[Powerpc] Tune/optimize powerpc{32,64}/power7/memchr.S.
[glibc.git] / malloc / malloc.c
blob0f1796c9134ffef289ec31fb1cd538f3a9490ae1
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2009, 2010, 2011, 2012 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, see <http://www.gnu.org/licenses/>. */
22 This is a version (aka ptmalloc2) of malloc/free/realloc written by
23 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
25 There have been substantial changesmade after the integration into
26 glibc in all parts of the code. Do not look for much commonality
27 with the ptmalloc2 version.
29 * Version ptmalloc2-20011215
30 based on:
31 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
33 * Quickstart
35 In order to compile this implementation, a Makefile is provided with
36 the ptmalloc2 distribution, which has pre-defined targets for some
37 popular systems (e.g. "make posix" for Posix threads). All that is
38 typically required with regard to compiler flags is the selection of
39 the thread package via defining one out of USE_PTHREADS, USE_THR or
40 USE_SPROC. Check the thread-m.h file for what effects this has.
41 Many/most systems will additionally require USE_TSD_DATA_HACK to be
42 defined, so this is the default for "make posix".
44 * Why use this malloc?
46 This is not the fastest, most space-conserving, most portable, or
47 most tunable malloc ever written. However it is among the fastest
48 while also being among the most space-conserving, portable and tunable.
49 Consistent balance across these factors results in a good general-purpose
50 allocator for malloc-intensive programs.
52 The main properties of the algorithms are:
53 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
54 with ties normally decided via FIFO (i.e. least recently used).
55 * For small (<= 64 bytes by default) requests, it is a caching
56 allocator, that maintains pools of quickly recycled chunks.
57 * In between, and for combinations of large and small requests, it does
58 the best it can trying to meet both goals at once.
59 * For very large requests (>= 128KB by default), it relies on system
60 memory mapping facilities, if supported.
62 For a longer but slightly out of date high-level description, see
63 http://gee.cs.oswego.edu/dl/html/malloc.html
65 You may already by default be using a C library containing a malloc
66 that is based on some version of this malloc (for example in
67 linux). You might still want to use the one in this file in order to
68 customize settings or to avoid overheads associated with library
69 versions.
71 * Contents, described in more detail in "description of public routines" below.
73 Standard (ANSI/SVID/...) functions:
74 malloc(size_t n);
75 calloc(size_t n_elements, size_t element_size);
76 free(void* p);
77 realloc(void* p, size_t n);
78 memalign(size_t alignment, size_t n);
79 valloc(size_t n);
80 mallinfo()
81 mallopt(int parameter_number, int parameter_value)
83 Additional functions:
84 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
85 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
86 pvalloc(size_t n);
87 cfree(void* p);
88 malloc_trim(size_t pad);
89 malloc_usable_size(void* p);
90 malloc_stats();
92 * Vital statistics:
94 Supported pointer representation: 4 or 8 bytes
95 Supported size_t representation: 4 or 8 bytes
96 Note that size_t is allowed to be 4 bytes even if pointers are 8.
97 You can adjust this by defining INTERNAL_SIZE_T
99 Alignment: 2 * sizeof(size_t) (default)
100 (i.e., 8 byte alignment with 4byte size_t). This suffices for
101 nearly all current machines and C compilers. However, you can
102 define MALLOC_ALIGNMENT to be wider than this if necessary.
104 Minimum overhead per allocated chunk: 4 or 8 bytes
105 Each malloced chunk has a hidden word of overhead holding size
106 and status information.
108 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
109 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
111 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
112 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
113 needed; 4 (8) for a trailing size field and 8 (16) bytes for
114 free list pointers. Thus, the minimum allocatable size is
115 16/24/32 bytes.
117 Even a request for zero bytes (i.e., malloc(0)) returns a
118 pointer to something of the minimum allocatable size.
120 The maximum overhead wastage (i.e., number of extra bytes
121 allocated than were requested in malloc) is less than or equal
122 to the minimum size, except for requests >= mmap_threshold that
123 are serviced via mmap(), where the worst case wastage is 2 *
124 sizeof(size_t) bytes plus the remainder from a system page (the
125 minimal mmap unit); typically 4096 or 8192 bytes.
127 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
128 8-byte size_t: 2^64 minus about two pages
130 It is assumed that (possibly signed) size_t values suffice to
131 represent chunk sizes. `Possibly signed' is due to the fact
132 that `size_t' may be defined on a system as either a signed or
133 an unsigned type. The ISO C standard says that it must be
134 unsigned, but a few systems are known not to adhere to this.
135 Additionally, even when size_t is unsigned, sbrk (which is by
136 default used to obtain memory from system) accepts signed
137 arguments, and may not be able to handle size_t-wide arguments
138 with negative sign bit. Generally, values that would
139 appear as negative after accounting for overhead and alignment
140 are supported only via mmap(), which does not have this
141 limitation.
143 Requests for sizes outside the allowed range will perform an optional
144 failure action and then return null. (Requests may also
145 also fail because a system is out of memory.)
147 Thread-safety: thread-safe
149 Compliance: I believe it is compliant with the 1997 Single Unix Specification
150 Also SVID/XPG, ANSI C, and probably others as well.
152 * Synopsis of compile-time options:
154 People have reported using previous versions of this malloc on all
155 versions of Unix, sometimes by tweaking some of the defines
156 below. It has been tested most extensively on Solaris and Linux.
157 People also report using it in stand-alone embedded systems.
159 The implementation is in straight, hand-tuned ANSI C. It is not
160 at all modular. (Sorry!) It uses a lot of macros. To be at all
161 usable, this code should be compiled using an optimizing compiler
162 (for example gcc -O3) that can simplify expressions and control
163 paths. (FAQ: some macros import variables as arguments rather than
164 declare locals because people reported that some debuggers
165 otherwise get confused.)
167 OPTION DEFAULT VALUE
169 Compilation Environment options:
171 HAVE_MREMAP 0 unless linux defined
173 Changing default word sizes:
175 INTERNAL_SIZE_T size_t
176 MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
177 __alignof__ (long double))
179 Configuration and functionality options:
181 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
182 USE_MALLOC_LOCK NOT defined
183 MALLOC_DEBUG NOT defined
184 REALLOC_ZERO_BYTES_FREES 1
185 TRIM_FASTBINS 0
187 Options for customizing MORECORE:
189 MORECORE sbrk
190 MORECORE_FAILURE -1
191 MORECORE_CONTIGUOUS 1
192 MORECORE_CANNOT_TRIM NOT defined
193 MORECORE_CLEARS 1
194 MMAP_AS_MORECORE_SIZE (1024 * 1024)
196 Tuning options that are also dynamically changeable via mallopt:
198 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
199 DEFAULT_TRIM_THRESHOLD 128 * 1024
200 DEFAULT_TOP_PAD 0
201 DEFAULT_MMAP_THRESHOLD 128 * 1024
202 DEFAULT_MMAP_MAX 65536
204 There are several other #defined constants and macros that you
205 probably don't want to touch unless you are extending or adapting malloc. */
208 void* is the pointer type that malloc should say it returns
211 #ifndef void
212 #define void void
213 #endif /*void*/
215 #include <stddef.h> /* for size_t */
216 #include <stdlib.h> /* for getenv(), abort() */
218 #include <malloc-machine.h>
220 #include <atomic.h>
221 #include <_itoa.h>
222 #include <bits/wordsize.h>
223 #include <sys/sysinfo.h>
225 #include <ldsodefs.h>
227 #include <unistd.h>
228 #include <stdio.h> /* needed for malloc_stats */
229 #include <errno.h>
231 #include <shlib-compat.h>
233 /* For uintptr_t. */
234 #include <stdint.h>
236 /* For va_arg, va_start, va_end. */
237 #include <stdarg.h>
241 Debugging:
243 Because freed chunks may be overwritten with bookkeeping fields, this
244 malloc will often die when freed memory is overwritten by user
245 programs. This can be very effective (albeit in an annoying way)
246 in helping track down dangling pointers.
248 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
249 enabled that will catch more memory errors. You probably won't be
250 able to make much sense of the actual assertion errors, but they
251 should help you locate incorrectly overwritten memory. The checking
252 is fairly extensive, and will slow down execution
253 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
254 will attempt to check every non-mmapped allocated and free chunk in
255 the course of computing the summmaries. (By nature, mmapped regions
256 cannot be checked very much automatically.)
258 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
259 this code. The assertions in the check routines spell out in more
260 detail the assumptions and invariants underlying the algorithms.
262 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
263 checking that all accesses to malloced memory stay within their
264 bounds. However, there are several add-ons and adaptations of this
265 or other mallocs available that do this.
268 #ifdef NDEBUG
269 # define assert(expr) ((void) 0)
270 #else
271 # define assert(expr) \
272 ((expr) \
273 ? ((void) 0) \
274 : __malloc_assert (__STRING (expr), __FILE__, __LINE__, __func__))
276 extern const char *__progname;
278 static void
279 __malloc_assert (const char *assertion, const char *file, unsigned int line,
280 const char *function)
282 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
283 __progname, __progname[0] ? ": " : "",
284 file, line,
285 function ? function : "", function ? ": " : "",
286 assertion);
287 fflush (stderr);
288 abort ();
290 #endif
294 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
295 of chunk sizes.
297 The default version is the same as size_t.
299 While not strictly necessary, it is best to define this as an
300 unsigned type, even if size_t is a signed type. This may avoid some
301 artificial size limitations on some systems.
303 On a 64-bit machine, you may be able to reduce malloc overhead by
304 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
305 expense of not being able to handle more than 2^32 of malloced
306 space. If this limitation is acceptable, you are encouraged to set
307 this unless you are on a platform requiring 16byte alignments. In
308 this case the alignment requirements turn out to negate any
309 potential advantages of decreasing size_t word size.
311 Implementors: Beware of the possible combinations of:
312 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
313 and might be the same width as int or as long
314 - size_t might have different width and signedness as INTERNAL_SIZE_T
315 - int and long might be 32 or 64 bits, and might be the same width
316 To deal with this, most comparisons and difference computations
317 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
318 aware of the fact that casting an unsigned int to a wider long does
319 not sign-extend. (This also makes checking for negative numbers
320 awkward.) Some of these casts result in harmless compiler warnings
321 on some systems.
324 #ifndef INTERNAL_SIZE_T
325 #define INTERNAL_SIZE_T size_t
326 #endif
328 /* The corresponding word size */
329 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
333 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
334 It must be a power of two at least 2 * SIZE_SZ, even on machines
335 for which smaller alignments would suffice. It may be defined as
336 larger than this though. Note however that code and data structures
337 are optimized for the case of 8-byte alignment.
341 #ifndef MALLOC_ALIGNMENT
342 # if !SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_16)
343 /* This is the correct definition when there is no past ABI to constrain it.
345 Among configurations with a past ABI constraint, it differs from
346 2*SIZE_SZ only on powerpc32. For the time being, changing this is
347 causing more compatibility problems due to malloc_get_state and
348 malloc_set_state than will returning blocks not adequately aligned for
349 long double objects under -mlong-double-128. */
351 # define MALLOC_ALIGNMENT (2 * SIZE_SZ < __alignof__ (long double) \
352 ? __alignof__ (long double) : 2 * SIZE_SZ)
353 # else
354 # define MALLOC_ALIGNMENT (2 * SIZE_SZ)
355 # endif
356 #endif
358 /* The corresponding bit mask value */
359 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
364 REALLOC_ZERO_BYTES_FREES should be set if a call to
365 realloc with zero bytes should be the same as a call to free.
366 This is required by the C standard. Otherwise, since this malloc
367 returns a unique pointer for malloc(0), so does realloc(p, 0).
370 #ifndef REALLOC_ZERO_BYTES_FREES
371 #define REALLOC_ZERO_BYTES_FREES 1
372 #endif
375 TRIM_FASTBINS controls whether free() of a very small chunk can
376 immediately lead to trimming. Setting to true (1) can reduce memory
377 footprint, but will almost always slow down programs that use a lot
378 of small chunks.
380 Define this only if you are willing to give up some speed to more
381 aggressively reduce system-level memory footprint when releasing
382 memory in programs that use many small chunks. You can get
383 essentially the same effect by setting MXFAST to 0, but this can
384 lead to even greater slowdowns in programs using many small chunks.
385 TRIM_FASTBINS is an in-between compile-time option, that disables
386 only those chunks bordering topmost memory from being placed in
387 fastbins.
390 #ifndef TRIM_FASTBINS
391 #define TRIM_FASTBINS 0
392 #endif
395 /* Definition for getting more memory from the OS. */
396 #define MORECORE (*__morecore)
397 #define MORECORE_FAILURE 0
398 void * __default_morecore (ptrdiff_t);
399 void *(*__morecore)(ptrdiff_t) = __default_morecore;
402 #include <string.h>
405 /* Force a value to be in a register and stop the compiler referring
406 to the source (mostly memory location) again. */
407 #define force_reg(val) \
408 ({ __typeof (val) _v; asm ("" : "=r" (_v) : "0" (val)); _v; })
412 MORECORE-related declarations. By default, rely on sbrk
417 MORECORE is the name of the routine to call to obtain more memory
418 from the system. See below for general guidance on writing
419 alternative MORECORE functions, as well as a version for WIN32 and a
420 sample version for pre-OSX macos.
423 #ifndef MORECORE
424 #define MORECORE sbrk
425 #endif
428 MORECORE_FAILURE is the value returned upon failure of MORECORE
429 as well as mmap. Since it cannot be an otherwise valid memory address,
430 and must reflect values of standard sys calls, you probably ought not
431 try to redefine it.
434 #ifndef MORECORE_FAILURE
435 #define MORECORE_FAILURE (-1)
436 #endif
439 If MORECORE_CONTIGUOUS is true, take advantage of fact that
440 consecutive calls to MORECORE with positive arguments always return
441 contiguous increasing addresses. This is true of unix sbrk. Even
442 if not defined, when regions happen to be contiguous, malloc will
443 permit allocations spanning regions obtained from different
444 calls. But defining this when applicable enables some stronger
445 consistency checks and space efficiencies.
448 #ifndef MORECORE_CONTIGUOUS
449 #define MORECORE_CONTIGUOUS 1
450 #endif
453 Define MORECORE_CANNOT_TRIM if your version of MORECORE
454 cannot release space back to the system when given negative
455 arguments. This is generally necessary only if you are using
456 a hand-crafted MORECORE function that cannot handle negative arguments.
459 /* #define MORECORE_CANNOT_TRIM */
461 /* MORECORE_CLEARS (default 1)
462 The degree to which the routine mapped to MORECORE zeroes out
463 memory: never (0), only for newly allocated space (1) or always
464 (2). The distinction between (1) and (2) is necessary because on
465 some systems, if the application first decrements and then
466 increments the break value, the contents of the reallocated space
467 are unspecified.
470 #ifndef MORECORE_CLEARS
471 #define MORECORE_CLEARS 1
472 #endif
476 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
477 sbrk fails, and mmap is used as a backup. The value must be a
478 multiple of page size. This backup strategy generally applies only
479 when systems have "holes" in address space, so sbrk cannot perform
480 contiguous expansion, but there is still space available on system.
481 On systems for which this is known to be useful (i.e. most linux
482 kernels), this occurs only when programs allocate huge amounts of
483 memory. Between this, and the fact that mmap regions tend to be
484 limited, the size should be large, to avoid too many mmap calls and
485 thus avoid running out of kernel resources. */
487 #ifndef MMAP_AS_MORECORE_SIZE
488 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
489 #endif
492 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
493 large blocks. This is currently only possible on Linux with
494 kernel versions newer than 1.3.77.
497 #ifndef HAVE_MREMAP
498 #ifdef linux
499 #define HAVE_MREMAP 1
500 #else
501 #define HAVE_MREMAP 0
502 #endif
504 #endif /* HAVE_MREMAP */
508 This version of malloc supports the standard SVID/XPG mallinfo
509 routine that returns a struct containing usage properties and
510 statistics. It should work on any SVID/XPG compliant system that has
511 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
512 install such a thing yourself, cut out the preliminary declarations
513 as described above and below and save them in a malloc.h file. But
514 there's no compelling reason to bother to do this.)
516 The main declaration needed is the mallinfo struct that is returned
517 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
518 bunch of fields that are not even meaningful in this version of
519 malloc. These fields are are instead filled by mallinfo() with
520 other numbers that might be of interest.
524 /* ---------- description of public routines ------------ */
527 malloc(size_t n)
528 Returns a pointer to a newly allocated chunk of at least n bytes, or null
529 if no space is available. Additionally, on failure, errno is
530 set to ENOMEM on ANSI C systems.
532 If n is zero, malloc returns a minumum-sized chunk. (The minimum
533 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
534 systems.) On most systems, size_t is an unsigned type, so calls
535 with negative arguments are interpreted as requests for huge amounts
536 of space, which will often fail. The maximum supported value of n
537 differs across systems, but is in all cases less than the maximum
538 representable value of a size_t.
540 void* __libc_malloc(size_t);
541 libc_hidden_proto (__libc_malloc)
544 free(void* p)
545 Releases the chunk of memory pointed to by p, that had been previously
546 allocated using malloc or a related routine such as realloc.
547 It has no effect if p is null. It can have arbitrary (i.e., bad!)
548 effects if p has already been freed.
550 Unless disabled (using mallopt), freeing very large spaces will
551 when possible, automatically trigger operations that give
552 back unused memory to the system, thus reducing program footprint.
554 void __libc_free(void*);
555 libc_hidden_proto (__libc_free)
558 calloc(size_t n_elements, size_t element_size);
559 Returns a pointer to n_elements * element_size bytes, with all locations
560 set to zero.
562 void* __libc_calloc(size_t, size_t);
565 realloc(void* p, size_t n)
566 Returns a pointer to a chunk of size n that contains the same data
567 as does chunk p up to the minimum of (n, p's size) bytes, or null
568 if no space is available.
570 The returned pointer may or may not be the same as p. The algorithm
571 prefers extending p when possible, otherwise it employs the
572 equivalent of a malloc-copy-free sequence.
574 If p is null, realloc is equivalent to malloc.
576 If space is not available, realloc returns null, errno is set (if on
577 ANSI) and p is NOT freed.
579 if n is for fewer bytes than already held by p, the newly unused
580 space is lopped off and freed if possible. Unless the #define
581 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
582 zero (re)allocates a minimum-sized chunk.
584 Large chunks that were internally obtained via mmap will always
585 be reallocated using malloc-copy-free sequences unless
586 the system supports MREMAP (currently only linux).
588 The old unix realloc convention of allowing the last-free'd chunk
589 to be used as an argument to realloc is not supported.
591 void* __libc_realloc(void*, size_t);
592 libc_hidden_proto (__libc_realloc)
595 memalign(size_t alignment, size_t n);
596 Returns a pointer to a newly allocated chunk of n bytes, aligned
597 in accord with the alignment argument.
599 The alignment argument should be a power of two. If the argument is
600 not a power of two, the nearest greater power is used.
601 8-byte alignment is guaranteed by normal malloc calls, so don't
602 bother calling memalign with an argument of 8 or less.
604 Overreliance on memalign is a sure way to fragment space.
606 void* __libc_memalign(size_t, size_t);
607 libc_hidden_proto (__libc_memalign)
610 valloc(size_t n);
611 Equivalent to memalign(pagesize, n), where pagesize is the page
612 size of the system. If the pagesize is unknown, 4096 is used.
614 void* __libc_valloc(size_t);
619 mallopt(int parameter_number, int parameter_value)
620 Sets tunable parameters The format is to provide a
621 (parameter-number, parameter-value) pair. mallopt then sets the
622 corresponding parameter to the argument value if it can (i.e., so
623 long as the value is meaningful), and returns 1 if successful else
624 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
625 normally defined in malloc.h. Only one of these (M_MXFAST) is used
626 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
627 so setting them has no effect. But this malloc also supports four
628 other options in mallopt. See below for details. Briefly, supported
629 parameters are as follows (listed defaults are for "typical"
630 configurations).
632 Symbol param # default allowed param values
633 M_MXFAST 1 64 0-80 (0 disables fastbins)
634 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
635 M_TOP_PAD -2 0 any
636 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
637 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
639 int __libc_mallopt(int, int);
640 libc_hidden_proto (__libc_mallopt)
644 mallinfo()
645 Returns (by copy) a struct containing various summary statistics:
647 arena: current total non-mmapped bytes allocated from system
648 ordblks: the number of free chunks
649 smblks: the number of fastbin blocks (i.e., small chunks that
650 have been freed but not use resused or consolidated)
651 hblks: current number of mmapped regions
652 hblkhd: total bytes held in mmapped regions
653 usmblks: the maximum total allocated space. This will be greater
654 than current total if trimming has occurred.
655 fsmblks: total bytes held in fastbin blocks
656 uordblks: current total allocated space (normal or mmapped)
657 fordblks: total free space
658 keepcost: the maximum number of bytes that could ideally be released
659 back to system via malloc_trim. ("ideally" means that
660 it ignores page restrictions etc.)
662 Because these fields are ints, but internal bookkeeping may
663 be kept as longs, the reported values may wrap around zero and
664 thus be inaccurate.
666 struct mallinfo __libc_mallinfo(void);
670 pvalloc(size_t n);
671 Equivalent to valloc(minimum-page-that-holds(n)), that is,
672 round up n to nearest pagesize.
674 void* __libc_pvalloc(size_t);
677 malloc_trim(size_t pad);
679 If possible, gives memory back to the system (via negative
680 arguments to sbrk) if there is unused memory at the `high' end of
681 the malloc pool. You can call this after freeing large blocks of
682 memory to potentially reduce the system-level memory requirements
683 of a program. However, it cannot guarantee to reduce memory. Under
684 some allocation patterns, some large free blocks of memory will be
685 locked between two used chunks, so they cannot be given back to
686 the system.
688 The `pad' argument to malloc_trim represents the amount of free
689 trailing space to leave untrimmed. If this argument is zero,
690 only the minimum amount of memory to maintain internal data
691 structures will be left (one page or less). Non-zero arguments
692 can be supplied to maintain enough trailing space to service
693 future expected allocations without having to re-obtain memory
694 from the system.
696 Malloc_trim returns 1 if it actually released any memory, else 0.
697 On systems that do not support "negative sbrks", it will always
698 return 0.
700 int __malloc_trim(size_t);
703 malloc_usable_size(void* p);
705 Returns the number of bytes you can actually use in
706 an allocated chunk, which may be more than you requested (although
707 often not) due to alignment and minimum size constraints.
708 You can use this many bytes without worrying about
709 overwriting other allocated objects. This is not a particularly great
710 programming practice. malloc_usable_size can be more useful in
711 debugging and assertions, for example:
713 p = malloc(n);
714 assert(malloc_usable_size(p) >= 256);
717 size_t __malloc_usable_size(void*);
720 malloc_stats();
721 Prints on stderr the amount of space obtained from the system (both
722 via sbrk and mmap), the maximum amount (which may be more than
723 current if malloc_trim and/or munmap got called), and the current
724 number of bytes allocated via malloc (or realloc, etc) but not yet
725 freed. Note that this is the number of bytes allocated, not the
726 number requested. It will be larger than the number requested
727 because of alignment and bookkeeping overhead. Because it includes
728 alignment wastage as being in use, this figure may be greater than
729 zero even when no user-level chunks are allocated.
731 The reported current and maximum system memory can be inaccurate if
732 a program makes other calls to system memory allocation functions
733 (normally sbrk) outside of malloc.
735 malloc_stats prints only the most commonly interesting statistics.
736 More information can be obtained by calling mallinfo.
739 void __malloc_stats(void);
742 malloc_get_state(void);
744 Returns the state of all malloc variables in an opaque data
745 structure.
747 void* __malloc_get_state(void);
750 malloc_set_state(void* state);
752 Restore the state of all malloc variables from data obtained with
753 malloc_get_state().
755 int __malloc_set_state(void*);
758 posix_memalign(void **memptr, size_t alignment, size_t size);
760 POSIX wrapper like memalign(), checking for validity of size.
762 int __posix_memalign(void **, size_t, size_t);
764 /* mallopt tuning options */
767 M_MXFAST is the maximum request size used for "fastbins", special bins
768 that hold returned chunks without consolidating their spaces. This
769 enables future requests for chunks of the same size to be handled
770 very quickly, but can increase fragmentation, and thus increase the
771 overall memory footprint of a program.
773 This malloc manages fastbins very conservatively yet still
774 efficiently, so fragmentation is rarely a problem for values less
775 than or equal to the default. The maximum supported value of MXFAST
776 is 80. You wouldn't want it any higher than this anyway. Fastbins
777 are designed especially for use with many small structs, objects or
778 strings -- the default handles structs/objects/arrays with sizes up
779 to 8 4byte fields, or small strings representing words, tokens,
780 etc. Using fastbins for larger objects normally worsens
781 fragmentation without improving speed.
783 M_MXFAST is set in REQUEST size units. It is internally used in
784 chunksize units, which adds padding and alignment. You can reduce
785 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
786 algorithm to be a closer approximation of fifo-best-fit in all cases,
787 not just for larger requests, but will generally cause it to be
788 slower.
792 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
793 #ifndef M_MXFAST
794 #define M_MXFAST 1
795 #endif
797 #ifndef DEFAULT_MXFAST
798 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
799 #endif
803 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
804 to keep before releasing via malloc_trim in free().
806 Automatic trimming is mainly useful in long-lived programs.
807 Because trimming via sbrk can be slow on some systems, and can
808 sometimes be wasteful (in cases where programs immediately
809 afterward allocate more large chunks) the value should be high
810 enough so that your overall system performance would improve by
811 releasing this much memory.
813 The trim threshold and the mmap control parameters (see below)
814 can be traded off with one another. Trimming and mmapping are
815 two different ways of releasing unused memory back to the
816 system. Between these two, it is often possible to keep
817 system-level demands of a long-lived program down to a bare
818 minimum. For example, in one test suite of sessions measuring
819 the XF86 X server on Linux, using a trim threshold of 128K and a
820 mmap threshold of 192K led to near-minimal long term resource
821 consumption.
823 If you are using this malloc in a long-lived program, it should
824 pay to experiment with these values. As a rough guide, you
825 might set to a value close to the average size of a process
826 (program) running on your system. Releasing this much memory
827 would allow such a process to run in memory. Generally, it's
828 worth it to tune for trimming rather tham memory mapping when a
829 program undergoes phases where several large chunks are
830 allocated and released in ways that can reuse each other's
831 storage, perhaps mixed with phases where there are no such
832 chunks at all. And in well-behaved long-lived programs,
833 controlling release of large blocks via trimming versus mapping
834 is usually faster.
836 However, in most programs, these parameters serve mainly as
837 protection against the system-level effects of carrying around
838 massive amounts of unneeded memory. Since frequent calls to
839 sbrk, mmap, and munmap otherwise degrade performance, the default
840 parameters are set to relatively high values that serve only as
841 safeguards.
843 The trim value It must be greater than page size to have any useful
844 effect. To disable trimming completely, you can set to
845 (unsigned long)(-1)
847 Trim settings interact with fastbin (MXFAST) settings: Unless
848 TRIM_FASTBINS is defined, automatic trimming never takes place upon
849 freeing a chunk with size less than or equal to MXFAST. Trimming is
850 instead delayed until subsequent freeing of larger chunks. However,
851 you can still force an attempted trim by calling malloc_trim.
853 Also, trimming is not generally possible in cases where
854 the main arena is obtained via mmap.
856 Note that the trick some people use of mallocing a huge space and
857 then freeing it at program startup, in an attempt to reserve system
858 memory, doesn't have the intended effect under automatic trimming,
859 since that memory will immediately be returned to the system.
862 #define M_TRIM_THRESHOLD -1
864 #ifndef DEFAULT_TRIM_THRESHOLD
865 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
866 #endif
869 M_TOP_PAD is the amount of extra `padding' space to allocate or
870 retain whenever sbrk is called. It is used in two ways internally:
872 * When sbrk is called to extend the top of the arena to satisfy
873 a new malloc request, this much padding is added to the sbrk
874 request.
876 * When malloc_trim is called automatically from free(),
877 it is used as the `pad' argument.
879 In both cases, the actual amount of padding is rounded
880 so that the end of the arena is always a system page boundary.
882 The main reason for using padding is to avoid calling sbrk so
883 often. Having even a small pad greatly reduces the likelihood
884 that nearly every malloc request during program start-up (or
885 after trimming) will invoke sbrk, which needlessly wastes
886 time.
888 Automatic rounding-up to page-size units is normally sufficient
889 to avoid measurable overhead, so the default is 0. However, in
890 systems where sbrk is relatively slow, it can pay to increase
891 this value, at the expense of carrying around more memory than
892 the program needs.
895 #define M_TOP_PAD -2
897 #ifndef DEFAULT_TOP_PAD
898 #define DEFAULT_TOP_PAD (0)
899 #endif
902 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
903 adjusted MMAP_THRESHOLD.
906 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
907 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
908 #endif
910 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
911 /* For 32-bit platforms we cannot increase the maximum mmap
912 threshold much because it is also the minimum value for the
913 maximum heap size and its alignment. Going above 512k (i.e., 1M
914 for new heaps) wastes too much address space. */
915 # if __WORDSIZE == 32
916 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
917 # else
918 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
919 # endif
920 #endif
923 M_MMAP_THRESHOLD is the request size threshold for using mmap()
924 to service a request. Requests of at least this size that cannot
925 be allocated using already-existing space will be serviced via mmap.
926 (If enough normal freed space already exists it is used instead.)
928 Using mmap segregates relatively large chunks of memory so that
929 they can be individually obtained and released from the host
930 system. A request serviced through mmap is never reused by any
931 other request (at least not directly; the system may just so
932 happen to remap successive requests to the same locations).
934 Segregating space in this way has the benefits that:
936 1. Mmapped space can ALWAYS be individually released back
937 to the system, which helps keep the system level memory
938 demands of a long-lived program low.
939 2. Mapped memory can never become `locked' between
940 other chunks, as can happen with normally allocated chunks, which
941 means that even trimming via malloc_trim would not release them.
942 3. On some systems with "holes" in address spaces, mmap can obtain
943 memory that sbrk cannot.
945 However, it has the disadvantages that:
947 1. The space cannot be reclaimed, consolidated, and then
948 used to service later requests, as happens with normal chunks.
949 2. It can lead to more wastage because of mmap page alignment
950 requirements
951 3. It causes malloc performance to be more dependent on host
952 system memory management support routines which may vary in
953 implementation quality and may impose arbitrary
954 limitations. Generally, servicing a request via normal
955 malloc steps is faster than going through a system's mmap.
957 The advantages of mmap nearly always outweigh disadvantages for
958 "large" chunks, but the value of "large" varies across systems. The
959 default is an empirically derived value that works well in most
960 systems.
963 Update in 2006:
964 The above was written in 2001. Since then the world has changed a lot.
965 Memory got bigger. Applications got bigger. The virtual address space
966 layout in 32 bit linux changed.
968 In the new situation, brk() and mmap space is shared and there are no
969 artificial limits on brk size imposed by the kernel. What is more,
970 applications have started using transient allocations larger than the
971 128Kb as was imagined in 2001.
973 The price for mmap is also high now; each time glibc mmaps from the
974 kernel, the kernel is forced to zero out the memory it gives to the
975 application. Zeroing memory is expensive and eats a lot of cache and
976 memory bandwidth. This has nothing to do with the efficiency of the
977 virtual memory system, by doing mmap the kernel just has no choice but
978 to zero.
980 In 2001, the kernel had a maximum size for brk() which was about 800
981 megabytes on 32 bit x86, at that point brk() would hit the first
982 mmaped shared libaries and couldn't expand anymore. With current 2.6
983 kernels, the VA space layout is different and brk() and mmap
984 both can span the entire heap at will.
986 Rather than using a static threshold for the brk/mmap tradeoff,
987 we are now using a simple dynamic one. The goal is still to avoid
988 fragmentation. The old goals we kept are
989 1) try to get the long lived large allocations to use mmap()
990 2) really large allocations should always use mmap()
991 and we're adding now:
992 3) transient allocations should use brk() to avoid forcing the kernel
993 having to zero memory over and over again
995 The implementation works with a sliding threshold, which is by default
996 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
997 out at 128Kb as per the 2001 default.
999 This allows us to satisfy requirement 1) under the assumption that long
1000 lived allocations are made early in the process' lifespan, before it has
1001 started doing dynamic allocations of the same size (which will
1002 increase the threshold).
1004 The upperbound on the threshold satisfies requirement 2)
1006 The threshold goes up in value when the application frees memory that was
1007 allocated with the mmap allocator. The idea is that once the application
1008 starts freeing memory of a certain size, it's highly probable that this is
1009 a size the application uses for transient allocations. This estimator
1010 is there to satisfy the new third requirement.
1014 #define M_MMAP_THRESHOLD -3
1016 #ifndef DEFAULT_MMAP_THRESHOLD
1017 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1018 #endif
1021 M_MMAP_MAX is the maximum number of requests to simultaneously
1022 service using mmap. This parameter exists because
1023 some systems have a limited number of internal tables for
1024 use by mmap, and using more than a few of them may degrade
1025 performance.
1027 The default is set to a value that serves only as a safeguard.
1028 Setting to 0 disables use of mmap for servicing large requests.
1031 #define M_MMAP_MAX -4
1033 #ifndef DEFAULT_MMAP_MAX
1034 #define DEFAULT_MMAP_MAX (65536)
1035 #endif
1037 #include <malloc.h>
1039 #ifndef RETURN_ADDRESS
1040 #define RETURN_ADDRESS(X_) (NULL)
1041 #endif
1043 /* On some platforms we can compile internal, not exported functions better.
1044 Let the environment provide a macro and define it to be empty if it
1045 is not available. */
1046 #ifndef internal_function
1047 # define internal_function
1048 #endif
1050 /* Forward declarations. */
1051 struct malloc_chunk;
1052 typedef struct malloc_chunk* mchunkptr;
1054 /* Internal routines. */
1056 static void* _int_malloc(mstate, size_t);
1057 static void _int_free(mstate, mchunkptr, int);
1058 static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1059 INTERNAL_SIZE_T);
1060 static void* _int_memalign(mstate, size_t, size_t);
1061 static void* _int_valloc(mstate, size_t);
1062 static void* _int_pvalloc(mstate, size_t);
1063 static void malloc_printerr(int action, const char *str, void *ptr);
1065 static void* internal_function mem2mem_check(void *p, size_t sz);
1066 static int internal_function top_check(void);
1067 static void internal_function munmap_chunk(mchunkptr p);
1068 #if HAVE_MREMAP
1069 static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
1070 #endif
1072 static void* malloc_check(size_t sz, const void *caller);
1073 static void free_check(void* mem, const void *caller);
1074 static void* realloc_check(void* oldmem, size_t bytes,
1075 const void *caller);
1076 static void* memalign_check(size_t alignment, size_t bytes,
1077 const void *caller);
1078 #ifndef NO_THREADS
1079 static void* malloc_atfork(size_t sz, const void *caller);
1080 static void free_atfork(void* mem, const void *caller);
1081 #endif
1084 /* ------------- Optional versions of memcopy ---------------- */
1088 Note: memcpy is ONLY invoked with non-overlapping regions,
1089 so the (usually slower) memmove is not needed.
1092 #define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
1093 #define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
1096 /* ------------------ MMAP support ------------------ */
1099 #include <fcntl.h>
1100 #include <sys/mman.h>
1102 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1103 # define MAP_ANONYMOUS MAP_ANON
1104 #endif
1106 #ifndef MAP_NORESERVE
1107 # define MAP_NORESERVE 0
1108 #endif
1110 #define MMAP(addr, size, prot, flags) \
1111 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1115 ----------------------- Chunk representations -----------------------
1120 This struct declaration is misleading (but accurate and necessary).
1121 It declares a "view" into memory allowing access to necessary
1122 fields at known offsets from a given base. See explanation below.
1125 struct malloc_chunk {
1127 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1128 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1130 struct malloc_chunk* fd; /* double links -- used only if free. */
1131 struct malloc_chunk* bk;
1133 /* Only used for large blocks: pointer to next larger size. */
1134 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1135 struct malloc_chunk* bk_nextsize;
1140 malloc_chunk details:
1142 (The following includes lightly edited explanations by Colin Plumb.)
1144 Chunks of memory are maintained using a `boundary tag' method as
1145 described in e.g., Knuth or Standish. (See the paper by Paul
1146 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1147 survey of such techniques.) Sizes of free chunks are stored both
1148 in the front of each chunk and at the end. This makes
1149 consolidating fragmented chunks into bigger chunks very fast. The
1150 size fields also hold bits representing whether chunks are free or
1151 in use.
1153 An allocated chunk looks like this:
1156 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1157 | Size of previous chunk, if allocated | |
1158 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1159 | Size of chunk, in bytes |M|P|
1160 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1161 | User data starts here... .
1163 . (malloc_usable_size() bytes) .
1165 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1166 | Size of chunk |
1167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1170 Where "chunk" is the front of the chunk for the purpose of most of
1171 the malloc code, but "mem" is the pointer that is returned to the
1172 user. "Nextchunk" is the beginning of the next contiguous chunk.
1174 Chunks always begin on even word boundries, so the mem portion
1175 (which is returned to the user) is also on an even word boundary, and
1176 thus at least double-word aligned.
1178 Free chunks are stored in circular doubly-linked lists, and look like this:
1180 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181 | Size of previous chunk |
1182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1183 `head:' | Size of chunk, in bytes |P|
1184 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185 | Forward pointer to next chunk in list |
1186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1187 | Back pointer to previous chunk in list |
1188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1189 | Unused space (may be 0 bytes long) .
1192 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1193 `foot:' | Size of chunk, in bytes |
1194 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1196 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1197 chunk size (which is always a multiple of two words), is an in-use
1198 bit for the *previous* chunk. If that bit is *clear*, then the
1199 word before the current chunk size contains the previous chunk
1200 size, and can be used to find the front of the previous chunk.
1201 The very first chunk allocated always has this bit set,
1202 preventing access to non-existent (or non-owned) memory. If
1203 prev_inuse is set for any given chunk, then you CANNOT determine
1204 the size of the previous chunk, and might even get a memory
1205 addressing fault when trying to do so.
1207 Note that the `foot' of the current chunk is actually represented
1208 as the prev_size of the NEXT chunk. This makes it easier to
1209 deal with alignments etc but can be very confusing when trying
1210 to extend or adapt this code.
1212 The two exceptions to all this are
1214 1. The special chunk `top' doesn't bother using the
1215 trailing size field since there is no next contiguous chunk
1216 that would have to index off it. After initialization, `top'
1217 is forced to always exist. If it would become less than
1218 MINSIZE bytes long, it is replenished.
1220 2. Chunks allocated via mmap, which have the second-lowest-order
1221 bit M (IS_MMAPPED) set in their size fields. Because they are
1222 allocated one-by-one, each must contain its own trailing size field.
1227 ---------- Size and alignment checks and conversions ----------
1230 /* conversion from malloc headers to user pointers, and back */
1232 #define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ))
1233 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1235 /* The smallest possible chunk */
1236 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1238 /* The smallest size we can malloc is an aligned minimal chunk */
1240 #define MINSIZE \
1241 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1243 /* Check if m has acceptable alignment */
1245 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1247 #define misaligned_chunk(p) \
1248 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1249 & MALLOC_ALIGN_MASK)
1253 Check if a request is so large that it would wrap around zero when
1254 padded and aligned. To simplify some other code, the bound is made
1255 low enough so that adding MINSIZE will also not wrap around zero.
1258 #define REQUEST_OUT_OF_RANGE(req) \
1259 ((unsigned long)(req) >= \
1260 (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
1262 /* pad request bytes into a usable size -- internal version */
1264 #define request2size(req) \
1265 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1266 MINSIZE : \
1267 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1269 /* Same, except also perform argument check */
1271 #define checked_request2size(req, sz) \
1272 if (REQUEST_OUT_OF_RANGE(req)) { \
1273 __set_errno (ENOMEM); \
1274 return 0; \
1276 (sz) = request2size(req);
1279 --------------- Physical chunk operations ---------------
1283 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1284 #define PREV_INUSE 0x1
1286 /* extract inuse bit of previous chunk */
1287 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1290 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1291 #define IS_MMAPPED 0x2
1293 /* check for mmap()'ed chunk */
1294 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1297 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1298 from a non-main arena. This is only set immediately before handing
1299 the chunk to the user, if necessary. */
1300 #define NON_MAIN_ARENA 0x4
1302 /* check for chunk from non-main arena */
1303 #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1307 Bits to mask off when extracting size
1309 Note: IS_MMAPPED is intentionally not masked off from size field in
1310 macros for which mmapped chunks should never be seen. This should
1311 cause helpful core dumps to occur if it is tried by accident by
1312 people extending or adapting this malloc.
1314 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
1316 /* Get size, ignoring use bits */
1317 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1320 /* Ptr to next physical malloc_chunk. */
1321 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~SIZE_BITS) ))
1323 /* Ptr to previous physical malloc_chunk */
1324 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1326 /* Treat space at ptr + offset as a chunk */
1327 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1329 /* extract p's inuse bit */
1330 #define inuse(p)\
1331 ((((mchunkptr)(((char*)(p))+((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
1333 /* set/clear chunk as being inuse without otherwise disturbing */
1334 #define set_inuse(p)\
1335 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
1337 #define clear_inuse(p)\
1338 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
1341 /* check/set/clear inuse bits in known places */
1342 #define inuse_bit_at_offset(p, s)\
1343 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1345 #define set_inuse_bit_at_offset(p, s)\
1346 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1348 #define clear_inuse_bit_at_offset(p, s)\
1349 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1352 /* Set size at head, without disturbing its use bit */
1353 #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
1355 /* Set size/use field */
1356 #define set_head(p, s) ((p)->size = (s))
1358 /* Set size at footer (only when chunk is not in use) */
1359 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1363 -------------------- Internal data structures --------------------
1365 All internal state is held in an instance of malloc_state defined
1366 below. There are no other static variables, except in two optional
1367 cases:
1368 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1369 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1370 for mmap.
1372 Beware of lots of tricks that minimize the total bookkeeping space
1373 requirements. The result is a little over 1K bytes (for 4byte
1374 pointers and size_t.)
1378 Bins
1380 An array of bin headers for free chunks. Each bin is doubly
1381 linked. The bins are approximately proportionally (log) spaced.
1382 There are a lot of these bins (128). This may look excessive, but
1383 works very well in practice. Most bins hold sizes that are
1384 unusual as malloc request sizes, but are more usual for fragments
1385 and consolidated sets of chunks, which is what these bins hold, so
1386 they can be found quickly. All procedures maintain the invariant
1387 that no consolidated chunk physically borders another one, so each
1388 chunk in a list is known to be preceeded and followed by either
1389 inuse chunks or the ends of memory.
1391 Chunks in bins are kept in size order, with ties going to the
1392 approximately least recently used chunk. Ordering isn't needed
1393 for the small bins, which all contain the same-sized chunks, but
1394 facilitates best-fit allocation for larger chunks. These lists
1395 are just sequential. Keeping them in order almost never requires
1396 enough traversal to warrant using fancier ordered data
1397 structures.
1399 Chunks of the same size are linked with the most
1400 recently freed at the front, and allocations are taken from the
1401 back. This results in LRU (FIFO) allocation order, which tends
1402 to give each chunk an equal opportunity to be consolidated with
1403 adjacent freed chunks, resulting in larger free chunks and less
1404 fragmentation.
1406 To simplify use in double-linked lists, each bin header acts
1407 as a malloc_chunk. This avoids special-casing for headers.
1408 But to conserve space and improve locality, we allocate
1409 only the fd/bk pointers of bins, and then use repositioning tricks
1410 to treat these as the fields of a malloc_chunk*.
1413 typedef struct malloc_chunk* mbinptr;
1415 /* addressing -- note that bin_at(0) does not exist */
1416 #define bin_at(m, i) \
1417 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1418 - offsetof (struct malloc_chunk, fd))
1420 /* analog of ++bin */
1421 #define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
1423 /* Reminders about list directionality within bins */
1424 #define first(b) ((b)->fd)
1425 #define last(b) ((b)->bk)
1427 /* Take a chunk off a bin list */
1428 #define unlink(P, BK, FD) { \
1429 FD = P->fd; \
1430 BK = P->bk; \
1431 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1432 malloc_printerr (check_action, "corrupted double-linked list", P); \
1433 else { \
1434 FD->bk = BK; \
1435 BK->fd = FD; \
1436 if (!in_smallbin_range (P->size) \
1437 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
1438 assert (P->fd_nextsize->bk_nextsize == P); \
1439 assert (P->bk_nextsize->fd_nextsize == P); \
1440 if (FD->fd_nextsize == NULL) { \
1441 if (P->fd_nextsize == P) \
1442 FD->fd_nextsize = FD->bk_nextsize = FD; \
1443 else { \
1444 FD->fd_nextsize = P->fd_nextsize; \
1445 FD->bk_nextsize = P->bk_nextsize; \
1446 P->fd_nextsize->bk_nextsize = FD; \
1447 P->bk_nextsize->fd_nextsize = FD; \
1449 } else { \
1450 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
1451 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
1458 Indexing
1460 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1461 8 bytes apart. Larger bins are approximately logarithmically spaced:
1463 64 bins of size 8
1464 32 bins of size 64
1465 16 bins of size 512
1466 8 bins of size 4096
1467 4 bins of size 32768
1468 2 bins of size 262144
1469 1 bin of size what's left
1471 There is actually a little bit of slop in the numbers in bin_index
1472 for the sake of speed. This makes no difference elsewhere.
1474 The bins top out around 1MB because we expect to service large
1475 requests via mmap.
1477 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1478 a valid chunk size the small bins are bumped up one.
1481 #define NBINS 128
1482 #define NSMALLBINS 64
1483 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1484 #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
1485 #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1487 #define in_smallbin_range(sz) \
1488 ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
1490 #define smallbin_index(sz) \
1491 ((SMALLBIN_WIDTH == 16 ? (((unsigned)(sz)) >> 4) : (((unsigned)(sz)) >> 3)) \
1492 + SMALLBIN_CORRECTION)
1494 #define largebin_index_32(sz) \
1495 (((((unsigned long)(sz)) >> 6) <= 38)? 56 + (((unsigned long)(sz)) >> 6): \
1496 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
1497 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
1498 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
1499 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
1500 126)
1502 #define largebin_index_32_big(sz) \
1503 (((((unsigned long)(sz)) >> 6) <= 45)? 49 + (((unsigned long)(sz)) >> 6): \
1504 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
1505 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
1506 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
1507 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
1508 126)
1510 // XXX It remains to be seen whether it is good to keep the widths of
1511 // XXX the buckets the same or whether it should be scaled by a factor
1512 // XXX of two as well.
1513 #define largebin_index_64(sz) \
1514 (((((unsigned long)(sz)) >> 6) <= 48)? 48 + (((unsigned long)(sz)) >> 6): \
1515 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
1516 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
1517 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
1518 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
1519 126)
1521 #define largebin_index(sz) \
1522 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1523 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1524 : largebin_index_32 (sz))
1526 #define bin_index(sz) \
1527 ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
1531 Unsorted chunks
1533 All remainders from chunk splits, as well as all returned chunks,
1534 are first placed in the "unsorted" bin. They are then placed
1535 in regular bins after malloc gives them ONE chance to be used before
1536 binning. So, basically, the unsorted_chunks list acts as a queue,
1537 with chunks being placed on it in free (and malloc_consolidate),
1538 and taken off (to be either used or placed in bins) in malloc.
1540 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1541 does not have to be taken into account in size comparisons.
1544 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1545 #define unsorted_chunks(M) (bin_at(M, 1))
1550 The top-most available chunk (i.e., the one bordering the end of
1551 available memory) is treated specially. It is never included in
1552 any bin, is used only if no other chunk is available, and is
1553 released back to the system if it is very large (see
1554 M_TRIM_THRESHOLD). Because top initially
1555 points to its own bin with initial zero size, thus forcing
1556 extension on the first malloc request, we avoid having any special
1557 code in malloc to check whether it even exists yet. But we still
1558 need to do so when getting memory from system, so we make
1559 initial_top treat the bin as a legal but unusable chunk during the
1560 interval between initialization and the first call to
1561 sysmalloc. (This is somewhat delicate, since it relies on
1562 the 2 preceding words to be zero during this interval as well.)
1565 /* Conveniently, the unsorted bin can be used as dummy top on first call */
1566 #define initial_top(M) (unsorted_chunks(M))
1569 Binmap
1571 To help compensate for the large number of bins, a one-level index
1572 structure is used for bin-by-bin searching. `binmap' is a
1573 bitvector recording whether bins are definitely empty so they can
1574 be skipped over during during traversals. The bits are NOT always
1575 cleared as soon as bins are empty, but instead only
1576 when they are noticed to be empty during traversal in malloc.
1579 /* Conservatively use 32 bits per map word, even if on 64bit system */
1580 #define BINMAPSHIFT 5
1581 #define BITSPERMAP (1U << BINMAPSHIFT)
1582 #define BINMAPSIZE (NBINS / BITSPERMAP)
1584 #define idx2block(i) ((i) >> BINMAPSHIFT)
1585 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
1587 #define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
1588 #define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
1589 #define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
1592 Fastbins
1594 An array of lists holding recently freed small chunks. Fastbins
1595 are not doubly linked. It is faster to single-link them, and
1596 since chunks are never removed from the middles of these lists,
1597 double linking is not necessary. Also, unlike regular bins, they
1598 are not even processed in FIFO order (they use faster LIFO) since
1599 ordering doesn't much matter in the transient contexts in which
1600 fastbins are normally used.
1602 Chunks in fastbins keep their inuse bit set, so they cannot
1603 be consolidated with other free chunks. malloc_consolidate
1604 releases all chunks in fastbins and consolidates them with
1605 other free chunks.
1608 typedef struct malloc_chunk* mfastbinptr;
1609 #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1611 /* offset 2 to use otherwise unindexable first 2 bins */
1612 #define fastbin_index(sz) \
1613 ((((unsigned int)(sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1616 /* The maximum fastbin request size we support */
1617 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1619 #define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
1622 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1623 that triggers automatic consolidation of possibly-surrounding
1624 fastbin chunks. This is a heuristic, so the exact value should not
1625 matter too much. It is defined at half the default trim threshold as a
1626 compromise heuristic to only attempt consolidation if it is likely
1627 to lead to trimming. However, it is not dynamically tunable, since
1628 consolidation reduces fragmentation surrounding large chunks even
1629 if trimming is not used.
1632 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1635 Since the lowest 2 bits in max_fast don't matter in size comparisons,
1636 they are used as flags.
1640 FASTCHUNKS_BIT held in max_fast indicates that there are probably
1641 some fastbin chunks. It is set true on entering a chunk into any
1642 fastbin, and cleared only in malloc_consolidate.
1644 The truth value is inverted so that have_fastchunks will be true
1645 upon startup (since statics are zero-filled), simplifying
1646 initialization checks.
1649 #define FASTCHUNKS_BIT (1U)
1651 #define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
1652 #define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
1653 #define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
1656 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1657 regions. Otherwise, contiguity is exploited in merging together,
1658 when possible, results from consecutive MORECORE calls.
1660 The initial value comes from MORECORE_CONTIGUOUS, but is
1661 changed dynamically if mmap is ever used as an sbrk substitute.
1664 #define NONCONTIGUOUS_BIT (2U)
1666 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1667 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1668 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1669 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1672 Set value of max_fast.
1673 Use impossibly small value if 0.
1674 Precondition: there are no existing fastbin chunks.
1675 Setting the value clears fastchunk bit but preserves noncontiguous bit.
1678 #define set_max_fast(s) \
1679 global_max_fast = (((s) == 0) \
1680 ? SMALLBIN_WIDTH: ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1681 #define get_max_fast() global_max_fast
1685 ----------- Internal state representation and initialization -----------
1688 struct malloc_state {
1689 /* Serialize access. */
1690 mutex_t mutex;
1692 /* Flags (formerly in max_fast). */
1693 int flags;
1695 #if THREAD_STATS
1696 /* Statistics for locking. Only used if THREAD_STATS is defined. */
1697 long stat_lock_direct, stat_lock_loop, stat_lock_wait;
1698 #endif
1700 /* Fastbins */
1701 mfastbinptr fastbinsY[NFASTBINS];
1703 /* Base of the topmost chunk -- not otherwise kept in a bin */
1704 mchunkptr top;
1706 /* The remainder from the most recent split of a small request */
1707 mchunkptr last_remainder;
1709 /* Normal bins packed as described above */
1710 mchunkptr bins[NBINS * 2 - 2];
1712 /* Bitmap of bins */
1713 unsigned int binmap[BINMAPSIZE];
1715 /* Linked list */
1716 struct malloc_state *next;
1718 #ifdef PER_THREAD
1719 /* Linked list for free arenas. */
1720 struct malloc_state *next_free;
1721 #endif
1723 /* Memory allocated from the system in this arena. */
1724 INTERNAL_SIZE_T system_mem;
1725 INTERNAL_SIZE_T max_system_mem;
1728 struct malloc_par {
1729 /* Tunable parameters */
1730 unsigned long trim_threshold;
1731 INTERNAL_SIZE_T top_pad;
1732 INTERNAL_SIZE_T mmap_threshold;
1733 #ifdef PER_THREAD
1734 INTERNAL_SIZE_T arena_test;
1735 INTERNAL_SIZE_T arena_max;
1736 #endif
1738 /* Memory map support */
1739 int n_mmaps;
1740 int n_mmaps_max;
1741 int max_n_mmaps;
1742 /* the mmap_threshold is dynamic, until the user sets
1743 it manually, at which point we need to disable any
1744 dynamic behavior. */
1745 int no_dyn_threshold;
1747 /* Statistics */
1748 INTERNAL_SIZE_T mmapped_mem;
1749 /*INTERNAL_SIZE_T sbrked_mem;*/
1750 /*INTERNAL_SIZE_T max_sbrked_mem;*/
1751 INTERNAL_SIZE_T max_mmapped_mem;
1752 INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
1754 /* First address handed out by MORECORE/sbrk. */
1755 char* sbrk_base;
1758 /* There are several instances of this struct ("arenas") in this
1759 malloc. If you are adapting this malloc in a way that does NOT use
1760 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1761 before using. This malloc relies on the property that malloc_state
1762 is initialized to all zeroes (as is true of C statics). */
1764 static struct malloc_state main_arena =
1766 .mutex = MUTEX_INITIALIZER,
1767 .next = &main_arena
1770 /* There is only one instance of the malloc parameters. */
1772 static struct malloc_par mp_ =
1774 .top_pad = DEFAULT_TOP_PAD,
1775 .n_mmaps_max = DEFAULT_MMAP_MAX,
1776 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1777 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1778 #ifdef PER_THREAD
1779 # define NARENAS_FROM_NCORES(n) ((n) * (sizeof(long) == 4 ? 2 : 8))
1780 .arena_test = NARENAS_FROM_NCORES (1)
1781 #endif
1785 #ifdef PER_THREAD
1786 /* Non public mallopt parameters. */
1787 #define M_ARENA_TEST -7
1788 #define M_ARENA_MAX -8
1789 #endif
1792 /* Maximum size of memory handled in fastbins. */
1793 static INTERNAL_SIZE_T global_max_fast;
1796 Initialize a malloc_state struct.
1798 This is called only from within malloc_consolidate, which needs
1799 be called in the same contexts anyway. It is never called directly
1800 outside of malloc_consolidate because some optimizing compilers try
1801 to inline it at all call points, which turns out not to be an
1802 optimization at all. (Inlining it in malloc_consolidate is fine though.)
1805 static void malloc_init_state(mstate av)
1807 int i;
1808 mbinptr bin;
1810 /* Establish circular links for normal bins */
1811 for (i = 1; i < NBINS; ++i) {
1812 bin = bin_at(av,i);
1813 bin->fd = bin->bk = bin;
1816 #if MORECORE_CONTIGUOUS
1817 if (av != &main_arena)
1818 #endif
1819 set_noncontiguous(av);
1820 if (av == &main_arena)
1821 set_max_fast(DEFAULT_MXFAST);
1822 av->flags |= FASTCHUNKS_BIT;
1824 av->top = initial_top(av);
1828 Other internal utilities operating on mstates
1831 static void* sysmalloc(INTERNAL_SIZE_T, mstate);
1832 static int systrim(size_t, mstate);
1833 static void malloc_consolidate(mstate);
1836 /* -------------- Early definitions for debugging hooks ---------------- */
1838 /* Define and initialize the hook variables. These weak definitions must
1839 appear before any use of the variables in a function (arena.c uses one). */
1840 #ifndef weak_variable
1841 /* In GNU libc we want the hook variables to be weak definitions to
1842 avoid a problem with Emacs. */
1843 # define weak_variable weak_function
1844 #endif
1846 /* Forward declarations. */
1847 static void* malloc_hook_ini __MALLOC_P ((size_t sz,
1848 const __malloc_ptr_t caller));
1849 static void* realloc_hook_ini __MALLOC_P ((void* ptr, size_t sz,
1850 const __malloc_ptr_t caller));
1851 static void* memalign_hook_ini __MALLOC_P ((size_t alignment, size_t sz,
1852 const __malloc_ptr_t caller));
1854 void weak_variable (*__malloc_initialize_hook) (void) = NULL;
1855 void weak_variable (*__free_hook) (__malloc_ptr_t __ptr,
1856 const __malloc_ptr_t) = NULL;
1857 __malloc_ptr_t weak_variable (*__malloc_hook)
1858 (size_t __size, const __malloc_ptr_t) = malloc_hook_ini;
1859 __malloc_ptr_t weak_variable (*__realloc_hook)
1860 (__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t)
1861 = realloc_hook_ini;
1862 __malloc_ptr_t weak_variable (*__memalign_hook)
1863 (size_t __alignment, size_t __size, const __malloc_ptr_t)
1864 = memalign_hook_ini;
1865 void weak_variable (*__after_morecore_hook) (void) = NULL;
1868 /* ---------------- Error behavior ------------------------------------ */
1870 #ifndef DEFAULT_CHECK_ACTION
1871 #define DEFAULT_CHECK_ACTION 3
1872 #endif
1874 static int check_action = DEFAULT_CHECK_ACTION;
1877 /* ------------------ Testing support ----------------------------------*/
1879 static int perturb_byte;
1881 #define alloc_perturb(p, n) memset (p, (perturb_byte ^ 0xff) & 0xff, n)
1882 #define free_perturb(p, n) memset (p, perturb_byte & 0xff, n)
1885 /* ------------------- Support for multiple arenas -------------------- */
1886 #include "arena.c"
1889 Debugging support
1891 These routines make a number of assertions about the states
1892 of data structures that should be true at all times. If any
1893 are not true, it's very likely that a user program has somehow
1894 trashed memory. (It's also possible that there is a coding error
1895 in malloc. In which case, please report it!)
1898 #if ! MALLOC_DEBUG
1900 #define check_chunk(A,P)
1901 #define check_free_chunk(A,P)
1902 #define check_inuse_chunk(A,P)
1903 #define check_remalloced_chunk(A,P,N)
1904 #define check_malloced_chunk(A,P,N)
1905 #define check_malloc_state(A)
1907 #else
1909 #define check_chunk(A,P) do_check_chunk(A,P)
1910 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
1911 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
1912 #define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
1913 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
1914 #define check_malloc_state(A) do_check_malloc_state(A)
1917 Properties of all chunks
1920 static void do_check_chunk(mstate av, mchunkptr p)
1922 unsigned long sz = chunksize(p);
1923 /* min and max possible addresses assuming contiguous allocation */
1924 char* max_address = (char*)(av->top) + chunksize(av->top);
1925 char* min_address = max_address - av->system_mem;
1927 if (!chunk_is_mmapped(p)) {
1929 /* Has legal address ... */
1930 if (p != av->top) {
1931 if (contiguous(av)) {
1932 assert(((char*)p) >= min_address);
1933 assert(((char*)p + sz) <= ((char*)(av->top)));
1936 else {
1937 /* top size is always at least MINSIZE */
1938 assert((unsigned long)(sz) >= MINSIZE);
1939 /* top predecessor always marked inuse */
1940 assert(prev_inuse(p));
1944 else {
1945 /* address is outside main heap */
1946 if (contiguous(av) && av->top != initial_top(av)) {
1947 assert(((char*)p) < min_address || ((char*)p) >= max_address);
1949 /* chunk is page-aligned */
1950 assert(((p->prev_size + sz) & (GLRO(dl_pagesize)-1)) == 0);
1951 /* mem is aligned */
1952 assert(aligned_OK(chunk2mem(p)));
1957 Properties of free chunks
1960 static void do_check_free_chunk(mstate av, mchunkptr p)
1962 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
1963 mchunkptr next = chunk_at_offset(p, sz);
1965 do_check_chunk(av, p);
1967 /* Chunk must claim to be free ... */
1968 assert(!inuse(p));
1969 assert (!chunk_is_mmapped(p));
1971 /* Unless a special marker, must have OK fields */
1972 if ((unsigned long)(sz) >= MINSIZE)
1974 assert((sz & MALLOC_ALIGN_MASK) == 0);
1975 assert(aligned_OK(chunk2mem(p)));
1976 /* ... matching footer field */
1977 assert(next->prev_size == sz);
1978 /* ... and is fully consolidated */
1979 assert(prev_inuse(p));
1980 assert (next == av->top || inuse(next));
1982 /* ... and has minimally sane links */
1983 assert(p->fd->bk == p);
1984 assert(p->bk->fd == p);
1986 else /* markers are always of size SIZE_SZ */
1987 assert(sz == SIZE_SZ);
1991 Properties of inuse chunks
1994 static void do_check_inuse_chunk(mstate av, mchunkptr p)
1996 mchunkptr next;
1998 do_check_chunk(av, p);
2000 if (chunk_is_mmapped(p))
2001 return; /* mmapped chunks have no next/prev */
2003 /* Check whether it claims to be in use ... */
2004 assert(inuse(p));
2006 next = next_chunk(p);
2008 /* ... and is surrounded by OK chunks.
2009 Since more things can be checked with free chunks than inuse ones,
2010 if an inuse chunk borders them and debug is on, it's worth doing them.
2012 if (!prev_inuse(p)) {
2013 /* Note that we cannot even look at prev unless it is not inuse */
2014 mchunkptr prv = prev_chunk(p);
2015 assert(next_chunk(prv) == p);
2016 do_check_free_chunk(av, prv);
2019 if (next == av->top) {
2020 assert(prev_inuse(next));
2021 assert(chunksize(next) >= MINSIZE);
2023 else if (!inuse(next))
2024 do_check_free_chunk(av, next);
2028 Properties of chunks recycled from fastbins
2031 static void do_check_remalloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2033 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2035 if (!chunk_is_mmapped(p)) {
2036 assert(av == arena_for_chunk(p));
2037 if (chunk_non_main_arena(p))
2038 assert(av != &main_arena);
2039 else
2040 assert(av == &main_arena);
2043 do_check_inuse_chunk(av, p);
2045 /* Legal size ... */
2046 assert((sz & MALLOC_ALIGN_MASK) == 0);
2047 assert((unsigned long)(sz) >= MINSIZE);
2048 /* ... and alignment */
2049 assert(aligned_OK(chunk2mem(p)));
2050 /* chunk is less than MINSIZE more than request */
2051 assert((long)(sz) - (long)(s) >= 0);
2052 assert((long)(sz) - (long)(s + MINSIZE) < 0);
2056 Properties of nonrecycled chunks at the point they are malloced
2059 static void do_check_malloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2061 /* same as recycled case ... */
2062 do_check_remalloced_chunk(av, p, s);
2065 ... plus, must obey implementation invariant that prev_inuse is
2066 always true of any allocated chunk; i.e., that each allocated
2067 chunk borders either a previously allocated and still in-use
2068 chunk, or the base of its memory arena. This is ensured
2069 by making all allocations from the `lowest' part of any found
2070 chunk. This does not necessarily hold however for chunks
2071 recycled via fastbins.
2074 assert(prev_inuse(p));
2079 Properties of malloc_state.
2081 This may be useful for debugging malloc, as well as detecting user
2082 programmer errors that somehow write into malloc_state.
2084 If you are extending or experimenting with this malloc, you can
2085 probably figure out how to hack this routine to print out or
2086 display chunk addresses, sizes, bins, and other instrumentation.
2089 static void do_check_malloc_state(mstate av)
2091 int i;
2092 mchunkptr p;
2093 mchunkptr q;
2094 mbinptr b;
2095 unsigned int idx;
2096 INTERNAL_SIZE_T size;
2097 unsigned long total = 0;
2098 int max_fast_bin;
2100 /* internal size_t must be no wider than pointer type */
2101 assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
2103 /* alignment is a power of 2 */
2104 assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
2106 /* cannot run remaining checks until fully initialized */
2107 if (av->top == 0 || av->top == initial_top(av))
2108 return;
2110 /* pagesize is a power of 2 */
2111 assert((GLRO(dl_pagesize) & (GLRO(dl_pagesize)-1)) == 0);
2113 /* A contiguous main_arena is consistent with sbrk_base. */
2114 if (av == &main_arena && contiguous(av))
2115 assert((char*)mp_.sbrk_base + av->system_mem ==
2116 (char*)av->top + chunksize(av->top));
2118 /* properties of fastbins */
2120 /* max_fast is in allowed range */
2121 assert((get_max_fast () & ~1) <= request2size(MAX_FAST_SIZE));
2123 max_fast_bin = fastbin_index(get_max_fast ());
2125 for (i = 0; i < NFASTBINS; ++i) {
2126 p = fastbin (av, i);
2128 /* The following test can only be performed for the main arena.
2129 While mallopt calls malloc_consolidate to get rid of all fast
2130 bins (especially those larger than the new maximum) this does
2131 only happen for the main arena. Trying to do this for any
2132 other arena would mean those arenas have to be locked and
2133 malloc_consolidate be called for them. This is excessive. And
2134 even if this is acceptable to somebody it still cannot solve
2135 the problem completely since if the arena is locked a
2136 concurrent malloc call might create a new arena which then
2137 could use the newly invalid fast bins. */
2139 /* all bins past max_fast are empty */
2140 if (av == &main_arena && i > max_fast_bin)
2141 assert(p == 0);
2143 while (p != 0) {
2144 /* each chunk claims to be inuse */
2145 do_check_inuse_chunk(av, p);
2146 total += chunksize(p);
2147 /* chunk belongs in this bin */
2148 assert(fastbin_index(chunksize(p)) == i);
2149 p = p->fd;
2153 if (total != 0)
2154 assert(have_fastchunks(av));
2155 else if (!have_fastchunks(av))
2156 assert(total == 0);
2158 /* check normal bins */
2159 for (i = 1; i < NBINS; ++i) {
2160 b = bin_at(av,i);
2162 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2163 if (i >= 2) {
2164 unsigned int binbit = get_binmap(av,i);
2165 int empty = last(b) == b;
2166 if (!binbit)
2167 assert(empty);
2168 else if (!empty)
2169 assert(binbit);
2172 for (p = last(b); p != b; p = p->bk) {
2173 /* each chunk claims to be free */
2174 do_check_free_chunk(av, p);
2175 size = chunksize(p);
2176 total += size;
2177 if (i >= 2) {
2178 /* chunk belongs in bin */
2179 idx = bin_index(size);
2180 assert(idx == i);
2181 /* lists are sorted */
2182 assert(p->bk == b ||
2183 (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
2185 if (!in_smallbin_range(size))
2187 if (p->fd_nextsize != NULL)
2189 if (p->fd_nextsize == p)
2190 assert (p->bk_nextsize == p);
2191 else
2193 if (p->fd_nextsize == first (b))
2194 assert (chunksize (p) < chunksize (p->fd_nextsize));
2195 else
2196 assert (chunksize (p) > chunksize (p->fd_nextsize));
2198 if (p == first (b))
2199 assert (chunksize (p) > chunksize (p->bk_nextsize));
2200 else
2201 assert (chunksize (p) < chunksize (p->bk_nextsize));
2204 else
2205 assert (p->bk_nextsize == NULL);
2207 } else if (!in_smallbin_range(size))
2208 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2209 /* chunk is followed by a legal chain of inuse chunks */
2210 for (q = next_chunk(p);
2211 (q != av->top && inuse(q) &&
2212 (unsigned long)(chunksize(q)) >= MINSIZE);
2213 q = next_chunk(q))
2214 do_check_inuse_chunk(av, q);
2218 /* top chunk is OK */
2219 check_chunk(av, av->top);
2221 /* sanity checks for statistics */
2223 assert(mp_.n_mmaps <= mp_.max_n_mmaps);
2225 assert((unsigned long)(av->system_mem) <=
2226 (unsigned long)(av->max_system_mem));
2228 assert((unsigned long)(mp_.mmapped_mem) <=
2229 (unsigned long)(mp_.max_mmapped_mem));
2231 #endif
2234 /* ----------------- Support for debugging hooks -------------------- */
2235 #include "hooks.c"
2238 /* ----------- Routines dealing with system allocation -------------- */
2241 sysmalloc handles malloc cases requiring more memory from the system.
2242 On entry, it is assumed that av->top does not have enough
2243 space to service request for nb bytes, thus requiring that av->top
2244 be extended or replaced.
2247 static void* sysmalloc(INTERNAL_SIZE_T nb, mstate av)
2249 mchunkptr old_top; /* incoming value of av->top */
2250 INTERNAL_SIZE_T old_size; /* its size */
2251 char* old_end; /* its end address */
2253 long size; /* arg to first MORECORE or mmap call */
2254 char* brk; /* return value from MORECORE */
2256 long correction; /* arg to 2nd MORECORE call */
2257 char* snd_brk; /* 2nd return val */
2259 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2260 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2261 char* aligned_brk; /* aligned offset into brk */
2263 mchunkptr p; /* the allocated/returned chunk */
2264 mchunkptr remainder; /* remainder from allocation */
2265 unsigned long remainder_size; /* its size */
2267 unsigned long sum; /* for updating stats */
2269 size_t pagemask = GLRO(dl_pagesize) - 1;
2270 bool tried_mmap = false;
2274 If have mmap, and the request size meets the mmap threshold, and
2275 the system supports mmap, and there are few enough currently
2276 allocated mmapped regions, try to directly map this request
2277 rather than expanding top.
2280 if ((unsigned long)(nb) >= (unsigned long)(mp_.mmap_threshold) &&
2281 (mp_.n_mmaps < mp_.n_mmaps_max)) {
2283 char* mm; /* return value from mmap call*/
2285 try_mmap:
2287 Round up size to nearest page. For mmapped chunks, the overhead
2288 is one SIZE_SZ unit larger than for normal chunks, because there
2289 is no following chunk whose prev_size field could be used.
2291 See the front_misalign handling below, for glibc there is no
2292 need for further alignments unless we have have high alignment.
2294 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2295 size = (nb + SIZE_SZ + pagemask) & ~pagemask;
2296 else
2297 size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
2298 tried_mmap = true;
2300 /* Don't try if size wraps around 0 */
2301 if ((unsigned long)(size) > (unsigned long)(nb)) {
2303 mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, 0));
2305 if (mm != MAP_FAILED) {
2308 The offset to the start of the mmapped region is stored
2309 in the prev_size field of the chunk. This allows us to adjust
2310 returned start address to meet alignment requirements here
2311 and in memalign(), and still be able to compute proper
2312 address argument for later munmap in free() and realloc().
2315 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2317 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
2318 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
2319 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2320 assert (((INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK) == 0);
2321 front_misalign = 0;
2323 else
2324 front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
2325 if (front_misalign > 0) {
2326 correction = MALLOC_ALIGNMENT - front_misalign;
2327 p = (mchunkptr)(mm + correction);
2328 p->prev_size = correction;
2329 set_head(p, (size - correction) |IS_MMAPPED);
2331 else
2333 p = (mchunkptr)mm;
2334 set_head(p, size|IS_MMAPPED);
2337 /* update statistics */
2339 if (++mp_.n_mmaps > mp_.max_n_mmaps)
2340 mp_.max_n_mmaps = mp_.n_mmaps;
2342 sum = mp_.mmapped_mem += size;
2343 if (sum > (unsigned long)(mp_.max_mmapped_mem))
2344 mp_.max_mmapped_mem = sum;
2346 check_chunk(av, p);
2348 return chunk2mem(p);
2353 /* Record incoming configuration of top */
2355 old_top = av->top;
2356 old_size = chunksize(old_top);
2357 old_end = (char*)(chunk_at_offset(old_top, old_size));
2359 brk = snd_brk = (char*)(MORECORE_FAILURE);
2362 If not the first time through, we require old_size to be
2363 at least MINSIZE and to have prev_inuse set.
2366 assert((old_top == initial_top(av) && old_size == 0) ||
2367 ((unsigned long) (old_size) >= MINSIZE &&
2368 prev_inuse(old_top) &&
2369 ((unsigned long)old_end & pagemask) == 0));
2371 /* Precondition: not enough current space to satisfy nb request */
2372 assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));
2375 if (av != &main_arena) {
2377 heap_info *old_heap, *heap;
2378 size_t old_heap_size;
2380 /* First try to extend the current heap. */
2381 old_heap = heap_for_ptr(old_top);
2382 old_heap_size = old_heap->size;
2383 if ((long) (MINSIZE + nb - old_size) > 0
2384 && grow_heap(old_heap, MINSIZE + nb - old_size) == 0) {
2385 av->system_mem += old_heap->size - old_heap_size;
2386 arena_mem += old_heap->size - old_heap_size;
2387 set_head(old_top, (((char *)old_heap + old_heap->size) - (char *)old_top)
2388 | PREV_INUSE);
2390 else if ((heap = new_heap(nb + (MINSIZE + sizeof(*heap)), mp_.top_pad))) {
2391 /* Use a newly allocated heap. */
2392 heap->ar_ptr = av;
2393 heap->prev = old_heap;
2394 av->system_mem += heap->size;
2395 arena_mem += heap->size;
2396 /* Set up the new top. */
2397 top(av) = chunk_at_offset(heap, sizeof(*heap));
2398 set_head(top(av), (heap->size - sizeof(*heap)) | PREV_INUSE);
2400 /* Setup fencepost and free the old top chunk with a multiple of
2401 MALLOC_ALIGNMENT in size. */
2402 /* The fencepost takes at least MINSIZE bytes, because it might
2403 become the top chunk again later. Note that a footer is set
2404 up, too, although the chunk is marked in use. */
2405 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2406 set_head(chunk_at_offset(old_top, old_size + 2*SIZE_SZ), 0|PREV_INUSE);
2407 if (old_size >= MINSIZE) {
2408 set_head(chunk_at_offset(old_top, old_size), (2*SIZE_SZ)|PREV_INUSE);
2409 set_foot(chunk_at_offset(old_top, old_size), (2*SIZE_SZ));
2410 set_head(old_top, old_size|PREV_INUSE|NON_MAIN_ARENA);
2411 _int_free(av, old_top, 1);
2412 } else {
2413 set_head(old_top, (old_size + 2*SIZE_SZ)|PREV_INUSE);
2414 set_foot(old_top, (old_size + 2*SIZE_SZ));
2417 else if (!tried_mmap)
2418 /* We can at least try to use to mmap memory. */
2419 goto try_mmap;
2421 } else { /* av == main_arena */
2424 /* Request enough space for nb + pad + overhead */
2426 size = nb + mp_.top_pad + MINSIZE;
2429 If contiguous, we can subtract out existing space that we hope to
2430 combine with new space. We add it back later only if
2431 we don't actually get contiguous space.
2434 if (contiguous(av))
2435 size -= old_size;
2438 Round to a multiple of page size.
2439 If MORECORE is not contiguous, this ensures that we only call it
2440 with whole-page arguments. And if MORECORE is contiguous and
2441 this is not first time through, this preserves page-alignment of
2442 previous calls. Otherwise, we correct to page-align below.
2445 size = (size + pagemask) & ~pagemask;
2448 Don't try to call MORECORE if argument is so big as to appear
2449 negative. Note that since mmap takes size_t arg, it may succeed
2450 below even if we cannot call MORECORE.
2453 if (size > 0)
2454 brk = (char*)(MORECORE(size));
2456 if (brk != (char*)(MORECORE_FAILURE)) {
2457 /* Call the `morecore' hook if necessary. */
2458 void (*hook) (void) = force_reg (__after_morecore_hook);
2459 if (__builtin_expect (hook != NULL, 0))
2460 (*hook) ();
2461 } else {
2463 If have mmap, try using it as a backup when MORECORE fails or
2464 cannot be used. This is worth doing on systems that have "holes" in
2465 address space, so sbrk cannot extend to give contiguous space, but
2466 space is available elsewhere. Note that we ignore mmap max count
2467 and threshold limits, since the space will not be used as a
2468 segregated mmap region.
2471 /* Cannot merge with old top, so add its size back in */
2472 if (contiguous(av))
2473 size = (size + old_size + pagemask) & ~pagemask;
2475 /* If we are relying on mmap as backup, then use larger units */
2476 if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
2477 size = MMAP_AS_MORECORE_SIZE;
2479 /* Don't try if size wraps around 0 */
2480 if ((unsigned long)(size) > (unsigned long)(nb)) {
2482 char *mbrk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, 0));
2484 if (mbrk != MAP_FAILED) {
2486 /* We do not need, and cannot use, another sbrk call to find end */
2487 brk = mbrk;
2488 snd_brk = brk + size;
2491 Record that we no longer have a contiguous sbrk region.
2492 After the first time mmap is used as backup, we do not
2493 ever rely on contiguous space since this could incorrectly
2494 bridge regions.
2496 set_noncontiguous(av);
2501 if (brk != (char*)(MORECORE_FAILURE)) {
2502 if (mp_.sbrk_base == 0)
2503 mp_.sbrk_base = brk;
2504 av->system_mem += size;
2507 If MORECORE extends previous space, we can likewise extend top size.
2510 if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE))
2511 set_head(old_top, (size + old_size) | PREV_INUSE);
2513 else if (contiguous(av) && old_size && brk < old_end) {
2514 /* Oops! Someone else killed our space.. Can't touch anything. */
2515 malloc_printerr (3, "break adjusted to free malloc space", brk);
2519 Otherwise, make adjustments:
2521 * If the first time through or noncontiguous, we need to call sbrk
2522 just to find out where the end of memory lies.
2524 * We need to ensure that all returned chunks from malloc will meet
2525 MALLOC_ALIGNMENT
2527 * If there was an intervening foreign sbrk, we need to adjust sbrk
2528 request size to account for fact that we will not be able to
2529 combine new space with existing space in old_top.
2531 * Almost all systems internally allocate whole pages at a time, in
2532 which case we might as well use the whole last page of request.
2533 So we allocate enough more memory to hit a page boundary now,
2534 which in turn causes future contiguous calls to page-align.
2537 else {
2538 front_misalign = 0;
2539 end_misalign = 0;
2540 correction = 0;
2541 aligned_brk = brk;
2543 /* handle contiguous cases */
2544 if (contiguous(av)) {
2546 /* Count foreign sbrk as system_mem. */
2547 if (old_size)
2548 av->system_mem += brk - old_end;
2550 /* Guarantee alignment of first new chunk made from this space */
2552 front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2553 if (front_misalign > 0) {
2556 Skip over some bytes to arrive at an aligned position.
2557 We don't need to specially mark these wasted front bytes.
2558 They will never be accessed anyway because
2559 prev_inuse of av->top (and any chunk created from its start)
2560 is always true after initialization.
2563 correction = MALLOC_ALIGNMENT - front_misalign;
2564 aligned_brk += correction;
2568 If this isn't adjacent to existing space, then we will not
2569 be able to merge with old_top space, so must add to 2nd request.
2572 correction += old_size;
2574 /* Extend the end address to hit a page boundary */
2575 end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
2576 correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
2578 assert(correction >= 0);
2579 snd_brk = (char*)(MORECORE(correction));
2582 If can't allocate correction, try to at least find out current
2583 brk. It might be enough to proceed without failing.
2585 Note that if second sbrk did NOT fail, we assume that space
2586 is contiguous with first sbrk. This is a safe assumption unless
2587 program is multithreaded but doesn't use locks and a foreign sbrk
2588 occurred between our first and second calls.
2591 if (snd_brk == (char*)(MORECORE_FAILURE)) {
2592 correction = 0;
2593 snd_brk = (char*)(MORECORE(0));
2594 } else {
2595 /* Call the `morecore' hook if necessary. */
2596 void (*hook) (void) = force_reg (__after_morecore_hook);
2597 if (__builtin_expect (hook != NULL, 0))
2598 (*hook) ();
2602 /* handle non-contiguous cases */
2603 else {
2604 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2605 /* MORECORE/mmap must correctly align */
2606 assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
2607 else {
2608 front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2609 if (front_misalign > 0) {
2612 Skip over some bytes to arrive at an aligned position.
2613 We don't need to specially mark these wasted front bytes.
2614 They will never be accessed anyway because
2615 prev_inuse of av->top (and any chunk created from its start)
2616 is always true after initialization.
2619 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2623 /* Find out current end of memory */
2624 if (snd_brk == (char*)(MORECORE_FAILURE)) {
2625 snd_brk = (char*)(MORECORE(0));
2629 /* Adjust top based on results of second sbrk */
2630 if (snd_brk != (char*)(MORECORE_FAILURE)) {
2631 av->top = (mchunkptr)aligned_brk;
2632 set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2633 av->system_mem += correction;
2636 If not the first time through, we either have a
2637 gap due to foreign sbrk or a non-contiguous region. Insert a
2638 double fencepost at old_top to prevent consolidation with space
2639 we don't own. These fenceposts are artificial chunks that are
2640 marked as inuse and are in any case too small to use. We need
2641 two to make sizes and alignments work out.
2644 if (old_size != 0) {
2646 Shrink old_top to insert fenceposts, keeping size a
2647 multiple of MALLOC_ALIGNMENT. We know there is at least
2648 enough space in old_top to do this.
2650 old_size = (old_size - 4*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2651 set_head(old_top, old_size | PREV_INUSE);
2654 Note that the following assignments completely overwrite
2655 old_top when old_size was previously MINSIZE. This is
2656 intentional. We need the fencepost, even if old_top otherwise gets
2657 lost.
2659 chunk_at_offset(old_top, old_size )->size =
2660 (2*SIZE_SZ)|PREV_INUSE;
2662 chunk_at_offset(old_top, old_size + 2*SIZE_SZ)->size =
2663 (2*SIZE_SZ)|PREV_INUSE;
2665 /* If possible, release the rest. */
2666 if (old_size >= MINSIZE) {
2667 _int_free(av, old_top, 1);
2675 } /* if (av != &main_arena) */
2677 if ((unsigned long)av->system_mem > (unsigned long)(av->max_system_mem))
2678 av->max_system_mem = av->system_mem;
2679 check_malloc_state(av);
2681 /* finally, do the allocation */
2682 p = av->top;
2683 size = chunksize(p);
2685 /* check that one of the above allocation paths succeeded */
2686 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
2687 remainder_size = size - nb;
2688 remainder = chunk_at_offset(p, nb);
2689 av->top = remainder;
2690 set_head(p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2691 set_head(remainder, remainder_size | PREV_INUSE);
2692 check_malloced_chunk(av, p, nb);
2693 return chunk2mem(p);
2696 /* catch all failure paths */
2697 __set_errno (ENOMEM);
2698 return 0;
2703 systrim is an inverse of sorts to sysmalloc. It gives memory back
2704 to the system (via negative arguments to sbrk) if there is unused
2705 memory at the `high' end of the malloc pool. It is called
2706 automatically by free() when top space exceeds the trim
2707 threshold. It is also called by the public malloc_trim routine. It
2708 returns 1 if it actually released any memory, else 0.
2711 static int systrim(size_t pad, mstate av)
2713 long top_size; /* Amount of top-most memory */
2714 long extra; /* Amount to release */
2715 long released; /* Amount actually released */
2716 char* current_brk; /* address returned by pre-check sbrk call */
2717 char* new_brk; /* address returned by post-check sbrk call */
2718 size_t pagesz;
2720 pagesz = GLRO(dl_pagesize);
2721 top_size = chunksize(av->top);
2723 /* Release in pagesize units, keeping at least one page */
2724 extra = (top_size - pad - MINSIZE - 1) & ~(pagesz - 1);
2726 if (extra > 0) {
2729 Only proceed if end of memory is where we last set it.
2730 This avoids problems if there were foreign sbrk calls.
2732 current_brk = (char*)(MORECORE(0));
2733 if (current_brk == (char*)(av->top) + top_size) {
2736 Attempt to release memory. We ignore MORECORE return value,
2737 and instead call again to find out where new end of memory is.
2738 This avoids problems if first call releases less than we asked,
2739 of if failure somehow altered brk value. (We could still
2740 encounter problems if it altered brk in some very bad way,
2741 but the only thing we can do is adjust anyway, which will cause
2742 some downstream failure.)
2745 MORECORE(-extra);
2746 /* Call the `morecore' hook if necessary. */
2747 void (*hook) (void) = force_reg (__after_morecore_hook);
2748 if (__builtin_expect (hook != NULL, 0))
2749 (*hook) ();
2750 new_brk = (char*)(MORECORE(0));
2752 if (new_brk != (char*)MORECORE_FAILURE) {
2753 released = (long)(current_brk - new_brk);
2755 if (released != 0) {
2756 /* Success. Adjust top. */
2757 av->system_mem -= released;
2758 set_head(av->top, (top_size - released) | PREV_INUSE);
2759 check_malloc_state(av);
2760 return 1;
2765 return 0;
2768 static void
2769 internal_function
2770 munmap_chunk(mchunkptr p)
2772 INTERNAL_SIZE_T size = chunksize(p);
2774 assert (chunk_is_mmapped(p));
2776 uintptr_t block = (uintptr_t) p - p->prev_size;
2777 size_t total_size = p->prev_size + size;
2778 /* Unfortunately we have to do the compilers job by hand here. Normally
2779 we would test BLOCK and TOTAL-SIZE separately for compliance with the
2780 page size. But gcc does not recognize the optimization possibility
2781 (in the moment at least) so we combine the two values into one before
2782 the bit test. */
2783 if (__builtin_expect (((block | total_size) & (GLRO(dl_pagesize) - 1)) != 0, 0))
2785 malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
2786 chunk2mem (p));
2787 return;
2790 mp_.n_mmaps--;
2791 mp_.mmapped_mem -= total_size;
2793 /* If munmap failed the process virtual memory address space is in a
2794 bad shape. Just leave the block hanging around, the process will
2795 terminate shortly anyway since not much can be done. */
2796 __munmap((char *)block, total_size);
2799 #if HAVE_MREMAP
2801 static mchunkptr
2802 internal_function
2803 mremap_chunk(mchunkptr p, size_t new_size)
2805 size_t page_mask = GLRO(dl_pagesize) - 1;
2806 INTERNAL_SIZE_T offset = p->prev_size;
2807 INTERNAL_SIZE_T size = chunksize(p);
2808 char *cp;
2810 assert (chunk_is_mmapped(p));
2811 assert(((size + offset) & (GLRO(dl_pagesize)-1)) == 0);
2813 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
2814 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
2816 /* No need to remap if the number of pages does not change. */
2817 if (size + offset == new_size)
2818 return p;
2820 cp = (char *)__mremap((char *)p - offset, size + offset, new_size,
2821 MREMAP_MAYMOVE);
2823 if (cp == MAP_FAILED) return 0;
2825 p = (mchunkptr)(cp + offset);
2827 assert(aligned_OK(chunk2mem(p)));
2829 assert((p->prev_size == offset));
2830 set_head(p, (new_size - offset)|IS_MMAPPED);
2832 mp_.mmapped_mem -= size + offset;
2833 mp_.mmapped_mem += new_size;
2834 if ((unsigned long)mp_.mmapped_mem > (unsigned long)mp_.max_mmapped_mem)
2835 mp_.max_mmapped_mem = mp_.mmapped_mem;
2836 return p;
2839 #endif /* HAVE_MREMAP */
2841 /*------------------------ Public wrappers. --------------------------------*/
2843 void*
2844 __libc_malloc(size_t bytes)
2846 mstate ar_ptr;
2847 void *victim;
2849 __malloc_ptr_t (*hook) (size_t, const __malloc_ptr_t)
2850 = force_reg (__malloc_hook);
2851 if (__builtin_expect (hook != NULL, 0))
2852 return (*hook)(bytes, RETURN_ADDRESS (0));
2854 arena_lookup(ar_ptr);
2856 arena_lock(ar_ptr, bytes);
2857 if(!ar_ptr)
2858 return 0;
2859 victim = _int_malloc(ar_ptr, bytes);
2860 if(!victim) {
2861 /* Maybe the failure is due to running out of mmapped areas. */
2862 if(ar_ptr != &main_arena) {
2863 (void)mutex_unlock(&ar_ptr->mutex);
2864 ar_ptr = &main_arena;
2865 (void)mutex_lock(&ar_ptr->mutex);
2866 victim = _int_malloc(ar_ptr, bytes);
2867 (void)mutex_unlock(&ar_ptr->mutex);
2868 } else {
2869 /* ... or sbrk() has failed and there is still a chance to mmap()
2870 Grab ar_ptr->next prior to releasing its lock. */
2871 mstate prev = ar_ptr->next ? ar_ptr : 0;
2872 (void)mutex_unlock(&ar_ptr->mutex);
2873 ar_ptr = arena_get2(prev, bytes, ar_ptr);
2874 if(ar_ptr) {
2875 victim = _int_malloc(ar_ptr, bytes);
2876 (void)mutex_unlock(&ar_ptr->mutex);
2879 } else
2880 (void)mutex_unlock(&ar_ptr->mutex);
2881 assert(!victim || chunk_is_mmapped(mem2chunk(victim)) ||
2882 ar_ptr == arena_for_chunk(mem2chunk(victim)));
2883 return victim;
2885 libc_hidden_def(__libc_malloc)
2887 void
2888 __libc_free(void* mem)
2890 mstate ar_ptr;
2891 mchunkptr p; /* chunk corresponding to mem */
2893 void (*hook) (__malloc_ptr_t, const __malloc_ptr_t)
2894 = force_reg (__free_hook);
2895 if (__builtin_expect (hook != NULL, 0)) {
2896 (*hook)(mem, RETURN_ADDRESS (0));
2897 return;
2900 if (mem == 0) /* free(0) has no effect */
2901 return;
2903 p = mem2chunk(mem);
2905 if (chunk_is_mmapped(p)) /* release mmapped memory. */
2907 /* see if the dynamic brk/mmap threshold needs adjusting */
2908 if (!mp_.no_dyn_threshold
2909 && p->size > mp_.mmap_threshold
2910 && p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
2912 mp_.mmap_threshold = chunksize (p);
2913 mp_.trim_threshold = 2 * mp_.mmap_threshold;
2915 munmap_chunk(p);
2916 return;
2919 ar_ptr = arena_for_chunk(p);
2920 _int_free(ar_ptr, p, 0);
2922 libc_hidden_def (__libc_free)
2924 void*
2925 __libc_realloc(void* oldmem, size_t bytes)
2927 mstate ar_ptr;
2928 INTERNAL_SIZE_T nb; /* padded request size */
2930 void* newp; /* chunk to return */
2932 __malloc_ptr_t (*hook) (__malloc_ptr_t, size_t, const __malloc_ptr_t) =
2933 force_reg (__realloc_hook);
2934 if (__builtin_expect (hook != NULL, 0))
2935 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
2937 #if REALLOC_ZERO_BYTES_FREES
2938 if (bytes == 0 && oldmem != NULL) { __libc_free(oldmem); return 0; }
2939 #endif
2941 /* realloc of null is supposed to be same as malloc */
2942 if (oldmem == 0) return __libc_malloc(bytes);
2944 /* chunk corresponding to oldmem */
2945 const mchunkptr oldp = mem2chunk(oldmem);
2946 /* its size */
2947 const INTERNAL_SIZE_T oldsize = chunksize(oldp);
2949 /* Little security check which won't hurt performance: the
2950 allocator never wrapps around at the end of the address space.
2951 Therefore we can exclude some size values which might appear
2952 here by accident or by "design" from some intruder. */
2953 if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
2954 || __builtin_expect (misaligned_chunk (oldp), 0))
2956 malloc_printerr (check_action, "realloc(): invalid pointer", oldmem);
2957 return NULL;
2960 checked_request2size(bytes, nb);
2962 if (chunk_is_mmapped(oldp))
2964 void* newmem;
2966 #if HAVE_MREMAP
2967 newp = mremap_chunk(oldp, nb);
2968 if(newp) return chunk2mem(newp);
2969 #endif
2970 /* Note the extra SIZE_SZ overhead. */
2971 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2972 /* Must alloc, copy, free. */
2973 newmem = __libc_malloc(bytes);
2974 if (newmem == 0) return 0; /* propagate failure */
2975 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2976 munmap_chunk(oldp);
2977 return newmem;
2980 ar_ptr = arena_for_chunk(oldp);
2981 #if THREAD_STATS
2982 if(!mutex_trylock(&ar_ptr->mutex))
2983 ++(ar_ptr->stat_lock_direct);
2984 else {
2985 (void)mutex_lock(&ar_ptr->mutex);
2986 ++(ar_ptr->stat_lock_wait);
2988 #else
2989 (void)mutex_lock(&ar_ptr->mutex);
2990 #endif
2992 #if !defined PER_THREAD
2993 /* As in malloc(), remember this arena for the next allocation. */
2994 tsd_setspecific(arena_key, (void *)ar_ptr);
2995 #endif
2997 newp = _int_realloc(ar_ptr, oldp, oldsize, nb);
2999 (void)mutex_unlock(&ar_ptr->mutex);
3000 assert(!newp || chunk_is_mmapped(mem2chunk(newp)) ||
3001 ar_ptr == arena_for_chunk(mem2chunk(newp)));
3003 if (newp == NULL)
3005 /* Try harder to allocate memory in other arenas. */
3006 newp = __libc_malloc(bytes);
3007 if (newp != NULL)
3009 MALLOC_COPY (newp, oldmem, oldsize - SIZE_SZ);
3010 _int_free(ar_ptr, oldp, 0);
3014 return newp;
3016 libc_hidden_def (__libc_realloc)
3018 void*
3019 __libc_memalign(size_t alignment, size_t bytes)
3021 mstate ar_ptr;
3022 void *p;
3024 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3025 const __malloc_ptr_t)) =
3026 force_reg (__memalign_hook);
3027 if (__builtin_expect (hook != NULL, 0))
3028 return (*hook)(alignment, bytes, RETURN_ADDRESS (0));
3030 /* If need less alignment than we give anyway, just relay to malloc */
3031 if (alignment <= MALLOC_ALIGNMENT) return __libc_malloc(bytes);
3033 /* Otherwise, ensure that it is at least a minimum chunk size */
3034 if (alignment < MINSIZE) alignment = MINSIZE;
3036 arena_get(ar_ptr, bytes + alignment + MINSIZE);
3037 if(!ar_ptr)
3038 return 0;
3039 p = _int_memalign(ar_ptr, alignment, bytes);
3040 if(!p) {
3041 /* Maybe the failure is due to running out of mmapped areas. */
3042 if(ar_ptr != &main_arena) {
3043 (void)mutex_unlock(&ar_ptr->mutex);
3044 ar_ptr = &main_arena;
3045 (void)mutex_lock(&ar_ptr->mutex);
3046 p = _int_memalign(ar_ptr, alignment, bytes);
3047 (void)mutex_unlock(&ar_ptr->mutex);
3048 } else {
3049 /* ... or sbrk() has failed and there is still a chance to mmap()
3050 Grab ar_ptr->next prior to releasing its lock. */
3051 mstate prev = ar_ptr->next ? ar_ptr : 0;
3052 (void)mutex_unlock(&ar_ptr->mutex);
3053 ar_ptr = arena_get2(prev, bytes, ar_ptr);
3054 if(ar_ptr) {
3055 p = _int_memalign(ar_ptr, alignment, bytes);
3056 (void)mutex_unlock(&ar_ptr->mutex);
3059 } else
3060 (void)mutex_unlock(&ar_ptr->mutex);
3061 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3062 ar_ptr == arena_for_chunk(mem2chunk(p)));
3063 return p;
3065 /* For ISO C11. */
3066 weak_alias (__libc_memalign, aligned_alloc)
3067 libc_hidden_def (__libc_memalign)
3069 void*
3070 __libc_valloc(size_t bytes)
3072 mstate ar_ptr;
3073 void *p;
3075 if(__malloc_initialized < 0)
3076 ptmalloc_init ();
3078 size_t pagesz = GLRO(dl_pagesize);
3080 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3081 const __malloc_ptr_t)) =
3082 force_reg (__memalign_hook);
3083 if (__builtin_expect (hook != NULL, 0))
3084 return (*hook)(pagesz, bytes, RETURN_ADDRESS (0));
3086 arena_get(ar_ptr, bytes + pagesz + MINSIZE);
3087 if(!ar_ptr)
3088 return 0;
3089 p = _int_valloc(ar_ptr, bytes);
3090 if(!p) {
3091 /* Maybe the failure is due to running out of mmapped areas. */
3092 if(ar_ptr != &main_arena) {
3093 (void)mutex_unlock(&ar_ptr->mutex);
3094 ar_ptr = &main_arena;
3095 (void)mutex_lock(&ar_ptr->mutex);
3096 p = _int_memalign(ar_ptr, pagesz, bytes);
3097 (void)mutex_unlock(&ar_ptr->mutex);
3098 } else {
3099 /* ... or sbrk() has failed and there is still a chance to mmap()
3100 Grab ar_ptr->next prior to releasing its lock. */
3101 mstate prev = ar_ptr->next ? ar_ptr : 0;
3102 (void)mutex_unlock(&ar_ptr->mutex);
3103 ar_ptr = arena_get2(prev, bytes, ar_ptr);
3104 if(ar_ptr) {
3105 p = _int_memalign(ar_ptr, pagesz, bytes);
3106 (void)mutex_unlock(&ar_ptr->mutex);
3109 } else
3110 (void)mutex_unlock (&ar_ptr->mutex);
3111 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3112 ar_ptr == arena_for_chunk(mem2chunk(p)));
3114 return p;
3117 void*
3118 __libc_pvalloc(size_t bytes)
3120 mstate ar_ptr;
3121 void *p;
3123 if(__malloc_initialized < 0)
3124 ptmalloc_init ();
3126 size_t pagesz = GLRO(dl_pagesize);
3127 size_t page_mask = GLRO(dl_pagesize) - 1;
3128 size_t rounded_bytes = (bytes + page_mask) & ~(page_mask);
3130 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3131 const __malloc_ptr_t)) =
3132 force_reg (__memalign_hook);
3133 if (__builtin_expect (hook != NULL, 0))
3134 return (*hook)(pagesz, rounded_bytes, RETURN_ADDRESS (0));
3136 arena_get(ar_ptr, bytes + 2*pagesz + MINSIZE);
3137 p = _int_pvalloc(ar_ptr, bytes);
3138 if(!p) {
3139 /* Maybe the failure is due to running out of mmapped areas. */
3140 if(ar_ptr != &main_arena) {
3141 (void)mutex_unlock(&ar_ptr->mutex);
3142 ar_ptr = &main_arena;
3143 (void)mutex_lock(&ar_ptr->mutex);
3144 p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
3145 (void)mutex_unlock(&ar_ptr->mutex);
3146 } else {
3147 /* ... or sbrk() has failed and there is still a chance to mmap()
3148 Grab ar_ptr->next prior to releasing its lock. */
3149 mstate prev = ar_ptr->next ? ar_ptr : 0;
3150 (void)mutex_unlock(&ar_ptr->mutex);
3151 ar_ptr = arena_get2(prev, bytes + 2*pagesz + MINSIZE, ar_ptr);
3152 if(ar_ptr) {
3153 p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
3154 (void)mutex_unlock(&ar_ptr->mutex);
3157 } else
3158 (void)mutex_unlock(&ar_ptr->mutex);
3159 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3160 ar_ptr == arena_for_chunk(mem2chunk(p)));
3162 return p;
3165 void*
3166 __libc_calloc(size_t n, size_t elem_size)
3168 mstate av;
3169 mchunkptr oldtop, p;
3170 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
3171 void* mem;
3172 unsigned long clearsize;
3173 unsigned long nclears;
3174 INTERNAL_SIZE_T* d;
3176 /* size_t is unsigned so the behavior on overflow is defined. */
3177 bytes = n * elem_size;
3178 #define HALF_INTERNAL_SIZE_T \
3179 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3180 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) {
3181 if (elem_size != 0 && bytes / elem_size != n) {
3182 __set_errno (ENOMEM);
3183 return 0;
3187 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, const __malloc_ptr_t)) =
3188 force_reg (__malloc_hook);
3189 if (__builtin_expect (hook != NULL, 0)) {
3190 sz = bytes;
3191 mem = (*hook)(sz, RETURN_ADDRESS (0));
3192 if(mem == 0)
3193 return 0;
3194 return memset(mem, 0, sz);
3197 sz = bytes;
3199 arena_get(av, sz);
3200 if(!av)
3201 return 0;
3203 /* Check if we hand out the top chunk, in which case there may be no
3204 need to clear. */
3205 #if MORECORE_CLEARS
3206 oldtop = top(av);
3207 oldtopsize = chunksize(top(av));
3208 #if MORECORE_CLEARS < 2
3209 /* Only newly allocated memory is guaranteed to be cleared. */
3210 if (av == &main_arena &&
3211 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *)oldtop)
3212 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *)oldtop);
3213 #endif
3214 if (av != &main_arena)
3216 heap_info *heap = heap_for_ptr (oldtop);
3217 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3218 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3220 #endif
3221 mem = _int_malloc(av, sz);
3224 assert(!mem || chunk_is_mmapped(mem2chunk(mem)) ||
3225 av == arena_for_chunk(mem2chunk(mem)));
3227 if (mem == 0) {
3228 /* Maybe the failure is due to running out of mmapped areas. */
3229 if(av != &main_arena) {
3230 (void)mutex_unlock(&av->mutex);
3231 (void)mutex_lock(&main_arena.mutex);
3232 mem = _int_malloc(&main_arena, sz);
3233 (void)mutex_unlock(&main_arena.mutex);
3234 } else {
3235 /* ... or sbrk() has failed and there is still a chance to mmap()
3236 Grab av->next prior to releasing its lock. */
3237 mstate prev = av->next ? av : 0;
3238 (void)mutex_unlock(&av->mutex);
3239 av = arena_get2(prev, sz, av);
3240 if(av) {
3241 mem = _int_malloc(av, sz);
3242 (void)mutex_unlock(&av->mutex);
3245 if (mem == 0) return 0;
3246 } else
3247 (void)mutex_unlock(&av->mutex);
3248 p = mem2chunk(mem);
3250 /* Two optional cases in which clearing not necessary */
3251 if (chunk_is_mmapped (p))
3253 if (__builtin_expect (perturb_byte, 0))
3254 MALLOC_ZERO (mem, sz);
3255 return mem;
3258 csz = chunksize(p);
3260 #if MORECORE_CLEARS
3261 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) {
3262 /* clear only the bytes from non-freshly-sbrked memory */
3263 csz = oldtopsize;
3265 #endif
3267 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3268 contents have an odd number of INTERNAL_SIZE_T-sized words;
3269 minimally 3. */
3270 d = (INTERNAL_SIZE_T*)mem;
3271 clearsize = csz - SIZE_SZ;
3272 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
3273 assert(nclears >= 3);
3275 if (nclears > 9)
3276 MALLOC_ZERO(d, clearsize);
3278 else {
3279 *(d+0) = 0;
3280 *(d+1) = 0;
3281 *(d+2) = 0;
3282 if (nclears > 4) {
3283 *(d+3) = 0;
3284 *(d+4) = 0;
3285 if (nclears > 6) {
3286 *(d+5) = 0;
3287 *(d+6) = 0;
3288 if (nclears > 8) {
3289 *(d+7) = 0;
3290 *(d+8) = 0;
3296 return mem;
3300 ------------------------------ malloc ------------------------------
3303 static void*
3304 _int_malloc(mstate av, size_t bytes)
3306 INTERNAL_SIZE_T nb; /* normalized request size */
3307 unsigned int idx; /* associated bin index */
3308 mbinptr bin; /* associated bin */
3310 mchunkptr victim; /* inspected/selected chunk */
3311 INTERNAL_SIZE_T size; /* its size */
3312 int victim_index; /* its bin index */
3314 mchunkptr remainder; /* remainder from a split */
3315 unsigned long remainder_size; /* its size */
3317 unsigned int block; /* bit map traverser */
3318 unsigned int bit; /* bit map traverser */
3319 unsigned int map; /* current word of binmap */
3321 mchunkptr fwd; /* misc temp for linking */
3322 mchunkptr bck; /* misc temp for linking */
3324 const char *errstr = NULL;
3327 Convert request size to internal form by adding SIZE_SZ bytes
3328 overhead plus possibly more to obtain necessary alignment and/or
3329 to obtain a size of at least MINSIZE, the smallest allocatable
3330 size. Also, checked_request2size traps (returning 0) request sizes
3331 that are so large that they wrap around zero when padded and
3332 aligned.
3335 checked_request2size(bytes, nb);
3338 If the size qualifies as a fastbin, first check corresponding bin.
3339 This code is safe to execute even if av is not yet initialized, so we
3340 can try it without checking, which saves some time on this fast path.
3343 if ((unsigned long)(nb) <= (unsigned long)(get_max_fast ())) {
3344 idx = fastbin_index(nb);
3345 mfastbinptr* fb = &fastbin (av, idx);
3346 mchunkptr pp = *fb;
3349 victim = pp;
3350 if (victim == NULL)
3351 break;
3353 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim))
3354 != victim);
3355 if (victim != 0) {
3356 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
3358 errstr = "malloc(): memory corruption (fast)";
3359 errout:
3360 malloc_printerr (check_action, errstr, chunk2mem (victim));
3361 return NULL;
3363 check_remalloced_chunk(av, victim, nb);
3364 void *p = chunk2mem(victim);
3365 if (__builtin_expect (perturb_byte, 0))
3366 alloc_perturb (p, bytes);
3367 return p;
3372 If a small request, check regular bin. Since these "smallbins"
3373 hold one size each, no searching within bins is necessary.
3374 (For a large request, we need to wait until unsorted chunks are
3375 processed to find best fit. But for small ones, fits are exact
3376 anyway, so we can check now, which is faster.)
3379 if (in_smallbin_range(nb)) {
3380 idx = smallbin_index(nb);
3381 bin = bin_at(av,idx);
3383 if ( (victim = last(bin)) != bin) {
3384 if (victim == 0) /* initialization check */
3385 malloc_consolidate(av);
3386 else {
3387 bck = victim->bk;
3388 if (__builtin_expect (bck->fd != victim, 0))
3390 errstr = "malloc(): smallbin double linked list corrupted";
3391 goto errout;
3393 set_inuse_bit_at_offset(victim, nb);
3394 bin->bk = bck;
3395 bck->fd = bin;
3397 if (av != &main_arena)
3398 victim->size |= NON_MAIN_ARENA;
3399 check_malloced_chunk(av, victim, nb);
3400 void *p = chunk2mem(victim);
3401 if (__builtin_expect (perturb_byte, 0))
3402 alloc_perturb (p, bytes);
3403 return p;
3409 If this is a large request, consolidate fastbins before continuing.
3410 While it might look excessive to kill all fastbins before
3411 even seeing if there is space available, this avoids
3412 fragmentation problems normally associated with fastbins.
3413 Also, in practice, programs tend to have runs of either small or
3414 large requests, but less often mixtures, so consolidation is not
3415 invoked all that often in most programs. And the programs that
3416 it is called frequently in otherwise tend to fragment.
3419 else {
3420 idx = largebin_index(nb);
3421 if (have_fastchunks(av))
3422 malloc_consolidate(av);
3426 Process recently freed or remaindered chunks, taking one only if
3427 it is exact fit, or, if this a small request, the chunk is remainder from
3428 the most recent non-exact fit. Place other traversed chunks in
3429 bins. Note that this step is the only place in any routine where
3430 chunks are placed in bins.
3432 The outer loop here is needed because we might not realize until
3433 near the end of malloc that we should have consolidated, so must
3434 do so and retry. This happens at most once, and only when we would
3435 otherwise need to expand memory to service a "small" request.
3438 for(;;) {
3440 int iters = 0;
3441 while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
3442 bck = victim->bk;
3443 if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
3444 || __builtin_expect (victim->size > av->system_mem, 0))
3445 malloc_printerr (check_action, "malloc(): memory corruption",
3446 chunk2mem (victim));
3447 size = chunksize(victim);
3450 If a small request, try to use last remainder if it is the
3451 only chunk in unsorted bin. This helps promote locality for
3452 runs of consecutive small requests. This is the only
3453 exception to best-fit, and applies only when there is
3454 no exact fit for a small chunk.
3457 if (in_smallbin_range(nb) &&
3458 bck == unsorted_chunks(av) &&
3459 victim == av->last_remainder &&
3460 (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
3462 /* split and reattach remainder */
3463 remainder_size = size - nb;
3464 remainder = chunk_at_offset(victim, nb);
3465 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
3466 av->last_remainder = remainder;
3467 remainder->bk = remainder->fd = unsorted_chunks(av);
3468 if (!in_smallbin_range(remainder_size))
3470 remainder->fd_nextsize = NULL;
3471 remainder->bk_nextsize = NULL;
3474 set_head(victim, nb | PREV_INUSE |
3475 (av != &main_arena ? NON_MAIN_ARENA : 0));
3476 set_head(remainder, remainder_size | PREV_INUSE);
3477 set_foot(remainder, remainder_size);
3479 check_malloced_chunk(av, victim, nb);
3480 void *p = chunk2mem(victim);
3481 if (__builtin_expect (perturb_byte, 0))
3482 alloc_perturb (p, bytes);
3483 return p;
3486 /* remove from unsorted list */
3487 unsorted_chunks(av)->bk = bck;
3488 bck->fd = unsorted_chunks(av);
3490 /* Take now instead of binning if exact fit */
3492 if (size == nb) {
3493 set_inuse_bit_at_offset(victim, size);
3494 if (av != &main_arena)
3495 victim->size |= NON_MAIN_ARENA;
3496 check_malloced_chunk(av, victim, nb);
3497 void *p = chunk2mem(victim);
3498 if (__builtin_expect (perturb_byte, 0))
3499 alloc_perturb (p, bytes);
3500 return p;
3503 /* place chunk in bin */
3505 if (in_smallbin_range(size)) {
3506 victim_index = smallbin_index(size);
3507 bck = bin_at(av, victim_index);
3508 fwd = bck->fd;
3510 else {
3511 victim_index = largebin_index(size);
3512 bck = bin_at(av, victim_index);
3513 fwd = bck->fd;
3515 /* maintain large bins in sorted order */
3516 if (fwd != bck) {
3517 /* Or with inuse bit to speed comparisons */
3518 size |= PREV_INUSE;
3519 /* if smaller than smallest, bypass loop below */
3520 assert((bck->bk->size & NON_MAIN_ARENA) == 0);
3521 if ((unsigned long)(size) < (unsigned long)(bck->bk->size)) {
3522 fwd = bck;
3523 bck = bck->bk;
3525 victim->fd_nextsize = fwd->fd;
3526 victim->bk_nextsize = fwd->fd->bk_nextsize;
3527 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
3529 else {
3530 assert((fwd->size & NON_MAIN_ARENA) == 0);
3531 while ((unsigned long) size < fwd->size)
3533 fwd = fwd->fd_nextsize;
3534 assert((fwd->size & NON_MAIN_ARENA) == 0);
3537 if ((unsigned long) size == (unsigned long) fwd->size)
3538 /* Always insert in the second position. */
3539 fwd = fwd->fd;
3540 else
3542 victim->fd_nextsize = fwd;
3543 victim->bk_nextsize = fwd->bk_nextsize;
3544 fwd->bk_nextsize = victim;
3545 victim->bk_nextsize->fd_nextsize = victim;
3547 bck = fwd->bk;
3549 } else
3550 victim->fd_nextsize = victim->bk_nextsize = victim;
3553 mark_bin(av, victim_index);
3554 victim->bk = bck;
3555 victim->fd = fwd;
3556 fwd->bk = victim;
3557 bck->fd = victim;
3559 #define MAX_ITERS 10000
3560 if (++iters >= MAX_ITERS)
3561 break;
3565 If a large request, scan through the chunks of current bin in
3566 sorted order to find smallest that fits. Use the skip list for this.
3569 if (!in_smallbin_range(nb)) {
3570 bin = bin_at(av, idx);
3572 /* skip scan if empty or largest chunk is too small */
3573 if ((victim = first(bin)) != bin &&
3574 (unsigned long)(victim->size) >= (unsigned long)(nb)) {
3576 victim = victim->bk_nextsize;
3577 while (((unsigned long)(size = chunksize(victim)) <
3578 (unsigned long)(nb)))
3579 victim = victim->bk_nextsize;
3581 /* Avoid removing the first entry for a size so that the skip
3582 list does not have to be rerouted. */
3583 if (victim != last(bin) && victim->size == victim->fd->size)
3584 victim = victim->fd;
3586 remainder_size = size - nb;
3587 unlink(victim, bck, fwd);
3589 /* Exhaust */
3590 if (remainder_size < MINSIZE) {
3591 set_inuse_bit_at_offset(victim, size);
3592 if (av != &main_arena)
3593 victim->size |= NON_MAIN_ARENA;
3595 /* Split */
3596 else {
3597 remainder = chunk_at_offset(victim, nb);
3598 /* We cannot assume the unsorted list is empty and therefore
3599 have to perform a complete insert here. */
3600 bck = unsorted_chunks(av);
3601 fwd = bck->fd;
3602 if (__builtin_expect (fwd->bk != bck, 0))
3604 errstr = "malloc(): corrupted unsorted chunks";
3605 goto errout;
3607 remainder->bk = bck;
3608 remainder->fd = fwd;
3609 bck->fd = remainder;
3610 fwd->bk = remainder;
3611 if (!in_smallbin_range(remainder_size))
3613 remainder->fd_nextsize = NULL;
3614 remainder->bk_nextsize = NULL;
3616 set_head(victim, nb | PREV_INUSE |
3617 (av != &main_arena ? NON_MAIN_ARENA : 0));
3618 set_head(remainder, remainder_size | PREV_INUSE);
3619 set_foot(remainder, remainder_size);
3621 check_malloced_chunk(av, victim, nb);
3622 void *p = chunk2mem(victim);
3623 if (__builtin_expect (perturb_byte, 0))
3624 alloc_perturb (p, bytes);
3625 return p;
3630 Search for a chunk by scanning bins, starting with next largest
3631 bin. This search is strictly by best-fit; i.e., the smallest
3632 (with ties going to approximately the least recently used) chunk
3633 that fits is selected.
3635 The bitmap avoids needing to check that most blocks are nonempty.
3636 The particular case of skipping all bins during warm-up phases
3637 when no chunks have been returned yet is faster than it might look.
3640 ++idx;
3641 bin = bin_at(av,idx);
3642 block = idx2block(idx);
3643 map = av->binmap[block];
3644 bit = idx2bit(idx);
3646 for (;;) {
3648 /* Skip rest of block if there are no more set bits in this block. */
3649 if (bit > map || bit == 0) {
3650 do {
3651 if (++block >= BINMAPSIZE) /* out of bins */
3652 goto use_top;
3653 } while ( (map = av->binmap[block]) == 0);
3655 bin = bin_at(av, (block << BINMAPSHIFT));
3656 bit = 1;
3659 /* Advance to bin with set bit. There must be one. */
3660 while ((bit & map) == 0) {
3661 bin = next_bin(bin);
3662 bit <<= 1;
3663 assert(bit != 0);
3666 /* Inspect the bin. It is likely to be non-empty */
3667 victim = last(bin);
3669 /* If a false alarm (empty bin), clear the bit. */
3670 if (victim == bin) {
3671 av->binmap[block] = map &= ~bit; /* Write through */
3672 bin = next_bin(bin);
3673 bit <<= 1;
3676 else {
3677 size = chunksize(victim);
3679 /* We know the first chunk in this bin is big enough to use. */
3680 assert((unsigned long)(size) >= (unsigned long)(nb));
3682 remainder_size = size - nb;
3684 /* unlink */
3685 unlink(victim, bck, fwd);
3687 /* Exhaust */
3688 if (remainder_size < MINSIZE) {
3689 set_inuse_bit_at_offset(victim, size);
3690 if (av != &main_arena)
3691 victim->size |= NON_MAIN_ARENA;
3694 /* Split */
3695 else {
3696 remainder = chunk_at_offset(victim, nb);
3698 /* We cannot assume the unsorted list is empty and therefore
3699 have to perform a complete insert here. */
3700 bck = unsorted_chunks(av);
3701 fwd = bck->fd;
3702 if (__builtin_expect (fwd->bk != bck, 0))
3704 errstr = "malloc(): corrupted unsorted chunks 2";
3705 goto errout;
3707 remainder->bk = bck;
3708 remainder->fd = fwd;
3709 bck->fd = remainder;
3710 fwd->bk = remainder;
3712 /* advertise as last remainder */
3713 if (in_smallbin_range(nb))
3714 av->last_remainder = remainder;
3715 if (!in_smallbin_range(remainder_size))
3717 remainder->fd_nextsize = NULL;
3718 remainder->bk_nextsize = NULL;
3720 set_head(victim, nb | PREV_INUSE |
3721 (av != &main_arena ? NON_MAIN_ARENA : 0));
3722 set_head(remainder, remainder_size | PREV_INUSE);
3723 set_foot(remainder, remainder_size);
3725 check_malloced_chunk(av, victim, nb);
3726 void *p = chunk2mem(victim);
3727 if (__builtin_expect (perturb_byte, 0))
3728 alloc_perturb (p, bytes);
3729 return p;
3733 use_top:
3735 If large enough, split off the chunk bordering the end of memory
3736 (held in av->top). Note that this is in accord with the best-fit
3737 search rule. In effect, av->top is treated as larger (and thus
3738 less well fitting) than any other available chunk since it can
3739 be extended to be as large as necessary (up to system
3740 limitations).
3742 We require that av->top always exists (i.e., has size >=
3743 MINSIZE) after initialization, so if it would otherwise be
3744 exhausted by current request, it is replenished. (The main
3745 reason for ensuring it exists is that we may need MINSIZE space
3746 to put in fenceposts in sysmalloc.)
3749 victim = av->top;
3750 size = chunksize(victim);
3752 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
3753 remainder_size = size - nb;
3754 remainder = chunk_at_offset(victim, nb);
3755 av->top = remainder;
3756 set_head(victim, nb | PREV_INUSE |
3757 (av != &main_arena ? NON_MAIN_ARENA : 0));
3758 set_head(remainder, remainder_size | PREV_INUSE);
3760 check_malloced_chunk(av, victim, nb);
3761 void *p = chunk2mem(victim);
3762 if (__builtin_expect (perturb_byte, 0))
3763 alloc_perturb (p, bytes);
3764 return p;
3767 /* When we are using atomic ops to free fast chunks we can get
3768 here for all block sizes. */
3769 else if (have_fastchunks(av)) {
3770 malloc_consolidate(av);
3771 /* restore original bin index */
3772 if (in_smallbin_range(nb))
3773 idx = smallbin_index(nb);
3774 else
3775 idx = largebin_index(nb);
3779 Otherwise, relay to handle system-dependent cases
3781 else {
3782 void *p = sysmalloc(nb, av);
3783 if (p != NULL && __builtin_expect (perturb_byte, 0))
3784 alloc_perturb (p, bytes);
3785 return p;
3791 ------------------------------ free ------------------------------
3794 static void
3795 _int_free(mstate av, mchunkptr p, int have_lock)
3797 INTERNAL_SIZE_T size; /* its size */
3798 mfastbinptr* fb; /* associated fastbin */
3799 mchunkptr nextchunk; /* next contiguous chunk */
3800 INTERNAL_SIZE_T nextsize; /* its size */
3801 int nextinuse; /* true if nextchunk is used */
3802 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
3803 mchunkptr bck; /* misc temp for linking */
3804 mchunkptr fwd; /* misc temp for linking */
3806 const char *errstr = NULL;
3807 int locked = 0;
3809 size = chunksize(p);
3811 /* Little security check which won't hurt performance: the
3812 allocator never wrapps around at the end of the address space.
3813 Therefore we can exclude some size values which might appear
3814 here by accident or by "design" from some intruder. */
3815 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
3816 || __builtin_expect (misaligned_chunk (p), 0))
3818 errstr = "free(): invalid pointer";
3819 errout:
3820 if (! have_lock && locked)
3821 (void)mutex_unlock(&av->mutex);
3822 malloc_printerr (check_action, errstr, chunk2mem(p));
3823 return;
3825 /* We know that each chunk is at least MINSIZE bytes in size or a
3826 multiple of MALLOC_ALIGNMENT. */
3827 if (__builtin_expect (size < MINSIZE || !aligned_OK (size), 0))
3829 errstr = "free(): invalid size";
3830 goto errout;
3833 check_inuse_chunk(av, p);
3836 If eligible, place chunk on a fastbin so it can be found
3837 and used quickly in malloc.
3840 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
3842 #if TRIM_FASTBINS
3844 If TRIM_FASTBINS set, don't place chunks
3845 bordering top into fastbins
3847 && (chunk_at_offset(p, size) != av->top)
3848 #endif
3851 if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
3852 || __builtin_expect (chunksize (chunk_at_offset (p, size))
3853 >= av->system_mem, 0))
3855 /* We might not have a lock at this point and concurrent modifications
3856 of system_mem might have let to a false positive. Redo the test
3857 after getting the lock. */
3858 if (have_lock
3859 || ({ assert (locked == 0);
3860 mutex_lock(&av->mutex);
3861 locked = 1;
3862 chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
3863 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
3866 errstr = "free(): invalid next size (fast)";
3867 goto errout;
3869 if (! have_lock)
3871 (void)mutex_unlock(&av->mutex);
3872 locked = 0;
3876 if (__builtin_expect (perturb_byte, 0))
3877 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
3879 set_fastchunks(av);
3880 unsigned int idx = fastbin_index(size);
3881 fb = &fastbin (av, idx);
3883 mchunkptr fd;
3884 mchunkptr old = *fb;
3885 unsigned int old_idx = ~0u;
3888 /* Another simple check: make sure the top of the bin is not the
3889 record we are going to add (i.e., double free). */
3890 if (__builtin_expect (old == p, 0))
3892 errstr = "double free or corruption (fasttop)";
3893 goto errout;
3895 if (old != NULL)
3896 old_idx = fastbin_index(chunksize(old));
3897 p->fd = fd = old;
3899 while ((old = catomic_compare_and_exchange_val_rel (fb, p, fd)) != fd);
3901 if (fd != NULL && __builtin_expect (old_idx != idx, 0))
3903 errstr = "invalid fastbin entry (free)";
3904 goto errout;
3909 Consolidate other non-mmapped chunks as they arrive.
3912 else if (!chunk_is_mmapped(p)) {
3913 if (! have_lock) {
3914 #if THREAD_STATS
3915 if(!mutex_trylock(&av->mutex))
3916 ++(av->stat_lock_direct);
3917 else {
3918 (void)mutex_lock(&av->mutex);
3919 ++(av->stat_lock_wait);
3921 #else
3922 (void)mutex_lock(&av->mutex);
3923 #endif
3924 locked = 1;
3927 nextchunk = chunk_at_offset(p, size);
3929 /* Lightweight tests: check whether the block is already the
3930 top block. */
3931 if (__builtin_expect (p == av->top, 0))
3933 errstr = "double free or corruption (top)";
3934 goto errout;
3936 /* Or whether the next chunk is beyond the boundaries of the arena. */
3937 if (__builtin_expect (contiguous (av)
3938 && (char *) nextchunk
3939 >= ((char *) av->top + chunksize(av->top)), 0))
3941 errstr = "double free or corruption (out)";
3942 goto errout;
3944 /* Or whether the block is actually not marked used. */
3945 if (__builtin_expect (!prev_inuse(nextchunk), 0))
3947 errstr = "double free or corruption (!prev)";
3948 goto errout;
3951 nextsize = chunksize(nextchunk);
3952 if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
3953 || __builtin_expect (nextsize >= av->system_mem, 0))
3955 errstr = "free(): invalid next size (normal)";
3956 goto errout;
3959 if (__builtin_expect (perturb_byte, 0))
3960 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
3962 /* consolidate backward */
3963 if (!prev_inuse(p)) {
3964 prevsize = p->prev_size;
3965 size += prevsize;
3966 p = chunk_at_offset(p, -((long) prevsize));
3967 unlink(p, bck, fwd);
3970 if (nextchunk != av->top) {
3971 /* get and clear inuse bit */
3972 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
3974 /* consolidate forward */
3975 if (!nextinuse) {
3976 unlink(nextchunk, bck, fwd);
3977 size += nextsize;
3978 } else
3979 clear_inuse_bit_at_offset(nextchunk, 0);
3982 Place the chunk in unsorted chunk list. Chunks are
3983 not placed into regular bins until after they have
3984 been given one chance to be used in malloc.
3987 bck = unsorted_chunks(av);
3988 fwd = bck->fd;
3989 if (__builtin_expect (fwd->bk != bck, 0))
3991 errstr = "free(): corrupted unsorted chunks";
3992 goto errout;
3994 p->fd = fwd;
3995 p->bk = bck;
3996 if (!in_smallbin_range(size))
3998 p->fd_nextsize = NULL;
3999 p->bk_nextsize = NULL;
4001 bck->fd = p;
4002 fwd->bk = p;
4004 set_head(p, size | PREV_INUSE);
4005 set_foot(p, size);
4007 check_free_chunk(av, p);
4011 If the chunk borders the current high end of memory,
4012 consolidate into top
4015 else {
4016 size += nextsize;
4017 set_head(p, size | PREV_INUSE);
4018 av->top = p;
4019 check_chunk(av, p);
4023 If freeing a large space, consolidate possibly-surrounding
4024 chunks. Then, if the total unused topmost memory exceeds trim
4025 threshold, ask malloc_trim to reduce top.
4027 Unless max_fast is 0, we don't know if there are fastbins
4028 bordering top, so we cannot tell for sure whether threshold
4029 has been reached unless fastbins are consolidated. But we
4030 don't want to consolidate on each free. As a compromise,
4031 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4032 is reached.
4035 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4036 if (have_fastchunks(av))
4037 malloc_consolidate(av);
4039 if (av == &main_arena) {
4040 #ifndef MORECORE_CANNOT_TRIM
4041 if ((unsigned long)(chunksize(av->top)) >=
4042 (unsigned long)(mp_.trim_threshold))
4043 systrim(mp_.top_pad, av);
4044 #endif
4045 } else {
4046 /* Always try heap_trim(), even if the top chunk is not
4047 large, because the corresponding heap might go away. */
4048 heap_info *heap = heap_for_ptr(top(av));
4050 assert(heap->ar_ptr == av);
4051 heap_trim(heap, mp_.top_pad);
4055 if (! have_lock) {
4056 assert (locked);
4057 (void)mutex_unlock(&av->mutex);
4061 If the chunk was allocated via mmap, release via munmap().
4064 else {
4065 munmap_chunk (p);
4070 ------------------------- malloc_consolidate -------------------------
4072 malloc_consolidate is a specialized version of free() that tears
4073 down chunks held in fastbins. Free itself cannot be used for this
4074 purpose since, among other things, it might place chunks back onto
4075 fastbins. So, instead, we need to use a minor variant of the same
4076 code.
4078 Also, because this routine needs to be called the first time through
4079 malloc anyway, it turns out to be the perfect place to trigger
4080 initialization code.
4083 static void malloc_consolidate(mstate av)
4085 mfastbinptr* fb; /* current fastbin being consolidated */
4086 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4087 mchunkptr p; /* current chunk being consolidated */
4088 mchunkptr nextp; /* next chunk to consolidate */
4089 mchunkptr unsorted_bin; /* bin header */
4090 mchunkptr first_unsorted; /* chunk to link to */
4092 /* These have same use as in free() */
4093 mchunkptr nextchunk;
4094 INTERNAL_SIZE_T size;
4095 INTERNAL_SIZE_T nextsize;
4096 INTERNAL_SIZE_T prevsize;
4097 int nextinuse;
4098 mchunkptr bck;
4099 mchunkptr fwd;
4102 If max_fast is 0, we know that av hasn't
4103 yet been initialized, in which case do so below
4106 if (get_max_fast () != 0) {
4107 clear_fastchunks(av);
4109 unsorted_bin = unsorted_chunks(av);
4112 Remove each chunk from fast bin and consolidate it, placing it
4113 then in unsorted bin. Among other reasons for doing this,
4114 placing in unsorted bin avoids needing to calculate actual bins
4115 until malloc is sure that chunks aren't immediately going to be
4116 reused anyway.
4119 maxfb = &fastbin (av, NFASTBINS - 1);
4120 fb = &fastbin (av, 0);
4121 do {
4122 p = atomic_exchange_acq (fb, 0);
4123 if (p != 0) {
4124 do {
4125 check_inuse_chunk(av, p);
4126 nextp = p->fd;
4128 /* Slightly streamlined version of consolidation code in free() */
4129 size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
4130 nextchunk = chunk_at_offset(p, size);
4131 nextsize = chunksize(nextchunk);
4133 if (!prev_inuse(p)) {
4134 prevsize = p->prev_size;
4135 size += prevsize;
4136 p = chunk_at_offset(p, -((long) prevsize));
4137 unlink(p, bck, fwd);
4140 if (nextchunk != av->top) {
4141 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4143 if (!nextinuse) {
4144 size += nextsize;
4145 unlink(nextchunk, bck, fwd);
4146 } else
4147 clear_inuse_bit_at_offset(nextchunk, 0);
4149 first_unsorted = unsorted_bin->fd;
4150 unsorted_bin->fd = p;
4151 first_unsorted->bk = p;
4153 if (!in_smallbin_range (size)) {
4154 p->fd_nextsize = NULL;
4155 p->bk_nextsize = NULL;
4158 set_head(p, size | PREV_INUSE);
4159 p->bk = unsorted_bin;
4160 p->fd = first_unsorted;
4161 set_foot(p, size);
4164 else {
4165 size += nextsize;
4166 set_head(p, size | PREV_INUSE);
4167 av->top = p;
4170 } while ( (p = nextp) != 0);
4173 } while (fb++ != maxfb);
4175 else {
4176 malloc_init_state(av);
4177 check_malloc_state(av);
4182 ------------------------------ realloc ------------------------------
4185 void*
4186 _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4187 INTERNAL_SIZE_T nb)
4189 mchunkptr newp; /* chunk to return */
4190 INTERNAL_SIZE_T newsize; /* its size */
4191 void* newmem; /* corresponding user mem */
4193 mchunkptr next; /* next contiguous chunk after oldp */
4195 mchunkptr remainder; /* extra space at end of newp */
4196 unsigned long remainder_size; /* its size */
4198 mchunkptr bck; /* misc temp for linking */
4199 mchunkptr fwd; /* misc temp for linking */
4201 unsigned long copysize; /* bytes to copy */
4202 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
4203 INTERNAL_SIZE_T* s; /* copy source */
4204 INTERNAL_SIZE_T* d; /* copy destination */
4206 const char *errstr = NULL;
4208 /* oldmem size */
4209 if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0)
4210 || __builtin_expect (oldsize >= av->system_mem, 0))
4212 errstr = "realloc(): invalid old size";
4213 errout:
4214 malloc_printerr (check_action, errstr, chunk2mem(oldp));
4215 return NULL;
4218 check_inuse_chunk(av, oldp);
4220 /* All callers already filter out mmap'ed chunks. */
4221 assert (!chunk_is_mmapped(oldp));
4223 next = chunk_at_offset(oldp, oldsize);
4224 INTERNAL_SIZE_T nextsize = chunksize(next);
4225 if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0)
4226 || __builtin_expect (nextsize >= av->system_mem, 0))
4228 errstr = "realloc(): invalid next size";
4229 goto errout;
4232 if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
4233 /* already big enough; split below */
4234 newp = oldp;
4235 newsize = oldsize;
4238 else {
4239 /* Try to expand forward into top */
4240 if (next == av->top &&
4241 (unsigned long)(newsize = oldsize + nextsize) >=
4242 (unsigned long)(nb + MINSIZE)) {
4243 set_head_size(oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4244 av->top = chunk_at_offset(oldp, nb);
4245 set_head(av->top, (newsize - nb) | PREV_INUSE);
4246 check_inuse_chunk(av, oldp);
4247 return chunk2mem(oldp);
4250 /* Try to expand forward into next chunk; split off remainder below */
4251 else if (next != av->top &&
4252 !inuse(next) &&
4253 (unsigned long)(newsize = oldsize + nextsize) >=
4254 (unsigned long)(nb)) {
4255 newp = oldp;
4256 unlink(next, bck, fwd);
4259 /* allocate, copy, free */
4260 else {
4261 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
4262 if (newmem == 0)
4263 return 0; /* propagate failure */
4265 newp = mem2chunk(newmem);
4266 newsize = chunksize(newp);
4269 Avoid copy if newp is next chunk after oldp.
4271 if (newp == next) {
4272 newsize += oldsize;
4273 newp = oldp;
4275 else {
4277 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4278 We know that contents have an odd number of
4279 INTERNAL_SIZE_T-sized words; minimally 3.
4282 copysize = oldsize - SIZE_SZ;
4283 s = (INTERNAL_SIZE_T*)(chunk2mem(oldp));
4284 d = (INTERNAL_SIZE_T*)(newmem);
4285 ncopies = copysize / sizeof(INTERNAL_SIZE_T);
4286 assert(ncopies >= 3);
4288 if (ncopies > 9)
4289 MALLOC_COPY(d, s, copysize);
4291 else {
4292 *(d+0) = *(s+0);
4293 *(d+1) = *(s+1);
4294 *(d+2) = *(s+2);
4295 if (ncopies > 4) {
4296 *(d+3) = *(s+3);
4297 *(d+4) = *(s+4);
4298 if (ncopies > 6) {
4299 *(d+5) = *(s+5);
4300 *(d+6) = *(s+6);
4301 if (ncopies > 8) {
4302 *(d+7) = *(s+7);
4303 *(d+8) = *(s+8);
4309 _int_free(av, oldp, 1);
4310 check_inuse_chunk(av, newp);
4311 return chunk2mem(newp);
4316 /* If possible, free extra space in old or extended chunk */
4318 assert((unsigned long)(newsize) >= (unsigned long)(nb));
4320 remainder_size = newsize - nb;
4322 if (remainder_size < MINSIZE) { /* not enough extra to split off */
4323 set_head_size(newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4324 set_inuse_bit_at_offset(newp, newsize);
4326 else { /* split remainder */
4327 remainder = chunk_at_offset(newp, nb);
4328 set_head_size(newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4329 set_head(remainder, remainder_size | PREV_INUSE |
4330 (av != &main_arena ? NON_MAIN_ARENA : 0));
4331 /* Mark remainder as inuse so free() won't complain */
4332 set_inuse_bit_at_offset(remainder, remainder_size);
4333 _int_free(av, remainder, 1);
4336 check_inuse_chunk(av, newp);
4337 return chunk2mem(newp);
4341 ------------------------------ memalign ------------------------------
4344 static void*
4345 _int_memalign(mstate av, size_t alignment, size_t bytes)
4347 INTERNAL_SIZE_T nb; /* padded request size */
4348 char* m; /* memory returned by malloc call */
4349 mchunkptr p; /* corresponding chunk */
4350 char* brk; /* alignment point within p */
4351 mchunkptr newp; /* chunk to return */
4352 INTERNAL_SIZE_T newsize; /* its size */
4353 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4354 mchunkptr remainder; /* spare room at end to split off */
4355 unsigned long remainder_size; /* its size */
4356 INTERNAL_SIZE_T size;
4358 /* If need less alignment than we give anyway, just relay to malloc */
4360 if (alignment <= MALLOC_ALIGNMENT) return _int_malloc(av, bytes);
4362 /* Otherwise, ensure that it is at least a minimum chunk size */
4364 if (alignment < MINSIZE) alignment = MINSIZE;
4366 /* Make sure alignment is power of 2 (in case MINSIZE is not). */
4367 if ((alignment & (alignment - 1)) != 0) {
4368 size_t a = MALLOC_ALIGNMENT * 2;
4369 while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
4370 alignment = a;
4373 checked_request2size(bytes, nb);
4376 Strategy: find a spot within that chunk that meets the alignment
4377 request, and then possibly free the leading and trailing space.
4381 /* Call malloc with worst case padding to hit alignment. */
4383 m = (char*)(_int_malloc(av, nb + alignment + MINSIZE));
4385 if (m == 0) return 0; /* propagate failure */
4387 p = mem2chunk(m);
4389 if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
4392 Find an aligned spot inside chunk. Since we need to give back
4393 leading space in a chunk of at least MINSIZE, if the first
4394 calculation places us at a spot with less than MINSIZE leader,
4395 we can move to the next aligned spot -- we've allocated enough
4396 total room so that this is always possible.
4399 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
4400 -((signed long) alignment));
4401 if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
4402 brk += alignment;
4404 newp = (mchunkptr)brk;
4405 leadsize = brk - (char*)(p);
4406 newsize = chunksize(p) - leadsize;
4408 /* For mmapped chunks, just adjust offset */
4409 if (chunk_is_mmapped(p)) {
4410 newp->prev_size = p->prev_size + leadsize;
4411 set_head(newp, newsize|IS_MMAPPED);
4412 return chunk2mem(newp);
4415 /* Otherwise, give back leader, use the rest */
4416 set_head(newp, newsize | PREV_INUSE |
4417 (av != &main_arena ? NON_MAIN_ARENA : 0));
4418 set_inuse_bit_at_offset(newp, newsize);
4419 set_head_size(p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4420 _int_free(av, p, 1);
4421 p = newp;
4423 assert (newsize >= nb &&
4424 (((unsigned long)(chunk2mem(p))) % alignment) == 0);
4427 /* Also give back spare room at the end */
4428 if (!chunk_is_mmapped(p)) {
4429 size = chunksize(p);
4430 if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
4431 remainder_size = size - nb;
4432 remainder = chunk_at_offset(p, nb);
4433 set_head(remainder, remainder_size | PREV_INUSE |
4434 (av != &main_arena ? NON_MAIN_ARENA : 0));
4435 set_head_size(p, nb);
4436 _int_free(av, remainder, 1);
4440 check_inuse_chunk(av, p);
4441 return chunk2mem(p);
4446 ------------------------------ valloc ------------------------------
4449 static void*
4450 _int_valloc(mstate av, size_t bytes)
4452 /* Ensure initialization/consolidation */
4453 if (have_fastchunks(av)) malloc_consolidate(av);
4454 return _int_memalign(av, GLRO(dl_pagesize), bytes);
4458 ------------------------------ pvalloc ------------------------------
4462 static void*
4463 _int_pvalloc(mstate av, size_t bytes)
4465 size_t pagesz;
4467 /* Ensure initialization/consolidation */
4468 if (have_fastchunks(av)) malloc_consolidate(av);
4469 pagesz = GLRO(dl_pagesize);
4470 return _int_memalign(av, pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
4475 ------------------------------ malloc_trim ------------------------------
4478 static int mtrim(mstate av, size_t pad)
4480 /* Ensure initialization/consolidation */
4481 malloc_consolidate (av);
4483 const size_t ps = GLRO(dl_pagesize);
4484 int psindex = bin_index (ps);
4485 const size_t psm1 = ps - 1;
4487 int result = 0;
4488 for (int i = 1; i < NBINS; ++i)
4489 if (i == 1 || i >= psindex)
4491 mbinptr bin = bin_at (av, i);
4493 for (mchunkptr p = last (bin); p != bin; p = p->bk)
4495 INTERNAL_SIZE_T size = chunksize (p);
4497 if (size > psm1 + sizeof (struct malloc_chunk))
4499 /* See whether the chunk contains at least one unused page. */
4500 char *paligned_mem = (char *) (((uintptr_t) p
4501 + sizeof (struct malloc_chunk)
4502 + psm1) & ~psm1);
4504 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
4505 assert ((char *) p + size > paligned_mem);
4507 /* This is the size we could potentially free. */
4508 size -= paligned_mem - (char *) p;
4510 if (size > psm1)
4512 #ifdef MALLOC_DEBUG
4513 /* When debugging we simulate destroying the memory
4514 content. */
4515 memset (paligned_mem, 0x89, size & ~psm1);
4516 #endif
4517 madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
4519 result = 1;
4525 #ifndef MORECORE_CANNOT_TRIM
4526 return result | (av == &main_arena ? systrim (pad, av) : 0);
4527 #else
4528 return result;
4529 #endif
4534 __malloc_trim(size_t s)
4536 int result = 0;
4538 if(__malloc_initialized < 0)
4539 ptmalloc_init ();
4541 mstate ar_ptr = &main_arena;
4544 (void) mutex_lock (&ar_ptr->mutex);
4545 result |= mtrim (ar_ptr, s);
4546 (void) mutex_unlock (&ar_ptr->mutex);
4548 ar_ptr = ar_ptr->next;
4550 while (ar_ptr != &main_arena);
4552 return result;
4557 ------------------------- malloc_usable_size -------------------------
4560 static size_t
4561 musable(void* mem)
4563 mchunkptr p;
4564 if (mem != 0) {
4565 p = mem2chunk(mem);
4566 if (chunk_is_mmapped(p))
4567 return chunksize(p) - 2*SIZE_SZ;
4568 else if (inuse(p))
4569 return chunksize(p) - SIZE_SZ;
4571 return 0;
4575 size_t
4576 __malloc_usable_size(void* m)
4578 size_t result;
4580 result = musable(m);
4581 return result;
4585 ------------------------------ mallinfo ------------------------------
4586 Accumulate malloc statistics for arena AV into M.
4589 static void
4590 int_mallinfo(mstate av, struct mallinfo *m)
4592 size_t i;
4593 mbinptr b;
4594 mchunkptr p;
4595 INTERNAL_SIZE_T avail;
4596 INTERNAL_SIZE_T fastavail;
4597 int nblocks;
4598 int nfastblocks;
4600 /* Ensure initialization */
4601 if (av->top == 0) malloc_consolidate(av);
4603 check_malloc_state(av);
4605 /* Account for top */
4606 avail = chunksize(av->top);
4607 nblocks = 1; /* top always exists */
4609 /* traverse fastbins */
4610 nfastblocks = 0;
4611 fastavail = 0;
4613 for (i = 0; i < NFASTBINS; ++i) {
4614 for (p = fastbin (av, i); p != 0; p = p->fd) {
4615 ++nfastblocks;
4616 fastavail += chunksize(p);
4620 avail += fastavail;
4622 /* traverse regular bins */
4623 for (i = 1; i < NBINS; ++i) {
4624 b = bin_at(av, i);
4625 for (p = last(b); p != b; p = p->bk) {
4626 ++nblocks;
4627 avail += chunksize(p);
4631 m->smblks += nfastblocks;
4632 m->ordblks += nblocks;
4633 m->fordblks += avail;
4634 m->uordblks += av->system_mem - avail;
4635 m->arena += av->system_mem;
4636 m->fsmblks += fastavail;
4637 if (av == &main_arena)
4639 m->hblks = mp_.n_mmaps;
4640 m->hblkhd = mp_.mmapped_mem;
4641 m->usmblks = mp_.max_total_mem;
4642 m->keepcost = chunksize(av->top);
4647 struct mallinfo __libc_mallinfo()
4649 struct mallinfo m;
4650 mstate ar_ptr;
4652 if(__malloc_initialized < 0)
4653 ptmalloc_init ();
4655 memset(&m, 0, sizeof (m));
4656 ar_ptr = &main_arena;
4657 do {
4658 (void)mutex_lock(&ar_ptr->mutex);
4659 int_mallinfo(ar_ptr, &m);
4660 (void)mutex_unlock(&ar_ptr->mutex);
4662 ar_ptr = ar_ptr->next;
4663 } while (ar_ptr != &main_arena);
4665 return m;
4669 ------------------------------ malloc_stats ------------------------------
4672 void
4673 __malloc_stats()
4675 int i;
4676 mstate ar_ptr;
4677 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
4678 #if THREAD_STATS
4679 long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
4680 #endif
4682 if(__malloc_initialized < 0)
4683 ptmalloc_init ();
4684 _IO_flockfile (stderr);
4685 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
4686 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
4687 for (i=0, ar_ptr = &main_arena;; i++) {
4688 struct mallinfo mi;
4690 memset(&mi, 0, sizeof(mi));
4691 (void)mutex_lock(&ar_ptr->mutex);
4692 int_mallinfo(ar_ptr, &mi);
4693 fprintf(stderr, "Arena %d:\n", i);
4694 fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
4695 fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
4696 #if MALLOC_DEBUG > 1
4697 if (i > 0)
4698 dump_heap(heap_for_ptr(top(ar_ptr)));
4699 #endif
4700 system_b += mi.arena;
4701 in_use_b += mi.uordblks;
4702 #if THREAD_STATS
4703 stat_lock_direct += ar_ptr->stat_lock_direct;
4704 stat_lock_loop += ar_ptr->stat_lock_loop;
4705 stat_lock_wait += ar_ptr->stat_lock_wait;
4706 #endif
4707 (void)mutex_unlock(&ar_ptr->mutex);
4708 ar_ptr = ar_ptr->next;
4709 if(ar_ptr == &main_arena) break;
4711 fprintf(stderr, "Total (incl. mmap):\n");
4712 fprintf(stderr, "system bytes = %10u\n", system_b);
4713 fprintf(stderr, "in use bytes = %10u\n", in_use_b);
4714 fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)mp_.max_n_mmaps);
4715 fprintf(stderr, "max mmap bytes = %10lu\n",
4716 (unsigned long)mp_.max_mmapped_mem);
4717 #if THREAD_STATS
4718 fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
4719 fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
4720 fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
4721 fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
4722 fprintf(stderr, "locked total = %10ld\n",
4723 stat_lock_direct + stat_lock_loop + stat_lock_wait);
4724 #endif
4725 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
4726 _IO_funlockfile (stderr);
4731 ------------------------------ mallopt ------------------------------
4734 int __libc_mallopt(int param_number, int value)
4736 mstate av = &main_arena;
4737 int res = 1;
4739 if(__malloc_initialized < 0)
4740 ptmalloc_init ();
4741 (void)mutex_lock(&av->mutex);
4742 /* Ensure initialization/consolidation */
4743 malloc_consolidate(av);
4745 switch(param_number) {
4746 case M_MXFAST:
4747 if (value >= 0 && value <= MAX_FAST_SIZE) {
4748 set_max_fast(value);
4750 else
4751 res = 0;
4752 break;
4754 case M_TRIM_THRESHOLD:
4755 mp_.trim_threshold = value;
4756 mp_.no_dyn_threshold = 1;
4757 break;
4759 case M_TOP_PAD:
4760 mp_.top_pad = value;
4761 mp_.no_dyn_threshold = 1;
4762 break;
4764 case M_MMAP_THRESHOLD:
4765 /* Forbid setting the threshold too high. */
4766 if((unsigned long)value > HEAP_MAX_SIZE/2)
4767 res = 0;
4768 else
4769 mp_.mmap_threshold = value;
4770 mp_.no_dyn_threshold = 1;
4771 break;
4773 case M_MMAP_MAX:
4774 mp_.n_mmaps_max = value;
4775 mp_.no_dyn_threshold = 1;
4776 break;
4778 case M_CHECK_ACTION:
4779 check_action = value;
4780 break;
4782 case M_PERTURB:
4783 perturb_byte = value;
4784 break;
4786 #ifdef PER_THREAD
4787 case M_ARENA_TEST:
4788 if (value > 0)
4789 mp_.arena_test = value;
4790 break;
4792 case M_ARENA_MAX:
4793 if (value > 0)
4794 mp_.arena_max = value;
4795 break;
4796 #endif
4798 (void)mutex_unlock(&av->mutex);
4799 return res;
4801 libc_hidden_def (__libc_mallopt)
4805 -------------------- Alternative MORECORE functions --------------------
4810 General Requirements for MORECORE.
4812 The MORECORE function must have the following properties:
4814 If MORECORE_CONTIGUOUS is false:
4816 * MORECORE must allocate in multiples of pagesize. It will
4817 only be called with arguments that are multiples of pagesize.
4819 * MORECORE(0) must return an address that is at least
4820 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
4822 else (i.e. If MORECORE_CONTIGUOUS is true):
4824 * Consecutive calls to MORECORE with positive arguments
4825 return increasing addresses, indicating that space has been
4826 contiguously extended.
4828 * MORECORE need not allocate in multiples of pagesize.
4829 Calls to MORECORE need not have args of multiples of pagesize.
4831 * MORECORE need not page-align.
4833 In either case:
4835 * MORECORE may allocate more memory than requested. (Or even less,
4836 but this will generally result in a malloc failure.)
4838 * MORECORE must not allocate memory when given argument zero, but
4839 instead return one past the end address of memory from previous
4840 nonzero call. This malloc does NOT call MORECORE(0)
4841 until at least one call with positive arguments is made, so
4842 the initial value returned is not important.
4844 * Even though consecutive calls to MORECORE need not return contiguous
4845 addresses, it must be OK for malloc'ed chunks to span multiple
4846 regions in those cases where they do happen to be contiguous.
4848 * MORECORE need not handle negative arguments -- it may instead
4849 just return MORECORE_FAILURE when given negative arguments.
4850 Negative arguments are always multiples of pagesize. MORECORE
4851 must not misinterpret negative args as large positive unsigned
4852 args. You can suppress all such calls from even occurring by defining
4853 MORECORE_CANNOT_TRIM,
4855 There is some variation across systems about the type of the
4856 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
4857 actually be size_t, because sbrk supports negative args, so it is
4858 normally the signed type of the same width as size_t (sometimes
4859 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
4860 matter though. Internally, we use "long" as arguments, which should
4861 work across all reasonable possibilities.
4863 Additionally, if MORECORE ever returns failure for a positive
4864 request, then mmap is used as a noncontiguous system allocator. This
4865 is a useful backup strategy for systems with holes in address spaces
4866 -- in this case sbrk cannot contiguously expand the heap, but mmap
4867 may be able to map noncontiguous space.
4869 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
4870 a function that always returns MORECORE_FAILURE.
4872 If you are using this malloc with something other than sbrk (or its
4873 emulation) to supply memory regions, you probably want to set
4874 MORECORE_CONTIGUOUS as false. As an example, here is a custom
4875 allocator kindly contributed for pre-OSX macOS. It uses virtually
4876 but not necessarily physically contiguous non-paged memory (locked
4877 in, present and won't get swapped out). You can use it by
4878 uncommenting this section, adding some #includes, and setting up the
4879 appropriate defines above:
4881 #define MORECORE osMoreCore
4882 #define MORECORE_CONTIGUOUS 0
4884 There is also a shutdown routine that should somehow be called for
4885 cleanup upon program exit.
4887 #define MAX_POOL_ENTRIES 100
4888 #define MINIMUM_MORECORE_SIZE (64 * 1024)
4889 static int next_os_pool;
4890 void *our_os_pools[MAX_POOL_ENTRIES];
4892 void *osMoreCore(int size)
4894 void *ptr = 0;
4895 static void *sbrk_top = 0;
4897 if (size > 0)
4899 if (size < MINIMUM_MORECORE_SIZE)
4900 size = MINIMUM_MORECORE_SIZE;
4901 if (CurrentExecutionLevel() == kTaskLevel)
4902 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4903 if (ptr == 0)
4905 return (void *) MORECORE_FAILURE;
4907 // save ptrs so they can be freed during cleanup
4908 our_os_pools[next_os_pool] = ptr;
4909 next_os_pool++;
4910 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4911 sbrk_top = (char *) ptr + size;
4912 return ptr;
4914 else if (size < 0)
4916 // we don't currently support shrink behavior
4917 return (void *) MORECORE_FAILURE;
4919 else
4921 return sbrk_top;
4925 // cleanup any allocated memory pools
4926 // called as last thing before shutting down driver
4928 void osCleanupMem(void)
4930 void **ptr;
4932 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4933 if (*ptr)
4935 PoolDeallocate(*ptr);
4936 *ptr = 0;
4943 /* Helper code. */
4945 extern char **__libc_argv attribute_hidden;
4947 static void
4948 malloc_printerr(int action, const char *str, void *ptr)
4950 if ((action & 5) == 5)
4951 __libc_message (action & 2, "%s\n", str);
4952 else if (action & 1)
4954 char buf[2 * sizeof (uintptr_t) + 1];
4956 buf[sizeof (buf) - 1] = '\0';
4957 char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
4958 while (cp > buf)
4959 *--cp = '0';
4961 __libc_message (action & 2,
4962 "*** glibc detected *** %s: %s: 0x%s ***\n",
4963 __libc_argv[0] ?: "<unknown>", str, cp);
4965 else if (action & 2)
4966 abort ();
4969 #include <sys/param.h>
4971 /* We need a wrapper function for one of the additions of POSIX. */
4973 __posix_memalign (void **memptr, size_t alignment, size_t size)
4975 void *mem;
4977 /* Test whether the SIZE argument is valid. It must be a power of
4978 two multiple of sizeof (void *). */
4979 if (alignment % sizeof (void *) != 0
4980 || !powerof2 (alignment / sizeof (void *)) != 0
4981 || alignment == 0)
4982 return EINVAL;
4984 /* Call the hook here, so that caller is posix_memalign's caller
4985 and not posix_memalign itself. */
4986 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
4987 const __malloc_ptr_t)) =
4988 force_reg (__memalign_hook);
4989 if (__builtin_expect (hook != NULL, 0))
4990 mem = (*hook)(alignment, size, RETURN_ADDRESS (0));
4991 else
4992 mem = __libc_memalign (alignment, size);
4994 if (mem != NULL) {
4995 *memptr = mem;
4996 return 0;
4999 return ENOMEM;
5001 weak_alias (__posix_memalign, posix_memalign)
5005 malloc_info (int options, FILE *fp)
5007 /* For now, at least. */
5008 if (options != 0)
5009 return EINVAL;
5011 int n = 0;
5012 size_t total_nblocks = 0;
5013 size_t total_nfastblocks = 0;
5014 size_t total_avail = 0;
5015 size_t total_fastavail = 0;
5016 size_t total_system = 0;
5017 size_t total_max_system = 0;
5018 size_t total_aspace = 0;
5019 size_t total_aspace_mprotect = 0;
5021 void mi_arena (mstate ar_ptr)
5023 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5025 size_t nblocks = 0;
5026 size_t nfastblocks = 0;
5027 size_t avail = 0;
5028 size_t fastavail = 0;
5029 struct
5031 size_t from;
5032 size_t to;
5033 size_t total;
5034 size_t count;
5035 } sizes[NFASTBINS + NBINS - 1];
5036 #define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5038 mutex_lock (&ar_ptr->mutex);
5040 for (size_t i = 0; i < NFASTBINS; ++i)
5042 mchunkptr p = fastbin (ar_ptr, i);
5043 if (p != NULL)
5045 size_t nthissize = 0;
5046 size_t thissize = chunksize (p);
5048 while (p != NULL)
5050 ++nthissize;
5051 p = p->fd;
5054 fastavail += nthissize * thissize;
5055 nfastblocks += nthissize;
5056 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5057 sizes[i].to = thissize;
5058 sizes[i].count = nthissize;
5060 else
5061 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5063 sizes[i].total = sizes[i].count * sizes[i].to;
5066 mbinptr bin = bin_at (ar_ptr, 1);
5067 struct malloc_chunk *r = bin->fd;
5068 if (r != NULL)
5070 while (r != bin)
5072 ++sizes[NFASTBINS].count;
5073 sizes[NFASTBINS].total += r->size;
5074 sizes[NFASTBINS].from = MIN (sizes[NFASTBINS].from, r->size);
5075 sizes[NFASTBINS].to = MAX (sizes[NFASTBINS].to, r->size);
5076 r = r->fd;
5078 nblocks += sizes[NFASTBINS].count;
5079 avail += sizes[NFASTBINS].total;
5082 for (size_t i = 2; i < NBINS; ++i)
5084 bin = bin_at (ar_ptr, i);
5085 r = bin->fd;
5086 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5087 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5088 = sizes[NFASTBINS - 1 + i].count = 0;
5090 if (r != NULL)
5091 while (r != bin)
5093 ++sizes[NFASTBINS - 1 + i].count;
5094 sizes[NFASTBINS - 1 + i].total += r->size;
5095 sizes[NFASTBINS - 1 + i].from
5096 = MIN (sizes[NFASTBINS - 1 + i].from, r->size);
5097 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5098 r->size);
5100 r = r->fd;
5103 if (sizes[NFASTBINS - 1 + i].count == 0)
5104 sizes[NFASTBINS - 1 + i].from = 0;
5105 nblocks += sizes[NFASTBINS - 1 + i].count;
5106 avail += sizes[NFASTBINS - 1 + i].total;
5109 mutex_unlock (&ar_ptr->mutex);
5111 total_nfastblocks += nfastblocks;
5112 total_fastavail += fastavail;
5114 total_nblocks += nblocks;
5115 total_avail += avail;
5117 for (size_t i = 0; i < nsizes; ++i)
5118 if (sizes[i].count != 0 && i != NFASTBINS)
5119 fprintf (fp, "\
5120 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5121 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5123 if (sizes[NFASTBINS].count != 0)
5124 fprintf (fp, "\
5125 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5126 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5127 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5129 total_system += ar_ptr->system_mem;
5130 total_max_system += ar_ptr->max_system_mem;
5132 fprintf (fp,
5133 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5134 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5135 "<system type=\"current\" size=\"%zu\"/>\n"
5136 "<system type=\"max\" size=\"%zu\"/>\n",
5137 nfastblocks, fastavail, nblocks, avail,
5138 ar_ptr->system_mem, ar_ptr->max_system_mem);
5140 if (ar_ptr != &main_arena)
5142 heap_info *heap = heap_for_ptr(top(ar_ptr));
5143 fprintf (fp,
5144 "<aspace type=\"total\" size=\"%zu\"/>\n"
5145 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5146 heap->size, heap->mprotect_size);
5147 total_aspace += heap->size;
5148 total_aspace_mprotect += heap->mprotect_size;
5150 else
5152 fprintf (fp,
5153 "<aspace type=\"total\" size=\"%zu\"/>\n"
5154 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5155 ar_ptr->system_mem, ar_ptr->system_mem);
5156 total_aspace += ar_ptr->system_mem;
5157 total_aspace_mprotect += ar_ptr->system_mem;
5160 fputs ("</heap>\n", fp);
5163 if(__malloc_initialized < 0)
5164 ptmalloc_init ();
5166 fputs ("<malloc version=\"1\">\n", fp);
5168 /* Iterate over all arenas currently in use. */
5169 mstate ar_ptr = &main_arena;
5172 mi_arena (ar_ptr);
5173 ar_ptr = ar_ptr->next;
5175 while (ar_ptr != &main_arena);
5177 fprintf (fp,
5178 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5179 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5180 "<system type=\"current\" size=\"%zu\"/>\n"
5181 "<system type=\"max\" size=\"%zu\"/>\n"
5182 "<aspace type=\"total\" size=\"%zu\"/>\n"
5183 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5184 "</malloc>\n",
5185 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5186 total_system, total_max_system,
5187 total_aspace, total_aspace_mprotect);
5189 return 0;
5193 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5194 strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
5195 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5196 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5197 strong_alias (__libc_memalign, __memalign)
5198 weak_alias (__libc_memalign, memalign)
5199 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5200 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5201 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5202 strong_alias (__libc_mallinfo, __mallinfo)
5203 weak_alias (__libc_mallinfo, mallinfo)
5204 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5206 weak_alias (__malloc_stats, malloc_stats)
5207 weak_alias (__malloc_usable_size, malloc_usable_size)
5208 weak_alias (__malloc_trim, malloc_trim)
5209 weak_alias (__malloc_get_state, malloc_get_state)
5210 weak_alias (__malloc_set_state, malloc_set_state)
5213 /* ------------------------------------------------------------
5214 History:
5216 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5220 * Local variables:
5221 * c-basic-offset: 2
5222 * End: