1 /* Floating point output for `printf'.
2 Copyright (C) 1995-1999,2000,2001,2002,2003 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21 /* The gmp headers need some configuration frobs. */
28 #include <gmp-mparam.h>
30 #include <stdlib/gmp-impl.h>
31 #include <stdlib/longlong.h>
32 #include <stdlib/fpioconst.h>
33 #include <locale/localeinfo.h>
42 #ifdef COMPILE_WPRINTF
43 # define CHAR_T wchar_t
48 #include "_i18n_number.h"
51 # define NDEBUG /* Undefine this for debugging assertions. */
55 /* This defines make it possible to use the same code for GNU C library and
56 the GNU I/O library. */
57 #define PUT(f, s, n) _IO_sputn (f, s, n)
58 #define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : INTUSE(_IO_padn) (f, c, n))
59 /* We use this file GNU C library and GNU I/O library. So make
62 #define putc(c, f) (wide \
63 ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
64 #define size_t _IO_size_t
67 /* Macros for doing the actual output. */
72 register const int outc = (ch); \
73 if (putc (outc, fp) == EOF) \
78 #define PRINT(ptr, wptr, len) \
81 register size_t outlen = (len); \
84 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
92 while (outlen-- > 0) \
95 while (outlen-- > 0) \
100 #define PADN(ch, len) \
103 if (PAD (fp, ch, len) != len) \
109 /* We use the GNU MP library to handle large numbers.
111 An MP variable occupies a varying number of entries in its array. We keep
112 track of this number for efficiency reasons. Otherwise we would always
113 have to process the whole array. */
114 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
116 #define MPN_ASSIGN(dst,src) \
117 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
118 #define MPN_GE(u,v) \
119 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
121 extern int __isinfl_internal (long double) attribute_hidden
;
122 extern int __isnanl_internal (long double) attribute_hidden
;
124 extern mp_size_t
__mpn_extract_double (mp_ptr res_ptr
, mp_size_t size
,
125 int *expt
, int *is_neg
,
127 extern mp_size_t
__mpn_extract_long_double (mp_ptr res_ptr
, mp_size_t size
,
128 int *expt
, int *is_neg
,
130 extern unsigned int __guess_grouping (unsigned int intdig_max
,
131 const char *grouping
);
134 static wchar_t *group_number (wchar_t *buf
, wchar_t *bufend
,
135 unsigned int intdig_no
, const char *grouping
,
136 wchar_t thousands_sep
, int ngroups
)
141 __printf_fp (FILE *fp
,
142 const struct printf_info
*info
,
143 const void *const *args
)
145 /* The floating-point value to output. */
149 __long_double_t ldbl
;
153 /* Locale-dependent representation of decimal point. */
157 /* Locale-dependent thousands separator and grouping specification. */
158 const char *thousands_sep
= NULL
;
159 wchar_t thousands_sepwc
= 0;
160 const char *grouping
;
162 /* "NaN" or "Inf" for the special cases. */
163 const char *special
= NULL
;
164 const wchar_t *wspecial
= NULL
;
166 /* We need just a few limbs for the input before shifting to the right
168 mp_limb_t fp_input
[(LDBL_MANT_DIG
+ BITS_PER_MP_LIMB
- 1) / BITS_PER_MP_LIMB
];
169 /* We need to shift the contents of fp_input by this amount of bits. */
172 /* The fraction of the floting-point value in question */
174 /* and the exponent. */
176 /* Sign of the exponent. */
178 /* Sign of float number. */
181 /* Scaling factor. */
184 /* Temporary bignum value. */
187 /* Digit which is result of last hack_digit() call. */
190 /* The type of output format that will be used: 'e'/'E' or 'f'. */
193 /* Counter for number of written characters. */
196 /* General helper (carry limb). */
199 /* Nonzero if this is output on a wide character stream. */
200 int wide
= info
->wide
;
202 auto wchar_t hack_digit (void);
204 wchar_t hack_digit (void)
208 if (expsign
!= 0 && type
== 'f' && exponent
-- > 0)
210 else if (scalesize
== 0)
212 hi
= frac
[fracsize
- 1];
213 frac
[fracsize
- 1] = __mpn_mul_1 (frac
, frac
, fracsize
- 1, 10);
217 if (fracsize
< scalesize
)
221 hi
= mpn_divmod (tmp
, frac
, fracsize
, scale
, scalesize
);
222 tmp
[fracsize
- scalesize
] = hi
;
225 fracsize
= scalesize
;
226 while (fracsize
!= 0 && frac
[fracsize
- 1] == 0)
230 /* We're not prepared for an mpn variable with zero
237 mp_limb_t _cy
= __mpn_mul_1 (frac
, frac
, fracsize
, 10);
239 frac
[fracsize
++] = _cy
;
246 /* Figure out the decimal point character. */
247 if (info
->extra
== 0)
249 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
250 decimalwc
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
254 decimal
= _NL_CURRENT (LC_MONETARY
, MON_DECIMAL_POINT
);
255 if (*decimal
== '\0')
256 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
257 decimalwc
= _NL_CURRENT_WORD (LC_MONETARY
,
258 _NL_MONETARY_DECIMAL_POINT_WC
);
259 if (decimalwc
== L
'\0')
260 decimalwc
= _NL_CURRENT_WORD (LC_NUMERIC
,
261 _NL_NUMERIC_DECIMAL_POINT_WC
);
263 /* The decimal point character must not be zero. */
264 assert (*decimal
!= '\0');
265 assert (decimalwc
!= L
'\0');
269 if (info
->extra
== 0)
270 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
272 grouping
= _NL_CURRENT (LC_MONETARY
, MON_GROUPING
);
274 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
278 /* Figure out the thousands separator character. */
281 if (info
->extra
== 0)
283 _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_THOUSANDS_SEP_WC
);
286 _NL_CURRENT_WORD (LC_MONETARY
,
287 _NL_MONETARY_THOUSANDS_SEP_WC
);
291 if (info
->extra
== 0)
292 thousands_sep
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
294 thousands_sep
= _NL_CURRENT (LC_MONETARY
, MON_THOUSANDS_SEP
);
297 if ((wide
&& thousands_sepwc
== L
'\0')
298 || (! wide
&& *thousands_sep
== '\0'))
300 else if (thousands_sepwc
== L
'\0')
301 /* If we are printing multibyte characters and there is a
302 multibyte representation for the thousands separator,
303 we must ensure the wide character thousands separator
304 is available, even if it is fake. */
305 thousands_sepwc
= 0xfffffffe;
311 /* Fetch the argument value. */
312 #ifndef __NO_LONG_DOUBLE_MATH
313 if (info
->is_long_double
&& sizeof (long double) > sizeof (double))
315 fpnum
.ldbl
= *(const long double *) args
[0];
317 /* Check for special values: not a number or infinity. */
318 if (__isnanl (fpnum
.ldbl
))
320 if (isupper (info
->spec
))
332 else if (__isinfl (fpnum
.ldbl
))
334 if (isupper (info
->spec
))
344 is_neg
= fpnum
.ldbl
< 0;
348 fracsize
= __mpn_extract_long_double (fp_input
,
350 sizeof (fp_input
[0])),
353 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- LDBL_MANT_DIG
;
357 #endif /* no long double */
359 fpnum
.dbl
= *(const double *) args
[0];
361 /* Check for special values: not a number or infinity. */
362 if (__isnan (fpnum
.dbl
))
365 if (isupper (info
->spec
))
376 else if (__isinf (fpnum
.dbl
))
378 is_neg
= fpnum
.dbl
< 0;
379 if (isupper (info
->spec
))
392 fracsize
= __mpn_extract_double (fp_input
,
394 / sizeof (fp_input
[0])),
395 &exponent
, &is_neg
, fpnum
.dbl
);
396 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- DBL_MANT_DIG
;
402 int width
= info
->width
;
404 if (is_neg
|| info
->showsign
|| info
->space
)
408 if (!info
->left
&& width
> 0)
413 else if (info
->showsign
)
415 else if (info
->space
)
418 PRINT (special
, wspecial
, 3);
420 if (info
->left
&& width
> 0)
427 /* We need three multiprecision variables. Now that we have the exponent
428 of the number we can allocate the needed memory. It would be more
429 efficient to use variables of the fixed maximum size but because this
430 would be really big it could lead to memory problems. */
432 mp_size_t bignum_size
= ((ABS (exponent
) + BITS_PER_MP_LIMB
- 1)
434 + (LDBL_MANT_DIG
/ BITS_PER_MP_LIMB
> 2 ? 8 : 4))
435 * sizeof (mp_limb_t
);
436 frac
= (mp_limb_t
*) alloca (bignum_size
);
437 tmp
= (mp_limb_t
*) alloca (bignum_size
);
438 scale
= (mp_limb_t
*) alloca (bignum_size
);
441 /* We now have to distinguish between numbers with positive and negative
442 exponents because the method used for the one is not applicable/efficient
449 int explog
= LDBL_MAX_10_EXP_LOG
;
451 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
454 if ((exponent
+ to_shift
) % BITS_PER_MP_LIMB
== 0)
456 MPN_COPY_DECR (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
458 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
462 cy
= __mpn_lshift (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
464 (exponent
+ to_shift
) % BITS_PER_MP_LIMB
);
465 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
467 frac
[fracsize
++] = cy
;
469 MPN_ZERO (frac
, (exponent
+ to_shift
) / BITS_PER_MP_LIMB
);
471 assert (powers
> &_fpioconst_pow10
[0]);
476 /* The number of the product of two binary numbers with n and m
477 bits respectively has m+n or m+n-1 bits. */
478 if (exponent
>= scaleexpo
+ powers
->p_expo
- 1)
482 #ifndef __NO_LONG_DOUBLE_MATH
483 if (LDBL_MANT_DIG
> _FPIO_CONST_OFFSET
* BITS_PER_MP_LIMB
484 && info
->is_long_double
)
486 #define _FPIO_CONST_SHIFT \
487 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
488 - _FPIO_CONST_OFFSET)
489 /* 64bit const offset is not enough for
490 IEEE quad long double. */
491 tmpsize
= powers
->arraysize
+ _FPIO_CONST_SHIFT
;
492 memcpy (tmp
+ _FPIO_CONST_SHIFT
,
493 &__tens
[powers
->arrayoff
],
494 tmpsize
* sizeof (mp_limb_t
));
495 MPN_ZERO (tmp
, _FPIO_CONST_SHIFT
);
496 /* Adjust exponent, as scaleexpo will be this much
498 exponent
+= _FPIO_CONST_SHIFT
* BITS_PER_MP_LIMB
;
503 tmpsize
= powers
->arraysize
;
504 memcpy (tmp
, &__tens
[powers
->arrayoff
],
505 tmpsize
* sizeof (mp_limb_t
));
510 cy
= __mpn_mul (tmp
, scale
, scalesize
,
511 &__tens
[powers
->arrayoff
512 + _FPIO_CONST_OFFSET
],
513 powers
->arraysize
- _FPIO_CONST_OFFSET
);
514 tmpsize
= scalesize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
519 if (MPN_GE (frac
, tmp
))
522 MPN_ASSIGN (scale
, tmp
);
523 count_leading_zeros (cnt
, scale
[scalesize
- 1]);
524 scaleexpo
= (scalesize
- 2) * BITS_PER_MP_LIMB
- cnt
- 1;
525 exp10
|= 1 << explog
;
530 while (powers
> &_fpioconst_pow10
[0]);
533 /* Optimize number representations. We want to represent the numbers
534 with the lowest number of bytes possible without losing any
535 bytes. Also the highest bit in the scaling factor has to be set
536 (this is a requirement of the MPN division routines). */
539 /* Determine minimum number of zero bits at the end of
541 for (i
= 0; scale
[i
] == 0 && frac
[i
] == 0; i
++)
544 /* Determine number of bits the scaling factor is misplaced. */
545 count_leading_zeros (cnt_h
, scale
[scalesize
- 1]);
549 /* The highest bit of the scaling factor is already set. So
550 we only have to remove the trailing empty limbs. */
553 MPN_COPY_INCR (scale
, scale
+ i
, scalesize
- i
);
555 MPN_COPY_INCR (frac
, frac
+ i
, fracsize
- i
);
563 count_trailing_zeros (cnt_l
, scale
[i
]);
567 count_trailing_zeros (cnt_l2
, frac
[i
]);
573 count_trailing_zeros (cnt_l
, frac
[i
]);
575 /* Now shift the numbers to their optimal position. */
576 if (i
== 0 && BITS_PER_MP_LIMB
- cnt_h
> cnt_l
)
578 /* We cannot save any memory. So just roll both numbers
579 so that the scaling factor has its highest bit set. */
581 (void) __mpn_lshift (scale
, scale
, scalesize
, cnt_h
);
582 cy
= __mpn_lshift (frac
, frac
, fracsize
, cnt_h
);
584 frac
[fracsize
++] = cy
;
586 else if (BITS_PER_MP_LIMB
- cnt_h
<= cnt_l
)
588 /* We can save memory by removing the trailing zero limbs
589 and by packing the non-zero limbs which gain another
592 (void) __mpn_rshift (scale
, scale
+ i
, scalesize
- i
,
593 BITS_PER_MP_LIMB
- cnt_h
);
595 (void) __mpn_rshift (frac
, frac
+ i
, fracsize
- i
,
596 BITS_PER_MP_LIMB
- cnt_h
);
597 fracsize
-= frac
[fracsize
- i
- 1] == 0 ? i
+ 1 : i
;
601 /* We can only save the memory of the limbs which are zero.
602 The non-zero parts occupy the same number of limbs. */
604 (void) __mpn_rshift (scale
, scale
+ (i
- 1),
606 BITS_PER_MP_LIMB
- cnt_h
);
608 (void) __mpn_rshift (frac
, frac
+ (i
- 1),
610 BITS_PER_MP_LIMB
- cnt_h
);
611 fracsize
-= frac
[fracsize
- (i
- 1) - 1] == 0 ? i
: i
- 1;
616 else if (exponent
< 0)
620 int explog
= LDBL_MAX_10_EXP_LOG
;
621 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
622 mp_size_t used_limbs
= fracsize
- 1;
624 /* Now shift the input value to its right place. */
625 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, to_shift
);
626 frac
[fracsize
++] = cy
;
627 assert (cy
== 1 || (frac
[fracsize
- 2] == 0 && frac
[0] == 0));
630 exponent
= -exponent
;
632 assert (powers
!= &_fpioconst_pow10
[0]);
637 if (exponent
>= powers
->m_expo
)
639 int i
, incr
, cnt_h
, cnt_l
;
642 /* The __mpn_mul function expects the first argument to be
643 bigger than the second. */
644 if (fracsize
< powers
->arraysize
- _FPIO_CONST_OFFSET
)
645 cy
= __mpn_mul (tmp
, &__tens
[powers
->arrayoff
646 + _FPIO_CONST_OFFSET
],
647 powers
->arraysize
- _FPIO_CONST_OFFSET
,
650 cy
= __mpn_mul (tmp
, frac
, fracsize
,
651 &__tens
[powers
->arrayoff
+ _FPIO_CONST_OFFSET
],
652 powers
->arraysize
- _FPIO_CONST_OFFSET
);
653 tmpsize
= fracsize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
657 count_leading_zeros (cnt_h
, tmp
[tmpsize
- 1]);
658 incr
= (tmpsize
- fracsize
) * BITS_PER_MP_LIMB
659 + BITS_PER_MP_LIMB
- 1 - cnt_h
;
661 assert (incr
<= powers
->p_expo
);
663 /* If we increased the exponent by exactly 3 we have to test
664 for overflow. This is done by comparing with 10 shifted
665 to the right position. */
666 if (incr
== exponent
+ 3)
668 if (cnt_h
<= BITS_PER_MP_LIMB
- 4)
672 = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4 - cnt_h
);
676 topval
[0] = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4);
678 (void) __mpn_lshift (topval
, topval
, 2,
679 BITS_PER_MP_LIMB
- cnt_h
);
683 /* We have to be careful when multiplying the last factor.
684 If the result is greater than 1.0 be have to test it
685 against 10.0. If it is greater or equal to 10.0 the
686 multiplication was not valid. This is because we cannot
687 determine the number of bits in the result in advance. */
688 if (incr
< exponent
+ 3
689 || (incr
== exponent
+ 3 &&
690 (tmp
[tmpsize
- 1] < topval
[1]
691 || (tmp
[tmpsize
- 1] == topval
[1]
692 && tmp
[tmpsize
- 2] < topval
[0]))))
694 /* The factor is right. Adapt binary and decimal
697 exp10
|= 1 << explog
;
699 /* If this factor yields a number greater or equal to
700 1.0, we must not shift the non-fractional digits down. */
704 /* Now we optimize the number representation. */
705 for (i
= 0; tmp
[i
] == 0; ++i
);
706 if (cnt_h
== BITS_PER_MP_LIMB
- 1)
708 MPN_COPY (frac
, tmp
+ i
, tmpsize
- i
);
709 fracsize
= tmpsize
- i
;
713 count_trailing_zeros (cnt_l
, tmp
[i
]);
715 /* Now shift the numbers to their optimal position. */
716 if (i
== 0 && BITS_PER_MP_LIMB
- 1 - cnt_h
> cnt_l
)
718 /* We cannot save any memory. Just roll the
719 number so that the leading digit is in a
722 cy
= __mpn_lshift (frac
, tmp
, tmpsize
, cnt_h
+ 1);
723 fracsize
= tmpsize
+ 1;
724 frac
[fracsize
- 1] = cy
;
726 else if (BITS_PER_MP_LIMB
- 1 - cnt_h
<= cnt_l
)
728 (void) __mpn_rshift (frac
, tmp
+ i
, tmpsize
- i
,
729 BITS_PER_MP_LIMB
- 1 - cnt_h
);
730 fracsize
= tmpsize
- i
;
734 /* We can only save the memory of the limbs which
735 are zero. The non-zero parts occupy the same
738 (void) __mpn_rshift (frac
, tmp
+ (i
- 1),
740 BITS_PER_MP_LIMB
- 1 - cnt_h
);
741 fracsize
= tmpsize
- (i
- 1);
744 used_limbs
= fracsize
- 1;
749 while (powers
!= &_fpioconst_pow10
[1] && exponent
> 0);
750 /* All factors but 10^-1 are tested now. */
755 cy
= __mpn_mul_1 (tmp
, frac
, fracsize
, 10);
757 assert (cy
== 0 || tmp
[tmpsize
- 1] < 20);
759 count_trailing_zeros (cnt_l
, tmp
[0]);
760 if (cnt_l
< MIN (4, exponent
))
762 cy
= __mpn_lshift (frac
, tmp
, tmpsize
,
763 BITS_PER_MP_LIMB
- MIN (4, exponent
));
765 frac
[tmpsize
++] = cy
;
768 (void) __mpn_rshift (frac
, tmp
, tmpsize
, MIN (4, exponent
));
771 assert (frac
[fracsize
- 1] < 10);
777 /* This is a special case. We don't need a factor because the
778 numbers are in the range of 0.0 <= fp < 8.0. We simply
779 shift it to the right place and divide it by 1.0 to get the
780 leading digit. (Of course this division is not really made.) */
781 assert (0 <= exponent
&& exponent
< 3 &&
782 exponent
+ to_shift
< BITS_PER_MP_LIMB
);
784 /* Now shift the input value to its right place. */
785 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, (exponent
+ to_shift
));
786 frac
[fracsize
++] = cy
;
791 int width
= info
->width
;
792 wchar_t *wbuffer
, *wstartp
, *wcp
;
796 int intdig_max
, intdig_no
= 0;
797 int fracdig_min
, fracdig_max
, fracdig_no
= 0;
802 if (_tolower (info
->spec
) == 'e')
806 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
807 chars_needed
= 1 + 1 + fracdig_max
+ 1 + 1 + 4;
808 /* d . ddd e +- ddd */
809 dig_max
= INT_MAX
; /* Unlimited. */
810 significant
= 1; /* Does not matter here. */
812 else if (_tolower (info
->spec
) == 'f')
815 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
816 dig_max
= INT_MAX
; /* Unlimited. */
817 significant
= 1; /* Does not matter here. */
820 intdig_max
= exponent
+ 1;
821 /* This can be really big! */ /* XXX Maybe malloc if too big? */
822 chars_needed
= exponent
+ 1 + 1 + fracdig_max
;
827 chars_needed
= 1 + 1 + fracdig_max
;
832 dig_max
= info
->prec
< 0 ? 6 : (info
->prec
== 0 ? 1 : info
->prec
);
833 if ((expsign
== 0 && exponent
>= dig_max
)
834 || (expsign
!= 0 && exponent
> 4))
836 if ('g' - 'G' == 'e' - 'E')
837 type
= 'E' + (info
->spec
- 'G');
839 type
= isupper (info
->spec
) ? 'E' : 'e';
840 fracdig_max
= dig_max
- 1;
842 chars_needed
= 1 + 1 + fracdig_max
+ 1 + 1 + 4;
847 intdig_max
= expsign
== 0 ? exponent
+ 1 : 0;
848 fracdig_max
= dig_max
- intdig_max
;
849 /* We need space for the significant digits and perhaps
850 for leading zeros when < 1.0. The number of leading
851 zeros can be as many as would be required for
852 exponential notation with a negative two-digit
853 exponent, which is 4. */
854 chars_needed
= dig_max
+ 1 + 4;
856 fracdig_min
= info
->alt
? fracdig_max
: 0;
857 significant
= 0; /* We count significant digits. */
862 /* Guess the number of groups we will make, and thus how
863 many spaces we need for separator characters. */
864 ngroups
= __guess_grouping (intdig_max
, grouping
);
865 chars_needed
+= ngroups
;
868 /* Allocate buffer for output. We need two more because while rounding
869 it is possible that we need two more characters in front of all the
870 other output. If the amount of memory we have to allocate is too
871 large use `malloc' instead of `alloca'. */
872 buffer_malloced
= ! __libc_use_alloca (chars_needed
* 2 * sizeof (wchar_t));
875 wbuffer
= (wchar_t *) malloc ((2 + chars_needed
) * sizeof (wchar_t));
877 /* Signal an error to the caller. */
881 wbuffer
= (wchar_t *) alloca ((2 + chars_needed
) * sizeof (wchar_t));
882 wcp
= wstartp
= wbuffer
+ 2; /* Let room for rounding. */
884 /* Do the real work: put digits in allocated buffer. */
885 if (expsign
== 0 || type
!= 'f')
887 assert (expsign
== 0 || intdig_max
== 1);
888 while (intdig_no
< intdig_max
)
891 *wcp
++ = hack_digit ();
896 || (fracdig_max
> 0 && (fracsize
> 1 || frac
[0] != 0)))
901 /* |fp| < 1.0 and the selected type is 'f', so put "0."
908 /* Generate the needed number of fractional digits. */
909 while (fracdig_no
< fracdig_min
910 || (fracdig_no
< fracdig_max
&& (fracsize
> 1 || frac
[0] != 0)))
913 *wcp
= hack_digit ();
916 else if (significant
== 0)
925 digit
= hack_digit ();
931 && ((*(wcp
- 1) != decimalwc
&& (*(wcp
- 1) & 1) == 0)
932 || ((*(wcp
- 1) == decimalwc
&& (*(wcp
- 2) & 1) == 0))))
934 /* This is the critical case. */
935 if (fracsize
== 1 && frac
[0] == 0)
936 /* Rest of the number is zero -> round to even.
937 (IEEE 754-1985 4.1 says this is the default rounding.) */
939 else if (scalesize
== 0)
941 /* Here we have to see whether all limbs are zero since no
942 normalization happened. */
943 size_t lcnt
= fracsize
;
944 while (lcnt
>= 1 && frac
[lcnt
- 1] == 0)
947 /* Rest of the number is zero -> round to even.
948 (IEEE 754-1985 4.1 says this is the default rounding.) */
955 /* Process fractional digits. Terminate if not rounded or
956 radix character is reached. */
957 while (*--wtp
!= decimalwc
&& *wtp
== L
'9')
959 if (*wtp
!= decimalwc
)
964 if (fracdig_no
== 0 || *wtp
== decimalwc
)
966 /* Round the integer digits. */
967 if (*(wtp
- 1) == decimalwc
)
970 while (--wtp
>= wstartp
&& *wtp
== L
'9')
977 /* It is more critical. All digits were 9's. */
982 exponent
+= expsign
== 0 ? 1 : -1;
984 else if (intdig_no
== dig_max
)
986 /* This is the case where for type %g the number fits
987 really in the range for %f output but after rounding
988 the number of digits is too big. */
989 *--wstartp
= decimalwc
;
992 if (info
->alt
|| fracdig_no
> 0)
994 /* Overwrite the old radix character. */
995 wstartp
[intdig_no
+ 2] = L
'0';
999 fracdig_no
+= intdig_no
;
1001 fracdig_max
= intdig_max
- intdig_no
;
1003 /* Now we must print the exponent. */
1004 type
= isupper (info
->spec
) ? 'E' : 'e';
1008 /* We can simply add another another digit before the
1014 /* While rounding the number of digits can change.
1015 If the number now exceeds the limits remove some
1016 fractional digits. */
1017 if (intdig_no
+ fracdig_no
> dig_max
)
1019 wcp
-= intdig_no
+ fracdig_no
- dig_max
;
1020 fracdig_no
-= intdig_no
+ fracdig_no
- dig_max
;
1027 /* Now remove unnecessary '0' at the end of the string. */
1028 while (fracdig_no
> fracdig_min
&& *(wcp
- 1) == L
'0')
1033 /* If we eliminate all fractional digits we perhaps also can remove
1034 the radix character. */
1035 if (fracdig_no
== 0 && !info
->alt
&& *(wcp
- 1) == decimalwc
)
1039 /* Add in separator characters, overwriting the same buffer. */
1040 wcp
= group_number (wstartp
, wcp
, intdig_no
, grouping
, thousands_sepwc
,
1043 /* Write the exponent if it is needed. */
1046 *wcp
++ = (wchar_t) type
;
1047 *wcp
++ = expsign
? L
'-' : L
'+';
1049 /* Find the magnitude of the exponent. */
1051 while (expscale
<= exponent
)
1055 /* Exponent always has at least two digits. */
1061 *wcp
++ = L
'0' + (exponent
/ expscale
);
1062 exponent
%= expscale
;
1064 while (expscale
> 10);
1065 *wcp
++ = L
'0' + exponent
;
1068 /* Compute number of characters which must be filled with the padding
1070 if (is_neg
|| info
->showsign
|| info
->space
)
1072 width
-= wcp
- wstartp
;
1074 if (!info
->left
&& info
->pad
!= '0' && width
> 0)
1075 PADN (info
->pad
, width
);
1079 else if (info
->showsign
)
1081 else if (info
->space
)
1084 if (!info
->left
&& info
->pad
== '0' && width
> 0)
1088 char *buffer
= NULL
;
1094 /* Create the single byte string. */
1096 size_t thousands_sep_len
;
1099 decimal_len
= strlen (decimal
);
1101 if (thousands_sep
== NULL
)
1102 thousands_sep_len
= 0;
1104 thousands_sep_len
= strlen (thousands_sep
);
1106 if (buffer_malloced
)
1108 buffer
= (char *) malloc (2 + chars_needed
+ decimal_len
1109 + ngroups
* thousands_sep_len
);
1111 /* Signal an error to the caller. */
1115 buffer
= (char *) alloca (2 + chars_needed
+ decimal_len
1116 + ngroups
* thousands_sep_len
);
1118 /* Now copy the wide character string. Since the character
1119 (except for the decimal point and thousands separator) must
1120 be coming from the ASCII range we can esily convert the
1121 string without mapping tables. */
1122 for (cp
= buffer
, copywc
= wstartp
; copywc
< wcp
; ++copywc
)
1123 if (*copywc
== decimalwc
)
1124 cp
= (char *) __mempcpy (cp
, decimal
, decimal_len
);
1125 else if (*copywc
== thousands_sepwc
)
1126 cp
= (char *) __mempcpy (cp
, thousands_sep
, thousands_sep_len
);
1128 *cp
++ = (char) *copywc
;
1132 if (__builtin_expect (info
->i18n
, 0))
1134 #ifdef COMPILE_WPRINTF
1135 wstartp
= _i18n_number_rewrite (wstartp
, wcp
);
1137 tmpptr
= _i18n_number_rewrite (tmpptr
, cp
);
1141 PRINT (tmpptr
, wstartp
, wide
? wcp
- wstartp
: cp
- tmpptr
);
1143 /* Free the memory if necessary. */
1144 if (buffer_malloced
)
1151 if (info
->left
&& width
> 0)
1152 PADN (info
->pad
, width
);
1156 libc_hidden_def (__printf_fp
)
1158 /* Return the number of extra grouping characters that will be inserted
1159 into a number with INTDIG_MAX integer digits. */
1162 __guess_grouping (unsigned int intdig_max
, const char *grouping
)
1164 unsigned int groups
;
1166 /* We treat all negative values like CHAR_MAX. */
1168 if (*grouping
== CHAR_MAX
|| *grouping
<= 0)
1169 /* No grouping should be done. */
1173 while (intdig_max
> (unsigned int) *grouping
)
1176 intdig_max
-= *grouping
++;
1178 if (*grouping
== CHAR_MAX
1183 /* No more grouping should be done. */
1185 else if (*grouping
== 0)
1187 /* Same grouping repeats. */
1188 groups
+= (intdig_max
- 1) / grouping
[-1];
1196 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1197 There is guaranteed enough space past BUFEND to extend it.
1198 Return the new end of buffer. */
1202 group_number (wchar_t *buf
, wchar_t *bufend
, unsigned int intdig_no
,
1203 const char *grouping
, wchar_t thousands_sep
, int ngroups
)
1210 /* Move the fractional part down. */
1211 __wmemmove (buf
+ intdig_no
+ ngroups
, buf
+ intdig_no
,
1212 bufend
- (buf
+ intdig_no
));
1214 p
= buf
+ intdig_no
+ ngroups
- 1;
1217 unsigned int len
= *grouping
++;
1219 *p
-- = buf
[--intdig_no
];
1221 *p
-- = thousands_sep
;
1223 if (*grouping
== CHAR_MAX
1228 /* No more grouping should be done. */
1230 else if (*grouping
== 0)
1231 /* Same grouping repeats. */
1233 } while (intdig_no
> (unsigned int) *grouping
);
1235 /* Copy the remaining ungrouped digits. */
1237 *p
-- = buf
[--intdig_no
];
1240 return bufend
+ ngroups
;