 non-zero value otherwise.
758 @end deftypefun
760 @comment fenv.h
761 @comment ISO
762 @deftypefun int fesetexcept (int @var{excepts})
763 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
764 This function sets the supported exception flags indicated by
765 @var{excepts}, like @code{feraiseexcept}, but without causing enabled
766 traps to be taken.  @code{fesetexcept} is from TS 18661-1:2014.
768 The function returns zero in case the operation was successful, a
769 non-zero value otherwise.
770 @end deftypefun
772 @comment fenv.h
773 @comment ISO
774 @deftypefun int fetestexcept (int @var{excepts})
775 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
776 Test whether the exception flags indicated by the parameter @var{except}
777 are currently set.  If any of them are, a nonzero value is returned
778 which specifies which exceptions are set.  Otherwise the result is zero.
779 @end deftypefun
781 To understand these functions, imagine that the status word is an
782 integer variable named @var{status}.  @code{feclearexcept} is then
783 equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
784 equivalent to @samp{(status & excepts)}.  The actual implementation may
785 be very different, of course.
787 Exception flags are only cleared when the program explicitly requests it,
788 by calling @code{feclearexcept}.  If you want to check for exceptions
789 from a set of calculations, you should clear all the flags first.  Here
790 is a simple example of the way to use @code{fetestexcept}:
792 @smallexample
794   double f;
795   int raised;
796   feclearexcept (FE_ALL_EXCEPT);
797   f = compute ();
798   raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
799   if (raised & FE_OVERFLOW) @{ /* @dots{} */ @}
800   if (raised & FE_INVALID) @{ /* @dots{} */ @}
801   /* @dots{} */
803 @end smallexample
805 You cannot explicitly set bits in the status word.  You can, however,
806 save the entire status word and restore it later.  This is done with the
807 following functions:
809 @comment fenv.h
810 @comment ISO
811 @deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
812 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
813 This function stores in the variable pointed to by @var{flagp} an
814 implementation-defined value representing the current setting of the
815 exception flags indicated by @var{excepts}.
817 The function returns zero in case the operation was successful, a
818 non-zero value otherwise.
819 @end deftypefun
821 @comment fenv.h
822 @comment ISO
823 @deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
824 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
825 This function restores the flags for the exceptions indicated by
826 @var{excepts} to the values stored in the variable pointed to by
827 @var{flagp}.
829 The function returns zero in case the operation was successful, a
830 non-zero value otherwise.
831 @end deftypefun
833 Note that the value stored in @code{fexcept_t} bears no resemblance to
834 the bit mask returned by @code{fetestexcept}.  The type may not even be
835 an integer.  Do not attempt to modify an @code{fexcept_t} variable.
837 @comment fenv.h
838 @comment ISO
839 @deftypefun int fetestexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
840 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
841 Test whether the exception flags indicated by the parameter
842 @var{excepts} are set in the variable pointed to by @var{flagp}.  If
843 any of them are, a nonzero value is returned which specifies which
844 exceptions are set.  Otherwise the result is zero.
845 @code{fetestexceptflag} is from TS 18661-1:2014.
846 @end deftypefun
848 @node Math Error Reporting
849 @subsection Error Reporting by Mathematical Functions
850 @cindex errors, mathematical
851 @cindex domain error
852 @cindex range error
854 Many of the math functions are defined only over a subset of the real or
855 complex numbers.  Even if they are mathematically defined, their result
856 may be larger or smaller than the range representable by their return
857 type without loss of accuracy.  These are known as @dfn{domain errors},
858 @dfn{overflows}, and
859 @dfn{underflows}, respectively.  Math functions do several things when
860 one of these errors occurs.  In this manual we will refer to the
861 complete response as @dfn{signalling} a domain error, overflow, or
862 underflow.
864 When a math function suffers a domain error, it raises the invalid
865 exception and returns NaN.  It also sets @var{errno} to @code{EDOM};
866 this is for compatibility with old systems that do not support @w{IEEE
867 754} exception handling.  Likewise, when overflow occurs, math
868 functions raise the overflow exception and, in the default rounding
869 mode, return @math{@infinity{}} or @math{-@infinity{}} as appropriate
870 (in other rounding modes, the largest finite value of the appropriate
871 sign is returned when appropriate for that rounding mode).  They also
872 set @var{errno} to @code{ERANGE} if returning @math{@infinity{}} or
873 @math{-@infinity{}}; @var{errno} may or may not be set to
874 @code{ERANGE} when a finite value is returned on overflow.  When
875 underflow occurs, the underflow exception is raised, and zero
876 (appropriately signed) or a subnormal value, as appropriate for the
877 mathematical result of the function and the rounding mode, is
878 returned.  @var{errno} may be set to @code{ERANGE}, but this is not
879 guaranteed; it is intended that @theglibc{} should set it when the
880 underflow is to an appropriately signed zero, but not necessarily for
881 other underflows.
883 Some of the math functions are defined mathematically to result in a
884 complex value over parts of their domains.  The most familiar example of
885 this is taking the square root of a negative number.  The complex math
886 functions, such as @code{csqrt}, will return the appropriate complex value
887 in this case.  The real-valued functions, such as @code{sqrt}, will
888 signal a domain error.
890 Some older hardware does not support infinities.  On that hardware,
891 overflows instead return a particular very large number (usually the
892 largest representable number).  @file{math.h} defines macros you can use
893 to test for overflow on both old and new hardware.
895 @comment math.h
896 @comment ISO
897 @deftypevr Macro double HUGE_VAL
898 @comment math.h
899 @comment ISO
900 @deftypevrx Macro float HUGE_VALF
901 @comment math.h
902 @comment ISO
903 @deftypevrx Macro {long double} HUGE_VALL
904 An expression representing a particular very large number.  On machines
905 that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
906 On other machines, it's typically the largest positive number that can
907 be represented.
909 Mathematical functions return the appropriately typed version of
910 @code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
911 to be represented.
912 @end deftypevr
914 @node Rounding
915 @section Rounding Modes
917 Floating-point calculations are carried out internally with extra
918 precision, and then rounded to fit into the destination type.  This
919 ensures that results are as precise as the input data.  @w{IEEE 754}
920 defines four possible rounding modes:
922 @table @asis
923 @item Round to nearest.
924 This is the default mode.  It should be used unless there is a specific
925 need for one of the others.  In this mode results are rounded to the
926 nearest representable value.  If the result is midway between two
927 representable values, the even representable is chosen. @dfn{Even} here
928 means the lowest-order bit is zero.  This rounding mode prevents
929 statistical bias and guarantees numeric stability: round-off errors in a
930 lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
932 @c @item Round toward @math{+@infinity{}}
933 @item Round toward plus Infinity.
934 All results are rounded to the smallest representable value
935 which is greater than the result.
937 @c @item Round toward @math{-@infinity{}}
938 @item Round toward minus Infinity.
939 All results are rounded to the largest representable value which is less
940 than the result.
942 @item Round toward zero.
943 All results are rounded to the largest representable value whose
944 magnitude is less than that of the result.  In other words, if the
945 result is negative it is rounded up; if it is positive, it is rounded
946 down.
947 @end table
949 @noindent
950 @file{fenv.h} defines constants which you can use to refer to the
951 various rounding modes.  Each one will be defined if and only if the FPU
952 supports the corresponding rounding mode.
954 @table @code
955 @comment fenv.h
956 @comment ISO
957 @vindex FE_TONEAREST
958 @item FE_TONEAREST
959 Round to nearest.
961 @comment fenv.h
962 @comment ISO
963 @vindex FE_UPWARD
964 @item FE_UPWARD
965 Round toward @math{+@infinity{}}.
967 @comment fenv.h
968 @comment ISO
969 @vindex FE_DOWNWARD
970 @item FE_DOWNWARD
971 Round toward @math{-@infinity{}}.
973 @comment fenv.h
974 @comment ISO
975 @vindex FE_TOWARDZERO
976 @item FE_TOWARDZERO
977 Round toward zero.
978 @end table
980 Underflow is an unusual case.  Normally, @w{IEEE 754} floating point
981 numbers are always normalized (@pxref{Floating Point Concepts}).
982 Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
983 @code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
984 normalized numbers.  Rounding all such numbers to zero or @math{2^r}
985 would cause some algorithms to fail at 0.  Therefore, they are left in
986 denormalized form.  That produces loss of precision, since some bits of
987 the mantissa are stolen to indicate the decimal point.
989 If a result is too small to be represented as a denormalized number, it
990 is rounded to zero.  However, the sign of the result is preserved; if
991 the calculation was negative, the result is @dfn{negative zero}.
992 Negative zero can also result from some operations on infinity, such as
993 @math{4/-@infinity{}}.
995 At any time one of the above four rounding modes is selected.  You can
996 find out which one with this function:
998 @comment fenv.h
999 @comment ISO
1000 @deftypefun int fegetround (void)
1001 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1002 Returns the currently selected rounding mode, represented by one of the
1003 values of the defined rounding mode macros.
1004 @end deftypefun
1006 @noindent
1007 To change the rounding mode, use this function:
1009 @comment fenv.h
1010 @comment ISO
1011 @deftypefun int fesetround (int @var{round})
1012 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1013 Changes the currently selected rounding mode to @var{round}.  If
1014 @var{round} does not correspond to one of the supported rounding modes
1015 nothing is changed.  @code{fesetround} returns zero if it changed the
1016 rounding mode, a nonzero value if the mode is not supported.
1017 @end deftypefun
1019 You should avoid changing the rounding mode if possible.  It can be an
1020 expensive operation; also, some hardware requires you to compile your
1021 program differently for it to work.  The resulting code may run slower.
1022 See your compiler documentation for details.
1023 @c This section used to claim that functions existed to round one number
1024 @c in a specific fashion.  I can't find any functions in the library
1025 @c that do that. -zw
1027 @node Control Functions
1028 @section Floating-Point Control Functions
1030 @w{IEEE 754} floating-point implementations allow the programmer to
1031 decide whether traps will occur for each of the exceptions, by setting
1032 bits in the @dfn{control word}.  In C, traps result in the program
1033 receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
1035 @strong{NB:} @w{IEEE 754} says that trap handlers are given details of
1036 the exceptional situation, and can set the result value.  C signals do
1037 not provide any mechanism to pass this information back and forth.
1038 Trapping exceptions in C is therefore not very useful.
1040 It is sometimes necessary to save the state of the floating-point unit
1041 while you perform some calculation.  The library provides functions
1042 which save and restore the exception flags, the set of exceptions that
1043 generate traps, and the rounding mode.  This information is known as the
1044 @dfn{floating-point environment}.
1046 The functions to save and restore the floating-point environment all use
1047 a variable of type @code{fenv_t} to store information.  This type is
1048 defined in @file{fenv.h}.  Its size and contents are
1049 implementation-defined.  You should not attempt to manipulate a variable
1050 of this type directly.
1052 To save the state of the FPU, use one of these functions:
1054 @comment fenv.h
1055 @comment ISO
1056 @deftypefun int fegetenv (fenv_t *@var{envp})
1057 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1058 Store the floating-point environment in the variable pointed to by
1059 @var{envp}.
1061 The function returns zero in case the operation was successful, a
1062 non-zero value otherwise.
1063 @end deftypefun
1065 @comment fenv.h
1066 @comment ISO
1067 @deftypefun int feholdexcept (fenv_t *@var{envp})
1068 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1069 Store the current floating-point environment in the object pointed to by
1070 @var{envp}.  Then clear all exception flags, and set the FPU to trap no
1071 exceptions.  Not all FPUs support trapping no exceptions; if
1072 @code{feholdexcept} cannot set this mode, it returns nonzero value.  If it
1073 succeeds, it returns zero.
1074 @end deftypefun
1076 The functions which restore the floating-point environment can take these
1077 kinds of arguments:
1079 @itemize @bullet
1080 @item
1081 Pointers to @code{fenv_t} objects, which were initialized previously by a
1082 call to @code{fegetenv} or @code{feholdexcept}.
1083 @item
1084 @vindex FE_DFL_ENV
1085 The special macro @code{FE_DFL_ENV} which represents the floating-point
1086 environment as it was available at program start.
1087 @item
1088 Implementation defined macros with names starting with @code{FE_} and
1089 having type @code{fenv_t *}.
1091 @vindex FE_NOMASK_ENV
1092 If possible, @theglibc{} defines a macro @code{FE_NOMASK_ENV}
1093 which represents an environment where every exception raised causes a
1094 trap to occur.  You can test for this macro using @code{#ifdef}.  It is
1095 only defined if @code{_GNU_SOURCE} is defined.
1097 Some platforms might define other predefined environments.
1098 @end itemize
1100 @noindent
1101 To set the floating-point environment, you can use either of these
1102 functions:
1104 @comment fenv.h
1105 @comment ISO
1106 @deftypefun int fesetenv (const fenv_t *@var{envp})
1107 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1108 Set the floating-point environment to that described by @var{envp}.
1110 The function returns zero in case the operation was successful, a
1111 non-zero value otherwise.
1112 @end deftypefun
1114 @comment fenv.h
1115 @comment ISO
1116 @deftypefun int feupdateenv (const fenv_t *@var{envp})
1117 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1118 Like @code{fesetenv}, this function sets the floating-point environment
1119 to that described by @var{envp}.  However, if any exceptions were
1120 flagged in the status word before @code{feupdateenv} was called, they
1121 remain flagged after the call.  In other words, after @code{feupdateenv}
1122 is called, the status word is the bitwise OR of the previous status word
1123 and the one saved in @var{envp}.
1125 The function returns zero in case the operation was successful, a
1126 non-zero value otherwise.
1127 @end deftypefun
1129 @noindent
1130 TS 18661-1:2014 defines additional functions to save and restore
1131 floating-point control modes (such as the rounding mode and whether
1132 traps are enabled) while leaving other status (such as raised flags)
1133 unchanged.
1135 @vindex FE_DFL_MODE
1136 The special macro @code{FE_DFL_MODE} may be passed to
1137 @code{fesetmode}.  It represents the floating-point control modes at
1138 program start.
1140 @comment fenv.h
1141 @comment ISO
1142 @deftypefun int fegetmode (femode_t *@var{modep})
1143 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1144 Store the floating-point control modes in the variable pointed to by
1145 @var{modep}.
1147 The function returns zero in case the operation was successful, a
1148 non-zero value otherwise.
1149 @end deftypefun
1151 @comment fenv.h
1152 @comment ISO
1153 @deftypefun int fesetmode (const femode_t *@var{modep})
1154 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1155 Set the floating-point control modes to those described by
1156 @var{modep}.
1158 The function returns zero in case the operation was successful, a
1159 non-zero value otherwise.
1160 @end deftypefun
1162 @noindent
1163 To control for individual exceptions if raising them causes a trap to
1164 occur, you can use the following two functions.
1166 @strong{Portability Note:} These functions are all GNU extensions.
1168 @comment fenv.h
1169 @comment GNU
1170 @deftypefun int feenableexcept (int @var{excepts})
1171 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1172 This functions enables traps for each of the exceptions as indicated by
1173 the parameter @var{except}.  The individual exceptions are described in
1174 @ref{Status bit operations}.  Only the specified exceptions are
1175 enabled, the status of the other exceptions is not changed.
1177 The function returns the previous enabled exceptions in case the
1178 operation was successful, @code{-1} otherwise.
1179 @end deftypefun
1181 @comment fenv.h
1182 @comment GNU
1183 @deftypefun int fedisableexcept (int @var{excepts})
1184 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1185 This functions disables traps for each of the exceptions as indicated by
1186 the parameter @var{except}.  The individual exceptions are described in
1187 @ref{Status bit operations}.  Only the specified exceptions are
1188 disabled, the status of the other exceptions is not changed.
1190 The function returns the previous enabled exceptions in case the
1191 operation was successful, @code{-1} otherwise.
1192 @end deftypefun
1194 @comment fenv.h
1195 @comment GNU
1196 @deftypefun int fegetexcept (void)
1197 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1198 The function returns a bitmask of all currently enabled exceptions.  It
1199 returns @code{-1} in case of failure.
1200 @end deftypefun
1202 @node Arithmetic Functions
1203 @section Arithmetic Functions
1205 The C library provides functions to do basic operations on
1206 floating-point numbers.  These include absolute value, maximum and minimum,
1207 normalization, bit twiddling, rounding, and a few others.
1209 @menu
1210 * Absolute Value::              Absolute values of integers and floats.
1211 * Normalization Functions::     Extracting exponents and putting them back.
1212 * Rounding Functions::          Rounding floats to integers.
1213 * Remainder Functions::         Remainders on division, precisely defined.
1214 * FP Bit Twiddling::            Sign bit adjustment.  Adding epsilon.
1215 * FP Comparison Functions::     Comparisons without risk of exceptions.
1216 * Misc FP Arithmetic::          Max, min, positive difference, multiply-add.
1217 @end menu
1219 @node Absolute Value
1220 @subsection Absolute Value
1221 @cindex absolute value functions
1223 These functions are provided for obtaining the @dfn{absolute value} (or
1224 @dfn{magnitude}) of a number.  The absolute value of a real number
1225 @var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
1226 negative.  For a complex number @var{z}, whose real part is @var{x} and
1227 whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1228 (@var{x}*@var{x} + @var{y}*@var{y})}}.
1230 @pindex math.h
1231 @pindex stdlib.h
1232 Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
1233 @code{imaxabs} is declared in @file{inttypes.h};
1234 @code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
1235 @code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
1237 @comment stdlib.h
1238 @comment ISO
1239 @deftypefun int abs (int @var{number})
1240 @comment stdlib.h
1241 @comment ISO
1242 @deftypefunx {long int} labs (long int @var{number})
1243 @comment stdlib.h
1244 @comment ISO
1245 @deftypefunx {long long int} llabs (long long int @var{number})
1246 @comment inttypes.h
1247 @comment ISO
1248 @deftypefunx intmax_t imaxabs (intmax_t @var{number})
1249 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1250 These functions return the absolute value of @var{number}.
1252 Most computers use a two's complement integer representation, in which
1253 the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1254 cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
1256 @code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
1258 See @ref{Integers} for a description of the @code{intmax_t} type.
1260 @end deftypefun
1262 @comment math.h
1263 @comment ISO
1264 @deftypefun double fabs (double @var{number})
1265 @comment math.h
1266 @comment ISO
1267 @deftypefunx float fabsf (float @var{number})
1268 @comment math.h
1269 @comment ISO
1270 @deftypefunx {long double} fabsl (long double @var{number})
1271 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1272 This function returns the absolute value of the floating-point number
1273 @var{number}.
1274 @end deftypefun
1276 @comment complex.h
1277 @comment ISO
1278 @deftypefun double cabs (complex double @var{z})
1279 @comment complex.h
1280 @comment ISO
1281 @deftypefunx float cabsf (complex float @var{z})
1282 @comment complex.h
1283 @comment ISO
1284 @deftypefunx {long double} cabsl (complex long double @var{z})
1285 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1286 These functions return the absolute  value of the complex number @var{z}
1287 (@pxref{Complex Numbers}).  The absolute value of a complex number is:
1289 @smallexample
1290 sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
1291 @end smallexample
1293 This function should always be used instead of the direct formula
1294 because it takes special care to avoid losing precision.  It may also
1295 take advantage of hardware support for this operation.  See @code{hypot}
1296 in @ref{Exponents and Logarithms}.
1297 @end deftypefun
1299 @node Normalization Functions
1300 @subsection Normalization Functions
1301 @cindex normalization functions (floating-point)
1303 The functions described in this section are primarily provided as a way
1304 to efficiently perform certain low-level manipulations on floating point
1305 numbers that are represented internally using a binary radix;
1306 see @ref{Floating Point Concepts}.  These functions are required to
1307 have equivalent behavior even if the representation does not use a radix
1308 of 2, but of course they are unlikely to be particularly efficient in
1309 those cases.
1311 @pindex math.h
1312 All these functions are declared in @file{math.h}.
1314 @comment math.h
1315 @comment ISO
1316 @deftypefun double frexp (double @var{value}, int *@var{exponent})
1317 @comment math.h
1318 @comment ISO
1319 @deftypefunx float frexpf (float @var{value}, int *@var{exponent})
1320 @comment math.h
1321 @comment ISO
1322 @deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
1323 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1324 These functions are used to split the number @var{value}
1325 into a normalized fraction and an exponent.
1327 If the argument @var{value} is not zero, the return value is @var{value}
1328 times a power of two, and its magnitude is always in the range 1/2
1329 (inclusive) to 1 (exclusive).  The corresponding exponent is stored in
1330 @code{*@var{exponent}}; the return value multiplied by 2 raised to this
1331 exponent equals the original number @var{value}.
1333 For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1334 stores @code{4} in @code{exponent}.
1336 If @var{value} is zero, then the return value is zero and
1337 zero is stored in @code{*@var{exponent}}.
1338 @end deftypefun
1340 @comment math.h
1341 @comment ISO
1342 @deftypefun double ldexp (double @var{value}, int @var{exponent})
1343 @comment math.h
1344 @comment ISO
1345 @deftypefunx float ldexpf (float @var{value}, int @var{exponent})
1346 @comment math.h
1347 @comment ISO
1348 @deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
1349 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1350 These functions return the result of multiplying the floating-point
1351 number @var{value} by 2 raised to the power @var{exponent}.  (It can
1352 be used to reassemble floating-point numbers that were taken apart
1353 by @code{frexp}.)
1355 For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1356 @end deftypefun
1358 The following functions, which come from BSD, provide facilities
1359 equivalent to those of @code{ldexp} and @code{frexp}.  See also the
1360 @w{ISO C} function @code{logb} which originally also appeared in BSD.
1362 @comment math.h
1363 @comment BSD
1364 @deftypefun double scalb (double @var{value}, double @var{exponent})
1365 @comment math.h
1366 @comment BSD
1367 @deftypefunx float scalbf (float @var{value}, float @var{exponent})
1368 @comment math.h
1369 @comment BSD
1370 @deftypefunx {long double} scalbl (long double @var{value}, long double @var{exponent})
1371 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1372 The @code{scalb} function is the BSD name for @code{ldexp}.
1373 @end deftypefun
1375 @comment math.h
1376 @comment BSD
1377 @deftypefun double scalbn (double @var{x}, int @var{n})
1378 @comment math.h
1379 @comment BSD
1380 @deftypefunx float scalbnf (float @var{x}, int @var{n})
1381 @comment math.h
1382 @comment BSD
1383 @deftypefunx {long double} scalbnl (long double @var{x}, int @var{n})
1384 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1385 @code{scalbn} is identical to @code{scalb}, except that the exponent
1386 @var{n} is an @code{int} instead of a floating-point number.
1387 @end deftypefun
1389 @comment math.h
1390 @comment BSD
1391 @deftypefun double scalbln (double @var{x}, long int @var{n})
1392 @comment math.h
1393 @comment BSD
1394 @deftypefunx float scalblnf (float @var{x}, long int @var{n})
1395 @comment math.h
1396 @comment BSD
1397 @deftypefunx {long double} scalblnl (long double @var{x}, long int @var{n})
1398 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1399 @code{scalbln} is identical to @code{scalb}, except that the exponent
1400 @var{n} is a @code{long int} instead of a floating-point number.
1401 @end deftypefun
1403 @comment math.h
1404 @comment BSD
1405 @deftypefun double significand (double @var{x})
1406 @comment math.h
1407 @comment BSD
1408 @deftypefunx float significandf (float @var{x})
1409 @comment math.h
1410 @comment BSD
1411 @deftypefunx {long double} significandl (long double @var{x})
1412 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1413 @code{significand} returns the mantissa of @var{x} scaled to the range
1414 @math{[1, 2)}.
1415 It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1417 This function exists mainly for use in certain standardized tests
1418 of @w{IEEE 754} conformance.
1419 @end deftypefun
1421 @node Rounding Functions
1422 @subsection Rounding Functions
1423 @cindex converting floats to integers
1425 @pindex math.h
1426 The functions listed here perform operations such as rounding and
1427 truncation of floating-point values.  Some of these functions convert
1428 floating point numbers to integer values.  They are all declared in
1429 @file{math.h}.
1431 You can also convert floating-point numbers to integers simply by
1432 casting them to @code{int}.  This discards the fractional part,
1433 effectively rounding towards zero.  However, this only works if the
1434 result can actually be represented as an @code{int}---for very large
1435 numbers, this is impossible.  The functions listed here return the
1436 result as a @code{double} instead to get around this problem.
1438 @comment math.h
1439 @comment ISO
1440 @deftypefun double ceil (double @var{x})
1441 @comment math.h
1442 @comment ISO
1443 @deftypefunx float ceilf (float @var{x})
1444 @comment math.h
1445 @comment ISO
1446 @deftypefunx {long double} ceill (long double @var{x})
1447 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1448 These functions round @var{x} upwards to the nearest integer,
1449 returning that value as a @code{double}.  Thus, @code{ceil (1.5)}
1450 is @code{2.0}.
1451 @end deftypefun
1453 @comment math.h
1454 @comment ISO
1455 @deftypefun double floor (double @var{x})
1456 @comment math.h
1457 @comment ISO
1458 @deftypefunx float floorf (float @var{x})
1459 @comment math.h
1460 @comment ISO
1461 @deftypefunx {long double} floorl (long double @var{x})
1462 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1463 These functions round @var{x} downwards to the nearest
1464 integer, returning that value as a @code{double}.  Thus, @code{floor
1465 (1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1466 @end deftypefun
1468 @comment math.h
1469 @comment ISO
1470 @deftypefun double trunc (double @var{x})
1471 @comment math.h
1472 @comment ISO
1473 @deftypefunx float truncf (float @var{x})
1474 @comment math.h
1475 @comment ISO
1476 @deftypefunx {long double} truncl (long double @var{x})
1477 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1478 The @code{trunc} functions round @var{x} towards zero to the nearest
1479 integer (returned in floating-point format).  Thus, @code{trunc (1.5)}
1480 is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
1481 @end deftypefun
1483 @comment math.h
1484 @comment ISO
1485 @deftypefun double rint (double @var{x})
1486 @comment math.h
1487 @comment ISO
1488 @deftypefunx float rintf (float @var{x})
1489 @comment math.h
1490 @comment ISO
1491 @deftypefunx {long double} rintl (long double @var{x})
1492 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1493 These functions round @var{x} to an integer value according to the
1494 current rounding mode.  @xref{Floating Point Parameters}, for
1495 information about the various rounding modes.  The default
1496 rounding mode is to round to the nearest integer; some machines
1497 support other modes, but round-to-nearest is always used unless
1498 you explicitly select another.
1500 If @var{x} was not initially an integer, these functions raise the
1501 inexact exception.
1502 @end deftypefun
1504 @comment math.h
1505 @comment ISO
1506 @deftypefun double nearbyint (double @var{x})
1507 @comment math.h
1508 @comment ISO
1509 @deftypefunx float nearbyintf (float @var{x})
1510 @comment math.h
1511 @comment ISO
1512 @deftypefunx {long double} nearbyintl (long double @var{x})
1513 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1514 These functions return the same value as the @code{rint} functions, but
1515 do not raise the inexact exception if @var{x} is not an integer.
1516 @end deftypefun
1518 @comment math.h
1519 @comment ISO
1520 @deftypefun double round (double @var{x})
1521 @comment math.h
1522 @comment ISO
1523 @deftypefunx float roundf (float @var{x})
1524 @comment math.h
1525 @comment ISO
1526 @deftypefunx {long double} roundl (long double @var{x})
1527 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1528 These functions are similar to @code{rint}, but they round halfway
1529 cases away from zero instead of to the nearest integer (or other
1530 current rounding mode).
1531 @end deftypefun
1533 @comment math.h
1534 @comment ISO
1535 @deftypefun {long int} lrint (double @var{x})
1536 @comment math.h
1537 @comment ISO
1538 @deftypefunx {long int} lrintf (float @var{x})
1539 @comment math.h
1540 @comment ISO
1541 @deftypefunx {long int} lrintl (long double @var{x})
1542 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1543 These functions are just like @code{rint}, but they return a
1544 @code{long int} instead of a floating-point number.
1545 @end deftypefun
1547 @comment math.h
1548 @comment ISO
1549 @deftypefun {long long int} llrint (double @var{x})
1550 @comment math.h
1551 @comment ISO
1552 @deftypefunx {long long int} llrintf (float @var{x})
1553 @comment math.h
1554 @comment ISO
1555 @deftypefunx {long long int} llrintl (long double @var{x})
1556 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1557 These functions are just like @code{rint}, but they return a
1558 @code{long long int} instead of a floating-point number.
1559 @end deftypefun
1561 @comment math.h
1562 @comment ISO
1563 @deftypefun {long int} lround (double @var{x})
1564 @comment math.h
1565 @comment ISO
1566 @deftypefunx {long int} lroundf (float @var{x})
1567 @comment math.h
1568 @comment ISO
1569 @deftypefunx {long int} lroundl (long double @var{x})
1570 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1571 These functions are just like @code{round}, but they return a
1572 @code{long int} instead of a floating-point number.
1573 @end deftypefun
1575 @comment math.h
1576 @comment ISO
1577 @deftypefun {long long int} llround (double @var{x})
1578 @comment math.h
1579 @comment ISO
1580 @deftypefunx {long long int} llroundf (float @var{x})
1581 @comment math.h
1582 @comment ISO
1583 @deftypefunx {long long int} llroundl (long double @var{x})
1584 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1585 These functions are just like @code{round}, but they return a
1586 @code{long long int} instead of a floating-point number.
1587 @end deftypefun
1590 @comment math.h
1591 @comment ISO
1592 @deftypefun double modf (double @var{value}, double *@var{integer-part})
1593 @comment math.h
1594 @comment ISO
1595 @deftypefunx float modff (float @var{value}, float *@var{integer-part})
1596 @comment math.h
1597 @comment ISO
1598 @deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
1599 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1600 These functions break the argument @var{value} into an integer part and a
1601 fractional part (between @code{-1} and @code{1}, exclusive).  Their sum
1602 equals @var{value}.  Each of the parts has the same sign as @var{value},
1603 and the integer part is always rounded toward zero.
1605 @code{modf} stores the integer part in @code{*@var{integer-part}}, and
1606 returns the fractional part.  For example, @code{modf (2.5, &intpart)}
1607 returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1608 @end deftypefun
1610 @node Remainder Functions
1611 @subsection Remainder Functions
1613 The functions in this section compute the remainder on division of two
1614 floating-point numbers.  Each is a little different; pick the one that
1615 suits your problem.
1617 @comment math.h
1618 @comment ISO
1619 @deftypefun double fmod (double @var{numerator}, double @var{denominator})
1620 @comment math.h
1621 @comment ISO
1622 @deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
1623 @comment math.h
1624 @comment ISO
1625 @deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
1626 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1627 These functions compute the remainder from the division of
1628 @var{numerator} by @var{denominator}.  Specifically, the return value is
1629 @code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1630 is the quotient of @var{numerator} divided by @var{denominator}, rounded
1631 towards zero to an integer.  Thus, @w{@code{fmod (6.5, 2.3)}} returns
1632 @code{1.9}, which is @code{6.5} minus @code{4.6}.
1634 The result has the same sign as the @var{numerator} and has magnitude
1635 less than the magnitude of the @var{denominator}.
1637 If @var{denominator} is zero, @code{fmod} signals a domain error.
1638 @end deftypefun
1640 @comment math.h
1641 @comment BSD
1642 @deftypefun double drem (double @var{numerator}, double @var{denominator})
1643 @comment math.h
1644 @comment BSD
1645 @deftypefunx float dremf (float @var{numerator}, float @var{denominator})
1646 @comment math.h
1647 @comment BSD
1648 @deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
1649 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1650 These functions are like @code{fmod} except that they round the
1651 internal quotient @var{n} to the nearest integer instead of towards zero
1652 to an integer.  For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
1653 which is @code{6.5} minus @code{6.9}.
1655 The absolute value of the result is less than or equal to half the
1656 absolute value of the @var{denominator}.  The difference between
1657 @code{fmod (@var{numerator}, @var{denominator})} and @code{drem
1658 (@var{numerator}, @var{denominator})} is always either
1659 @var{denominator}, minus @var{denominator}, or zero.
1661 If @var{denominator} is zero, @code{drem} signals a domain error.
1662 @end deftypefun
1664 @comment math.h
1665 @comment BSD
1666 @deftypefun double remainder (double @var{numerator}, double @var{denominator})
1667 @comment math.h
1668 @comment BSD
1669 @deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
1670 @comment math.h
1671 @comment BSD
1672 @deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1673 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1674 This function is another name for @code{drem}.
1675 @end deftypefun
1677 @node FP Bit Twiddling
1678 @subsection Setting and modifying single bits of FP values
1679 @cindex FP arithmetic
1681 There are some operations that are too complicated or expensive to
1682 perform by hand on floating-point numbers.  @w{ISO C99} defines
1683 functions to do these operations, which mostly involve changing single
1684 bits.
1686 @comment math.h
1687 @comment ISO
1688 @deftypefun double copysign (double @var{x}, double @var{y})
1689 @comment math.h
1690 @comment ISO
1691 @deftypefunx float copysignf (float @var{x}, float @var{y})
1692 @comment math.h
1693 @comment ISO
1694 @deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
1695 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1696 These functions return @var{x} but with the sign of @var{y}.  They work
1697 even if @var{x} or @var{y} are NaN or zero.  Both of these can carry a
1698 sign (although not all implementations support it) and this is one of
1699 the few operations that can tell the difference.
1701 @code{copysign} never raises an exception.
1702 @c except signalling NaNs
1704 This function is defined in @w{IEC 559} (and the appendix with
1705 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1706 @end deftypefun
1708 @comment math.h
1709 @comment ISO
1710 @deftypefun int signbit (@emph{float-type} @var{x})
1711 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1712 @code{signbit} is a generic macro which can work on all floating-point
1713 types.  It returns a nonzero value if the value of @var{x} has its sign
1714 bit set.
1716 This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1717 point allows zero to be signed.  The comparison @code{-0.0 < 0.0} is
1718 false, but @code{signbit (-0.0)} will return a nonzero value.
1719 @end deftypefun
1721 @comment math.h
1722 @comment ISO
1723 @deftypefun double nextafter (double @var{x}, double @var{y})
1724 @comment math.h
1725 @comment ISO
1726 @deftypefunx float nextafterf (float @var{x}, float @var{y})
1727 @comment math.h
1728 @comment ISO
1729 @deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1730 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1731 The @code{nextafter} function returns the next representable neighbor of
1732 @var{x} in the direction towards @var{y}.  The size of the step between
1733 @var{x} and the result depends on the type of the result.  If
1734 @math{@var{x} = @var{y}} the function simply returns @var{y}.  If either
1735 value is @code{NaN}, @code{NaN} is returned.  Otherwise
1736 a value corresponding to the value of the least significant bit in the
1737 mantissa is added or subtracted, depending on the direction.
1738 @code{nextafter} will signal overflow or underflow if the result goes
1739 outside of the range of normalized numbers.
1741 This function is defined in @w{IEC 559} (and the appendix with
1742 recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1743 @end deftypefun
1745 @comment math.h
1746 @comment ISO
1747 @deftypefun double nexttoward (double @var{x}, long double @var{y})
1748 @comment math.h
1749 @comment ISO
1750 @deftypefunx float nexttowardf (float @var{x}, long double @var{y})
1751 @comment math.h
1752 @comment ISO
1753 @deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
1754 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1755 These functions are identical to the corresponding versions of
1756 @code{nextafter} except that their second argument is a @code{long
1757 double}.
1758 @end deftypefun
1760 @comment math.h
1761 @comment ISO
1762 @deftypefun double nextup (double @var{x})
1763 @comment math.h
1764 @comment ISO
1765 @deftypefunx float nextupf (float @var{x})
1766 @comment math.h
1767 @comment ISO
1768 @deftypefunx {long double} nextupl (long double @var{x})
1769 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1770 The @code{nextup} function returns the next representable neighbor of @var{x}
1771 in the direction of positive infinity.  If @var{x} is the smallest negative
1772 subnormal number in the type of @var{x} the function returns @code{-0}.  If
1773 @math{@var{x} = @code{0}} the function returns the smallest positive subnormal
1774 number in the type of @var{x}.  If @var{x} is NaN, NaN is returned.
1775 If @var{x} is @math{+@infinity{}}, @math{+@infinity{}} is returned.
1776 @code{nextup} is from TS 18661-1:2014.
1777 @code{nextup} never raises an exception except for signaling NaNs.
1778 @end deftypefun
1780 @comment math.h
1781 @comment ISO
1782 @deftypefun double nextdown (double @var{x})
1783 @comment math.h
1784 @comment ISO
1785 @deftypefunx float nextdownf (float @var{x})
1786 @comment math.h
1787 @comment ISO
1788 @deftypefunx {long double} nextdownl (long double @var{x})
1789 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1790 The @code{nextdown} function returns the next representable neighbor of @var{x}
1791 in the direction of negative infinity.  If @var{x} is the smallest positive
1792 subnormal number in the type of @var{x} the function returns @code{+0}.  If
1793 @math{@var{x} = @code{0}} the function returns the smallest negative subnormal
1794 number in the type of @var{x}.  If @var{x} is NaN, NaN is returned.
1795 If @var{x} is @math{-@infinity{}}, @math{-@infinity{}} is returned.
1796 @code{nextdown} is from TS 18661-1:2014.
1797 @code{nextdown} never raises an exception except for signaling NaNs.
1798 @end deftypefun
1800 @cindex NaN
1801 @comment math.h
1802 @comment ISO
1803 @deftypefun double nan (const char *@var{tagp})
1804 @comment math.h
1805 @comment ISO
1806 @deftypefunx float nanf (const char *@var{tagp})
1807 @comment math.h
1808 @comment ISO
1809 @deftypefunx {long double} nanl (const char *@var{tagp})
1810 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1811 @c The unsafe-but-ruled-safe locale use comes from strtod.
1812 The @code{nan} function returns a representation of NaN, provided that
1813 NaN is supported by the target platform.
1814 @code{nan ("@var{n-char-sequence}")} is equivalent to
1815 @code{strtod ("NAN(@var{n-char-sequence})")}.
1817 The argument @var{tagp} is used in an unspecified manner.  On @w{IEEE
1818 754} systems, there are many representations of NaN, and @var{tagp}
1819 selects one.  On other systems it may do nothing.
1820 @end deftypefun
1822 @node FP Comparison Functions
1823 @subsection Floating-Point Comparison Functions
1824 @cindex unordered comparison
1826 The standard C comparison operators provoke exceptions when one or other
1827 of the operands is NaN.  For example,
1829 @smallexample
1830 int v = a < 1.0;
1831 @end smallexample
1833 @noindent
1834 will raise an exception if @var{a} is NaN.  (This does @emph{not}
1835 happen with @code{==} and @code{!=}; those merely return false and true,
1836 respectively, when NaN is examined.)  Frequently this exception is
1837 undesirable.  @w{ISO C99} therefore defines comparison functions that
1838 do not raise exceptions when NaN is examined.  All of the functions are
1839 implemented as macros which allow their arguments to be of any
1840 floating-point type.  The macros are guaranteed to evaluate their
1841 arguments only once.
1843 @comment math.h
1844 @comment ISO
1845 @deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1846 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1847 This macro determines whether the argument @var{x} is greater than
1848 @var{y}.  It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1849 exception is raised if @var{x} or @var{y} are NaN.
1850 @end deftypefn
1852 @comment math.h
1853 @comment ISO
1854 @deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1855 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1856 This macro determines whether the argument @var{x} is greater than or
1857 equal to @var{y}.  It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1858 exception is raised if @var{x} or @var{y} are NaN.
1859 @end deftypefn
1861 @comment math.h
1862 @comment ISO
1863 @deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1864 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1865 This macro determines whether the argument @var{x} is less than @var{y}.
1866 It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1867 raised if @var{x} or @var{y} are NaN.
1868 @end deftypefn
1870 @comment math.h
1871 @comment ISO
1872 @deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1873 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1874 This macro determines whether the argument @var{x} is less than or equal
1875 to @var{y}.  It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1876 exception is raised if @var{x} or @var{y} are NaN.
1877 @end deftypefn
1879 @comment math.h
1880 @comment ISO
1881 @deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1882 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1883 This macro determines whether the argument @var{x} is less or greater
1884 than @var{y}.  It is equivalent to @code{(@var{x}) < (@var{y}) ||
1885 (@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
1886 once), but no exception is raised if @var{x} or @var{y} are NaN.
1888 This macro is not equivalent to @code{@var{x} != @var{y}}, because that
1889 expression is true if @var{x} or @var{y} are NaN.
1890 @end deftypefn
1892 @comment math.h
1893 @comment ISO
1894 @deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1895 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1896 This macro determines whether its arguments are unordered.  In other
1897 words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
1898 @end deftypefn
1900 Not all machines provide hardware support for these operations.  On
1901 machines that don't, the macros can be very slow.  Therefore, you should
1902 not use these functions when NaN is not a concern.
1904 @strong{NB:} There are no macros @code{isequal} or @code{isunequal}.
1905 They are unnecessary, because the @code{==} and @code{!=} operators do
1906 @emph{not} throw an exception if one or both of the operands are NaN.
1908 @node Misc FP Arithmetic
1909 @subsection Miscellaneous FP arithmetic functions
1910 @cindex minimum
1911 @cindex maximum
1912 @cindex positive difference
1913 @cindex multiply-add
1915 The functions in this section perform miscellaneous but common
1916 operations that are awkward to express with C operators.  On some
1917 processors these functions can use special machine instructions to
1918 perform these operations faster than the equivalent C code.
1920 @comment math.h
1921 @comment ISO
1922 @deftypefun double fmin (double @var{x}, double @var{y})
1923 @comment math.h
1924 @comment ISO
1925 @deftypefunx float fminf (float @var{x}, float @var{y})
1926 @comment math.h
1927 @comment ISO
1928 @deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
1929 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1930 The @code{fmin} function returns the lesser of the two values @var{x}
1931 and @var{y}.  It is similar to the expression
1932 @smallexample
1933 ((x) < (y) ? (x) : (y))
1934 @end smallexample
1935 except that @var{x} and @var{y} are only evaluated once.
1937 If an argument is NaN, the other argument is returned.  If both arguments
1938 are NaN, NaN is returned.
1939 @end deftypefun
1941 @comment math.h
1942 @comment ISO
1943 @deftypefun double fmax (double @var{x}, double @var{y})
1944 @comment math.h
1945 @comment ISO
1946 @deftypefunx float fmaxf (float @var{x}, float @var{y})
1947 @comment math.h
1948 @comment ISO
1949 @deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
1950 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1951 The @code{fmax} function returns the greater of the two values @var{x}
1952 and @var{y}.
1954 If an argument is NaN, the other argument is returned.  If both arguments
1955 are NaN, NaN is returned.
1956 @end deftypefun
1958 @comment math.h
1959 @comment ISO
1960 @deftypefun double fdim (double @var{x}, double @var{y})
1961 @comment math.h
1962 @comment ISO
1963 @deftypefunx float fdimf (float @var{x}, float @var{y})
1964 @comment math.h
1965 @comment ISO
1966 @deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
1967 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1968 The @code{fdim} function returns the positive difference between
1969 @var{x} and @var{y}.  The positive difference is @math{@var{x} -
1970 @var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
1972 If @var{x}, @var{y}, or both are NaN, NaN is returned.
1973 @end deftypefun
1975 @comment math.h
1976 @comment ISO
1977 @deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
1978 @comment math.h
1979 @comment ISO
1980 @deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
1981 @comment math.h
1982 @comment ISO
1983 @deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
1984 @cindex butterfly
1985 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1986 The @code{fma} function performs floating-point multiply-add.  This is
1987 the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
1988 intermediate result is not rounded to the destination type.  This can
1989 sometimes improve the precision of a calculation.
1991 This function was introduced because some processors have a special
1992 instruction to perform multiply-add.  The C compiler cannot use it
1993 directly, because the expression @samp{x*y + z} is defined to round the
1994 intermediate result.  @code{fma} lets you choose when you want to round
1995 only once.
1997 @vindex FP_FAST_FMA
1998 On processors which do not implement multiply-add in hardware,
1999 @code{fma} can be very slow since it must avoid intermediate rounding.
2000 @file{math.h} defines the symbols @code{FP_FAST_FMA},
2001 @code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
2002 version of @code{fma} is no slower than the expression @samp{x*y + z}.
2003 In @theglibc{}, this always means the operation is implemented in
2004 hardware.
2005 @end deftypefun
2007 @node Complex Numbers
2008 @section Complex Numbers
2009 @pindex complex.h
2010 @cindex complex numbers
2012 @w{ISO C99} introduces support for complex numbers in C.  This is done
2013 with a new type qualifier, @code{complex}.  It is a keyword if and only
2014 if @file{complex.h} has been included.  There are three complex types,
2015 corresponding to the three real types:  @code{float complex},
2016 @code{double complex}, and @code{long double complex}.
2018 To construct complex numbers you need a way to indicate the imaginary
2019 part of a number.  There is no standard notation for an imaginary
2020 floating point constant.  Instead, @file{complex.h} defines two macros
2021 that can be used to create complex numbers.
2023 @deftypevr Macro {const float complex} _Complex_I
2024 This macro is a representation of the complex number ``@math{0+1i}''.
2025 Multiplying a real floating-point value by @code{_Complex_I} gives a
2026 complex number whose value is purely imaginary.  You can use this to
2027 construct complex constants:
2029 @smallexample
2030 @math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
2031 @end smallexample
2033 Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
2034 the type of that value is @code{complex}.
2035 @end deftypevr
2037 @c Put this back in when gcc supports _Imaginary_I.  It's too confusing.
2038 @ignore
2039 @noindent
2040 Without an optimizing compiler this is more expensive than the use of
2041 @code{_Imaginary_I} but with is better than nothing.  You can avoid all
2042 the hassles if you use the @code{I} macro below if the name is not
2043 problem.
2045 @deftypevr Macro {const float imaginary} _Imaginary_I
2046 This macro is a representation of the value ``@math{1i}''.  I.e., it is
2047 the value for which
2049 @smallexample
2050 _Imaginary_I * _Imaginary_I = -1
2051 @end smallexample
2053 @noindent
2054 The result is not of type @code{float imaginary} but instead @code{float}.
2055 One can use it to easily construct complex number like in
2057 @smallexample
2058 3.0 - _Imaginary_I * 4.0
2059 @end smallexample
2061 @noindent
2062 which results in the complex number with a real part of 3.0 and a
2063 imaginary part -4.0.
2064 @end deftypevr
2065 @end ignore
2067 @noindent
2068 @code{_Complex_I} is a bit of a mouthful.  @file{complex.h} also defines
2069 a shorter name for the same constant.
2071 @deftypevr Macro {const float complex} I
2072 This macro has exactly the same value as @code{_Complex_I}.  Most of the
2073 time it is preferable.  However, it causes problems if you want to use
2074 the identifier @code{I} for something else.  You can safely write
2076 @smallexample
2077 #include <complex.h>
2078 #undef I
2079 @end smallexample
2081 @noindent
2082 if you need @code{I} for your own purposes.  (In that case we recommend
2083 you also define some other short name for @code{_Complex_I}, such as
2084 @code{J}.)
2086 @ignore
2087 If the implementation does not support the @code{imaginary} types
2088 @code{I} is defined as @code{_Complex_I} which is the second best
2089 solution.  It still can be used in the same way but requires a most
2090 clever compiler to get the same results.
2091 @end ignore
2092 @end deftypevr
2094 @node Operations on Complex
2095 @section Projections, Conjugates, and Decomposing of Complex Numbers
2096 @cindex project complex numbers
2097 @cindex conjugate complex numbers
2098 @cindex decompose complex numbers
2099 @pindex complex.h
2101 @w{ISO C99} also defines functions that perform basic operations on
2102 complex numbers, such as decomposition and conjugation.  The prototypes
2103 for all these functions are in @file{complex.h}.  All functions are
2104 available in three variants, one for each of the three complex types.
2106 @comment complex.h
2107 @comment ISO
2108 @deftypefun double creal (complex double @var{z})
2109 @comment complex.h
2110 @comment ISO
2111 @deftypefunx float crealf (complex float @var{z})
2112 @comment complex.h
2113 @comment ISO
2114 @deftypefunx {long double} creall (complex long double @var{z})
2115 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2116 These functions return the real part of the complex number @var{z}.
2117 @end deftypefun
2119 @comment complex.h
2120 @comment ISO
2121 @deftypefun double cimag (complex double @var{z})
2122 @comment complex.h
2123 @comment ISO
2124 @deftypefunx float cimagf (complex float @var{z})
2125 @comment complex.h
2126 @comment ISO
2127 @deftypefunx {long double} cimagl (complex long double @var{z})
2128 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2129 These functions return the imaginary part of the complex number @var{z}.
2130 @end deftypefun
2132 @comment complex.h
2133 @comment ISO
2134 @deftypefun {complex double} conj (complex double @var{z})
2135 @comment complex.h
2136 @comment ISO
2137 @deftypefunx {complex float} conjf (complex float @var{z})
2138 @comment complex.h
2139 @comment ISO
2140 @deftypefunx {complex long double} conjl (complex long double @var{z})
2141 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2142 These functions return the conjugate value of the complex number
2143 @var{z}.  The conjugate of a complex number has the same real part and a
2144 negated imaginary part.  In other words, @samp{conj(a + bi) = a + -bi}.
2145 @end deftypefun
2147 @comment complex.h
2148 @comment ISO
2149 @deftypefun double carg (complex double @var{z})
2150 @comment complex.h
2151 @comment ISO
2152 @deftypefunx float cargf (complex float @var{z})
2153 @comment complex.h
2154 @comment ISO
2155 @deftypefunx {long double} cargl (complex long double @var{z})
2156 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2157 These functions return the argument of the complex number @var{z}.
2158 The argument of a complex number is the angle in the complex plane
2159 between the positive real axis and a line passing through zero and the
2160 number.  This angle is measured in the usual fashion and ranges from
2161 @math{-@pi{}} to @math{@pi{}}.
2163 @code{carg} has a branch cut along the negative real axis.
2164 @end deftypefun
2166 @comment complex.h
2167 @comment ISO
2168 @deftypefun {complex double} cproj (complex double @var{z})
2169 @comment complex.h
2170 @comment ISO
2171 @deftypefunx {complex float} cprojf (complex float @var{z})
2172 @comment complex.h
2173 @comment ISO
2174 @deftypefunx {complex long double} cprojl (complex long double @var{z})
2175 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2176 These functions return the projection of the complex value @var{z} onto
2177 the Riemann sphere.  Values with an infinite imaginary part are projected
2178 to positive infinity on the real axis, even if the real part is NaN.  If
2179 the real part is infinite, the result is equivalent to
2181 @smallexample
2182 INFINITY + I * copysign (0.0, cimag (z))
2183 @end smallexample
2184 @end deftypefun
2186 @node Parsing of Numbers
2187 @section Parsing of Numbers
2188 @cindex parsing numbers (in formatted input)
2189 @cindex converting strings to numbers
2190 @cindex number syntax, parsing
2191 @cindex syntax, for reading numbers
2193 This section describes functions for ``reading'' integer and
2194 floating-point numbers from a string.  It may be more convenient in some
2195 cases to use @code{sscanf} or one of the related functions; see
2196 @ref{Formatted Input}.  But often you can make a program more robust by
2197 finding the tokens in the string by hand, then converting the numbers
2198 one by one.
2200 @menu
2201 * Parsing of Integers::         Functions for conversion of integer values.
2202 * Parsing of Floats::           Functions for conversion of floating-point
2203                                  values.
2204 @end menu
2206 @node Parsing of Integers
2207 @subsection Parsing of Integers
2209 @pindex stdlib.h
2210 @pindex wchar.h
2211 The @samp{str} functions are declared in @file{stdlib.h} and those
2212 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2213 wonder about the use of @code{restrict} in the prototypes of the
2214 functions in this section.  It is seemingly useless but the @w{ISO C}
2215 standard uses it (for the functions defined there) so we have to do it
2216 as well.
2218 @comment stdlib.h
2219 @comment ISO
2220 @deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2221 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2222 @c strtol uses the thread-local pointer to the locale in effect, and
2223 @c strtol_l loads the LC_NUMERIC locale data from it early on and once,
2224 @c but if the locale is the global locale, and another thread calls
2225 @c setlocale in a way that modifies the pointer to the LC_CTYPE locale
2226 @c category, the behavior of e.g. IS*, TOUPPER will vary throughout the
2227 @c execution of the function, because they re-read the locale data from
2228 @c the given locale pointer.  We solved this by documenting setlocale as
2229 @c MT-Unsafe.
2230 The @code{strtol} (``string-to-long'') function converts the initial
2231 part of @var{string} to a signed integer, which is returned as a value
2232 of type @code{long int}.
2234 This function attempts to decompose @var{string} as follows:
2236 @itemize @bullet
2237 @item
2238 A (possibly empty) sequence of whitespace characters.  Which characters
2239 are whitespace is determined by the @code{isspace} function
2240 (@pxref{Classification of Characters}).  These are discarded.
2242 @item
2243 An optional plus or minus sign (@samp{+} or @samp{-}).
2245 @item
2246 A nonempty sequence of digits in the radix specified by @var{base}.
2248 If @var{base} is zero, decimal radix is assumed unless the series of
2249 digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2250 @samp{0X} (specifying hexadecimal radix); in other words, the same
2251 syntax used for integer constants in C.
2253 Otherwise @var{base} must have a value between @code{2} and @code{36}.
2254 If @var{base} is @code{16}, the digits may optionally be preceded by
2255 @samp{0x} or @samp{0X}.  If base has no legal value the value returned
2256 is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
2258 @item
2259 Any remaining characters in the string.  If @var{tailptr} is not a null
2260 pointer, @code{strtol} stores a pointer to this tail in
2261 @code{*@var{tailptr}}.
2262 @end itemize
2264 If the string is empty, contains only whitespace, or does not contain an
2265 initial substring that has the expected syntax for an integer in the
2266 specified @var{base}, no conversion is performed.  In this case,
2267 @code{strtol} returns a value of zero and the value stored in
2268 @code{*@var{tailptr}} is the value of @var{string}.
2270 In a locale other than the standard @code{"C"} locale, this function
2271 may recognize additional implementation-dependent syntax.
2273 If the string has valid syntax for an integer but the value is not
2274 representable because of overflow, @code{strtol} returns either
2275 @code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2276 appropriate for the sign of the value.  It also sets @code{errno}
2277 to @code{ERANGE} to indicate there was overflow.
2279 You should not check for errors by examining the return value of
2280 @code{strtol}, because the string might be a valid representation of
2281 @code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}.  Instead, check whether
2282 @var{tailptr} points to what you expect after the number
2283 (e.g. @code{'\0'} if the string should end after the number).  You also
2284 need to clear @var{errno} before the call and check it afterward, in
2285 case there was overflow.
2287 There is an example at the end of this section.
2288 @end deftypefun
2290 @comment wchar.h
2291 @comment ISO
2292 @deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2293 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2294 The @code{wcstol} function is equivalent to the @code{strtol} function
2295 in nearly all aspects but handles wide character strings.
2297 The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2298 @end deftypefun
2300 @comment stdlib.h
2301 @comment ISO
2302 @deftypefun {unsigned long int} strtoul (const char *retrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2303 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2304 The @code{strtoul} (``string-to-unsigned-long'') function is like
2305 @code{strtol} except it converts to an @code{unsigned long int} value.
2306 The syntax is the same as described above for @code{strtol}.  The value
2307 returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2309 If @var{string} depicts a negative number, @code{strtoul} acts the same
2310 as @var{strtol} but casts the result to an unsigned integer.  That means
2311 for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
2312 and an input more negative than @code{LONG_MIN} returns
2313 (@code{ULONG_MAX} + 1) / 2.
2315 @code{strtoul} sets @var{errno} to @code{EINVAL} if @var{base} is out of
2316 range, or @code{ERANGE} on overflow.
2317 @end deftypefun
2319 @comment wchar.h
2320 @comment ISO
2321 @deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2322 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2323 The @code{wcstoul} function is equivalent to the @code{strtoul} function
2324 in nearly all aspects but handles wide character strings.
2326 The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2327 @end deftypefun
2329 @comment stdlib.h
2330 @comment ISO
2331 @deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2332 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2333 The @code{strtoll} function is like @code{strtol} except that it returns
2334 a @code{long long int} value, and accepts numbers with a correspondingly
2335 larger range.
2337 If the string has valid syntax for an integer but the value is not
2338 representable because of overflow, @code{strtoll} returns either
2339 @code{LLONG_MAX} or @code{LLONG_MIN} (@pxref{Range of Type}), as
2340 appropriate for the sign of the value.  It also sets @code{errno} to
2341 @code{ERANGE} to indicate there was overflow.
2343 The @code{strtoll} function was introduced in @w{ISO C99}.
2344 @end deftypefun
2346 @comment wchar.h
2347 @comment ISO
2348 @deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2349 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2350 The @code{wcstoll} function is equivalent to the @code{strtoll} function
2351 in nearly all aspects but handles wide character strings.
2353 The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2354 @end deftypefun
2356 @comment stdlib.h
2357 @comment BSD
2358 @deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2359 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2360 @code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2361 @end deftypefun
2363 @comment wchar.h
2364 @comment GNU
2365 @deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2366 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2367 The @code{wcstoq} function is equivalent to the @code{strtoq} function
2368 in nearly all aspects but handles wide character strings.
2370 The @code{wcstoq} function is a GNU extension.
2371 @end deftypefun
2373 @comment stdlib.h
2374 @comment ISO
2375 @deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2376 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2377 The @code{strtoull} function is related to @code{strtoll} the same way
2378 @code{strtoul} is related to @code{strtol}.
2380 The @code{strtoull} function was introduced in @w{ISO C99}.
2381 @end deftypefun
2383 @comment wchar.h
2384 @comment ISO
2385 @deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2386 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2387 The @code{wcstoull} function is equivalent to the @code{strtoull} function
2388 in nearly all aspects but handles wide character strings.
2390 The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2391 @end deftypefun
2393 @comment stdlib.h
2394 @comment BSD
2395 @deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2396 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2397 @code{strtouq} is the BSD name for @code{strtoull}.
2398 @end deftypefun
2400 @comment wchar.h
2401 @comment GNU
2402 @deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2403 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2404 The @code{wcstouq} function is equivalent to the @code{strtouq} function
2405 in nearly all aspects but handles wide character strings.
2407 The @code{wcstouq} function is a GNU extension.
2408 @end deftypefun
2410 @comment inttypes.h
2411 @comment ISO
2412 @deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2413 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2414 The @code{strtoimax} function is like @code{strtol} except that it returns
2415 a @code{intmax_t} value, and accepts numbers of a corresponding range.
2417 If the string has valid syntax for an integer but the value is not
2418 representable because of overflow, @code{strtoimax} returns either
2419 @code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2420 appropriate for the sign of the value.  It also sets @code{errno} to
2421 @code{ERANGE} to indicate there was overflow.
2423 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2424 @code{strtoimax} function was introduced in @w{ISO C99}.
2425 @end deftypefun
2427 @comment wchar.h
2428 @comment ISO
2429 @deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2430 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2431 The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2432 in nearly all aspects but handles wide character strings.
2434 The @code{wcstoimax} function was introduced in @w{ISO C99}.
2435 @end deftypefun
2437 @comment inttypes.h
2438 @comment ISO
2439 @deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2440 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2441 The @code{strtoumax} function is related to @code{strtoimax}
2442 the same way that @code{strtoul} is related to @code{strtol}.
2444 See @ref{Integers} for a description of the @code{intmax_t} type.  The
2445 @code{strtoumax} function was introduced in @w{ISO C99}.
2446 @end deftypefun
2448 @comment wchar.h
2449 @comment ISO
2450 @deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2451 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2452 The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2453 in nearly all aspects but handles wide character strings.
2455 The @code{wcstoumax} function was introduced in @w{ISO C99}.
2456 @end deftypefun
2458 @comment stdlib.h
2459 @comment ISO
2460 @deftypefun {long int} atol (const char *@var{string})
2461 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2462 This function is similar to the @code{strtol} function with a @var{base}
2463 argument of @code{10}, except that it need not detect overflow errors.
2464 The @code{atol} function is provided mostly for compatibility with
2465 existing code; using @code{strtol} is more robust.
2466 @end deftypefun
2468 @comment stdlib.h
2469 @comment ISO
2470 @deftypefun int atoi (const char *@var{string})
2471 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2472 This function is like @code{atol}, except that it returns an @code{int}.
2473 The @code{atoi} function is also considered obsolete; use @code{strtol}
2474 instead.
2475 @end deftypefun
2477 @comment stdlib.h
2478 @comment ISO
2479 @deftypefun {long long int} atoll (const char *@var{string})
2480 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2481 This function is similar to @code{atol}, except it returns a @code{long
2482 long int}.
2484 The @code{atoll} function was introduced in @w{ISO C99}.  It too is
2485 obsolete (despite having just been added); use @code{strtoll} instead.
2486 @end deftypefun
2488 All the functions mentioned in this section so far do not handle
2489 alternative representations of characters as described in the locale
2490 data.  Some locales specify thousands separator and the way they have to
2491 be used which can help to make large numbers more readable.  To read
2492 such numbers one has to use the @code{scanf} functions with the @samp{'}
2493 flag.
2495 Here is a function which parses a string as a sequence of integers and
2496 returns the sum of them:
2498 @smallexample
2500 sum_ints_from_string (char *string)
2502   int sum = 0;
2504   while (1) @{
2505     char *tail;
2506     int next;
2508     /* @r{Skip whitespace by hand, to detect the end.}  */
2509     while (isspace (*string)) string++;
2510     if (*string == 0)
2511       break;
2513     /* @r{There is more nonwhitespace,}  */
2514     /* @r{so it ought to be another number.}  */
2515     errno = 0;
2516     /* @r{Parse it.}  */
2517     next = strtol (string, &tail, 0);
2518     /* @r{Add it in, if not overflow.}  */
2519     if (errno)
2520       printf ("Overflow\n");
2521     else
2522       sum += next;
2523     /* @r{Advance past it.}  */
2524     string = tail;
2525   @}
2527   return sum;
2529 @end smallexample
2531 @node Parsing of Floats
2532 @subsection Parsing of Floats
2534 @pindex stdlib.h
2535 The @samp{str} functions are declared in @file{stdlib.h} and those
2536 beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2537 wonder about the use of @code{restrict} in the prototypes of the
2538 functions in this section.  It is seemingly useless but the @w{ISO C}
2539 standard uses it (for the functions defined there) so we have to do it
2540 as well.
2542 @comment stdlib.h
2543 @comment ISO
2544 @deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
2545 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2546 @c Besides the unsafe-but-ruled-safe locale uses, this uses a lot of
2547 @c mpn, but it's all safe.
2549 @c round_and_return
2550 @c   get_rounding_mode ok
2551 @c   mpn_add_1 ok
2552 @c   mpn_rshift ok
2553 @c   MPN_ZERO ok
2554 @c   MPN2FLOAT -> mpn_construct_(float|double|long_double) ok
2555 @c str_to_mpn
2556 @c   mpn_mul_1 -> umul_ppmm ok
2557 @c   mpn_add_1 ok
2558 @c mpn_lshift_1 -> mpn_lshift ok
2559 @c STRTOF_INTERNAL
2560 @c   MPN_VAR ok
2561 @c   SET_MANTISSA ok
2562 @c   STRNCASECMP ok, wide and narrow
2563 @c   round_and_return ok
2564 @c   mpn_mul ok
2565 @c     mpn_addmul_1 ok
2566 @c     ... mpn_sub
2567 @c   mpn_lshift ok
2568 @c   udiv_qrnnd ok
2569 @c   count_leading_zeros ok
2570 @c   add_ssaaaa ok
2571 @c   sub_ddmmss ok
2572 @c   umul_ppmm ok
2573 @c   mpn_submul_1 ok
2574 The @code{strtod} (``string-to-double'') function converts the initial
2575 part of @var{string} to a floating-point number, which is returned as a
2576 value of type @code{double}.
2578 This function attempts to decompose @var{string} as follows:
2580 @itemize @bullet
2581 @item
2582 A (possibly empty) sequence of whitespace characters.  Which characters
2583 are whitespace is determined by the @code{isspace} function
2584 (@pxref{Classification of Characters}).  These are discarded.
2586 @item
2587 An optional plus or minus sign (@samp{+} or @samp{-}).
2589 @item A floating point number in decimal or hexadecimal format.  The
2590 decimal format is:
2591 @itemize @minus
2593 @item
2594 A nonempty sequence of digits optionally containing a decimal-point
2595 character---normally @samp{.}, but it depends on the locale
2596 (@pxref{General Numeric}).
2598 @item
2599 An optional exponent part, consisting of a character @samp{e} or
2600 @samp{E}, an optional sign, and a sequence of digits.
2602 @end itemize
2604 The hexadecimal format is as follows:
2605 @itemize @minus
2607 @item
2608 A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2609 optionally containing a decimal-point character---normally @samp{.}, but
2610 it depends on the locale (@pxref{General Numeric}).
2612 @item
2613 An optional binary-exponent part, consisting of a character @samp{p} or
2614 @samp{P}, an optional sign, and a sequence of digits.
2616 @end itemize
2618 @item
2619 Any remaining characters in the string.  If @var{tailptr} is not a null
2620 pointer, a pointer to this tail of the string is stored in
2621 @code{*@var{tailptr}}.
2622 @end itemize
2624 If the string is empty, contains only whitespace, or does not contain an
2625 initial substring that has the expected syntax for a floating-point
2626 number, no conversion is performed.  In this case, @code{strtod} returns
2627 a value of zero and the value returned in @code{*@var{tailptr}} is the
2628 value of @var{string}.
2630 In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
2631 this function may recognize additional locale-dependent syntax.
2633 If the string has valid syntax for a floating-point number but the value
2634 is outside the range of a @code{double}, @code{strtod} will signal
2635 overflow or underflow as described in @ref{Math Error Reporting}.
2637 @code{strtod} recognizes four special input strings.  The strings
2638 @code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
2639 or to the largest representable value if the floating-point format
2640 doesn't support infinities.  You can prepend a @code{"+"} or @code{"-"}
2641 to specify the sign.  Case is ignored when scanning these strings.
2643 The strings @code{"nan"} and @code{"nan(@var{chars@dots{}})"} are converted
2644 to NaN.  Again, case is ignored.  If @var{chars@dots{}} are provided, they
2645 are used in some unspecified fashion to select a particular
2646 representation of NaN (there can be several).
2648 Since zero is a valid result as well as the value returned on error, you
2649 should check for errors in the same way as for @code{strtol}, by
2650 examining @var{errno} and @var{tailptr}.
2651 @end deftypefun
2653 @comment stdlib.h
2654 @comment ISO
2655 @deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
2656 @comment stdlib.h
2657 @comment ISO
2658 @deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
2659 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2660 These functions are analogous to @code{strtod}, but return @code{float}
2661 and @code{long double} values respectively.  They report errors in the
2662 same way as @code{strtod}.  @code{strtof} can be substantially faster
2663 than @code{strtod}, but has less precision; conversely, @code{strtold}
2664 can be much slower but has more precision (on systems where @code{long
2665 double} is a separate type).
2667 These functions have been GNU extensions and are new to @w{ISO C99}.
2668 @end deftypefun
2670 @comment wchar.h
2671 @comment ISO
2672 @deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
2673 @comment stdlib.h
2674 @comment ISO
2675 @deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2676 @comment stdlib.h
2677 @comment ISO
2678 @deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
2679 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2680 The @code{wcstod}, @code{wcstof}, and @code{wcstol} functions are
2681 equivalent in nearly all aspect to the @code{strtod}, @code{strtof}, and
2682 @code{strtold} functions but it handles wide character string.
2684 The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
2685 C90}.  The @code{wcstof} and @code{wcstold} functions were introduced in
2686 @w{ISO C99}.
2687 @end deftypefun
2689 @comment stdlib.h
2690 @comment ISO
2691 @deftypefun double atof (const char *@var{string})
2692 @safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2693 This function is similar to the @code{strtod} function, except that it
2694 need not detect overflow and underflow errors.  The @code{atof} function
2695 is provided mostly for compatibility with existing code; using
2696 @code{strtod} is more robust.
2697 @end deftypefun
2699 @Theglibc{} also provides @samp{_l} versions of these functions,
2700 which take an additional argument, the locale to use in conversion.
2702 See also @ref{Parsing of Integers}.
2704 @node System V Number Conversion
2705 @section Old-fashioned System V number-to-string functions
2707 The old @w{System V} C library provided three functions to convert
2708 numbers to strings, with unusual and hard-to-use semantics.  @Theglibc{}
2709 also provides these functions and some natural extensions.
2711 These functions are only available in @theglibc{} and on systems descended
2712 from AT&T Unix.  Therefore, unless these functions do precisely what you
2713 need, it is better to use @code{sprintf}, which is standard.
2715 All these functions are defined in @file{stdlib.h}.
2717 @comment stdlib.h
2718 @comment SVID, Unix98
2719 @deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2720 @safety{@prelim{}@mtunsafe{@mtasurace{:ecvt}}@asunsafe{}@acsafe{}}
2721 The function @code{ecvt} converts the floating-point number @var{value}
2722 to a string with at most @var{ndigit} decimal digits.  The
2723 returned string contains no decimal point or sign.  The first digit of
2724 the string is non-zero (unless @var{value} is actually zero) and the
2725 last digit is rounded to nearest.  @code{*@var{decpt}} is set to the
2726 index in the string of the first digit after the decimal point.
2727 @code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
2728 zero otherwise.
2730 If @var{ndigit} decimal digits would exceed the precision of a
2731 @code{double} it is reduced to a system-specific value.
2733 The returned string is statically allocated and overwritten by each call
2734 to @code{ecvt}.
2736 If @var{value} is zero, it is implementation defined whether
2737 @code{*@var{decpt}} is @code{0} or @code{1}.
2739 For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
2740 and sets @var{d} to @code{2} and @var{n} to @code{0}.
2741 @end deftypefun
2743 @comment stdlib.h
2744 @comment SVID, Unix98
2745 @deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2746 @safety{@prelim{}@mtunsafe{@mtasurace{:fcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2747 The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
2748 the number of digits after the decimal point.  If @var{ndigit} is less
2749 than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
2750 left of the decimal point.  For example, if @var{ndigit} is @code{-1},
2751 @var{value} will be rounded to the nearest 10.  If @var{ndigit} is
2752 negative and larger than the number of digits to the left of the decimal
2753 point in @var{value}, @var{value} will be rounded to one significant digit.
2755 If @var{ndigit} decimal digits would exceed the precision of a
2756 @code{double} it is reduced to a system-specific value.
2758 The returned string is statically allocated and overwritten by each call
2759 to @code{fcvt}.
2760 @end deftypefun
2762 @comment stdlib.h
2763 @comment SVID, Unix98
2764 @deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
2765 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2766 @c gcvt calls sprintf, that ultimately calls vfprintf, which malloc()s
2767 @c args_value if it's too large, but gcvt never exercises this path.
2768 @code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
2769 ndigit, value}.  It is provided only for compatibility's sake.  It
2770 returns @var{buf}.
2772 If @var{ndigit} decimal digits would exceed the precision of a
2773 @code{double} it is reduced to a system-specific value.
2774 @end deftypefun
2776 As extensions, @theglibc{} provides versions of these three
2777 functions that take @code{long double} arguments.
2779 @comment stdlib.h
2780 @comment GNU
2781 @deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2782 @safety{@prelim{}@mtunsafe{@mtasurace{:qecvt}}@asunsafe{}@acsafe{}}
2783 This function is equivalent to @code{ecvt} except that it takes a
2784 @code{long double} for the first parameter and that @var{ndigit} is
2785 restricted by the precision of a @code{long double}.
2786 @end deftypefun
2788 @comment stdlib.h
2789 @comment GNU
2790 @deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
2791 @safety{@prelim{}@mtunsafe{@mtasurace{:qfcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
2792 This function is equivalent to @code{fcvt} except that it
2793 takes a @code{long double} for the first parameter and that @var{ndigit} is
2794 restricted by the precision of a @code{long double}.
2795 @end deftypefun
2797 @comment stdlib.h
2798 @comment GNU
2799 @deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
2800 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2801 This function is equivalent to @code{gcvt} except that it takes a
2802 @code{long double} for the first parameter and that @var{ndigit} is
2803 restricted by the precision of a @code{long double}.
2804 @end deftypefun
2807 @cindex gcvt_r
2808 The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
2809 equivalents, all return a string located in a static buffer which is
2810 overwritten by the next call to the function.  @Theglibc{}
2811 provides another set of extended functions which write the converted
2812 string into a user-supplied buffer.  These have the conventional
2813 @code{_r} suffix.
2815 @code{gcvt_r} is not necessary, because @code{gcvt} already uses a
2816 user-supplied buffer.
2818 @comment stdlib.h
2819 @comment GNU
2820 @deftypefun int ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2821 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2822 The @code{ecvt_r} function is the same as @code{ecvt}, except
2823 that it places its result into the user-specified buffer pointed to by
2824 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2825 case of an error and zero otherwise.
2827 This function is a GNU extension.
2828 @end deftypefun
2830 @comment stdlib.h
2831 @comment SVID, Unix98
2832 @deftypefun int fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2833 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2834 The @code{fcvt_r} function is the same as @code{fcvt}, except that it
2835 places its result into the user-specified buffer pointed to by
2836 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2837 case of an error and zero otherwise.
2839 This function is a GNU extension.
2840 @end deftypefun
2842 @comment stdlib.h
2843 @comment GNU
2844 @deftypefun int qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2845 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2846 The @code{qecvt_r} function is the same as @code{qecvt}, except
2847 that it places its result into the user-specified buffer pointed to by
2848 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2849 case of an error and zero otherwise.
2851 This function is a GNU extension.
2852 @end deftypefun
2854 @comment stdlib.h
2855 @comment GNU
2856 @deftypefun int qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
2857 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2858 The @code{qfcvt_r} function is the same as @code{qfcvt}, except
2859 that it places its result into the user-specified buffer pointed to by
2860 @var{buf}, with length @var{len}.  The return value is @code{-1} in
2861 case of an error and zero otherwise.
2863 This function is a GNU extension.
2864 @end deftypefun