Remove *xattr syscalls.
[glibc.git] / stdio-common / printf_fp.c
blobde5113671b8b3c5db9b4e940745b0f1307953913
1 /* Floating point output for `printf'.
2 Copyright (C) 1995-1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
21 /* The gmp headers need some configuration frobs. */
22 #define HAVE_ALLOCA 1
24 #ifdef USE_IN_LIBIO
25 # include <libioP.h>
26 #else
27 # include <stdio.h>
28 #endif
29 #include <alloca.h>
30 #include <ctype.h>
31 #include <float.h>
32 #include <gmp-mparam.h>
33 #include <gmp.h>
34 #include <stdlib/gmp-impl.h>
35 #include <stdlib/longlong.h>
36 #include <stdlib/fpioconst.h>
37 #include <locale/localeinfo.h>
38 #include <limits.h>
39 #include <math.h>
40 #include <printf.h>
41 #include <string.h>
42 #include <unistd.h>
43 #include <stdlib.h>
44 #include <wchar.h>
46 #ifndef NDEBUG
47 # define NDEBUG /* Undefine this for debugging assertions. */
48 #endif
49 #include <assert.h>
51 /* This defines make it possible to use the same code for GNU C library and
52 the GNU I/O library. */
53 #ifdef USE_IN_LIBIO
54 # define PUT(f, s, n) _IO_sputn (f, s, n)
55 # define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : INTUSE(_IO_padn) (f, c, n))
56 /* We use this file GNU C library and GNU I/O library. So make
57 names equal. */
58 # undef putc
59 # define putc(c, f) (wide \
60 ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
61 # define size_t _IO_size_t
62 # define FILE _IO_FILE
63 #else /* ! USE_IN_LIBIO */
64 # define PUT(f, s, n) fwrite (s, 1, n, f)
65 # define PAD(f, c, n) __printf_pad (f, c, n)
66 ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */
67 #endif /* USE_IN_LIBIO */
69 /* Macros for doing the actual output. */
71 #define outchar(ch) \
72 do \
73 { \
74 register const int outc = (ch); \
75 if (putc (outc, fp) == EOF) \
76 return -1; \
77 ++done; \
78 } while (0)
80 #define PRINT(ptr, wptr, len) \
81 do \
82 { \
83 register size_t outlen = (len); \
84 if (len > 20) \
85 { \
86 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
87 return -1; \
88 ptr += outlen; \
89 done += outlen; \
90 } \
91 else \
92 { \
93 if (wide) \
94 while (outlen-- > 0) \
95 outchar (*wptr++); \
96 else \
97 while (outlen-- > 0) \
98 outchar (*ptr++); \
99 } \
100 } while (0)
102 #define PADN(ch, len) \
103 do \
105 if (PAD (fp, ch, len) != len) \
106 return -1; \
107 done += len; \
109 while (0)
111 /* We use the GNU MP library to handle large numbers.
113 An MP variable occupies a varying number of entries in its array. We keep
114 track of this number for efficiency reasons. Otherwise we would always
115 have to process the whole array. */
116 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
118 #define MPN_ASSIGN(dst,src) \
119 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
120 #define MPN_GE(u,v) \
121 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
123 extern int __isinfl_internal (long double) attribute_hidden;
124 extern int __isnanl_internal (long double) attribute_hidden;
126 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
127 int *expt, int *is_neg,
128 double value);
129 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
130 int *expt, int *is_neg,
131 long double value);
132 extern unsigned int __guess_grouping (unsigned int intdig_max,
133 const char *grouping);
136 static wchar_t *group_number (wchar_t *buf, wchar_t *bufend,
137 unsigned int intdig_no, const char *grouping,
138 wchar_t thousands_sep, int ngroups)
139 internal_function;
143 __printf_fp (FILE *fp,
144 const struct printf_info *info,
145 const void *const *args)
147 /* The floating-point value to output. */
148 union
150 double dbl;
151 __long_double_t ldbl;
153 fpnum;
155 /* Locale-dependent representation of decimal point. */
156 const char *decimal;
157 wchar_t decimalwc;
159 /* Locale-dependent thousands separator and grouping specification. */
160 const char *thousands_sep = NULL;
161 wchar_t thousands_sepwc = 0;
162 const char *grouping;
164 /* "NaN" or "Inf" for the special cases. */
165 const char *special = NULL;
166 const wchar_t *wspecial = NULL;
168 /* We need just a few limbs for the input before shifting to the right
169 position. */
170 mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
171 /* We need to shift the contents of fp_input by this amount of bits. */
172 int to_shift = 0;
174 /* The fraction of the floting-point value in question */
175 MPN_VAR(frac);
176 /* and the exponent. */
177 int exponent;
178 /* Sign of the exponent. */
179 int expsign = 0;
180 /* Sign of float number. */
181 int is_neg = 0;
183 /* Scaling factor. */
184 MPN_VAR(scale);
186 /* Temporary bignum value. */
187 MPN_VAR(tmp);
189 /* Digit which is result of last hack_digit() call. */
190 wchar_t digit;
192 /* The type of output format that will be used: 'e'/'E' or 'f'. */
193 int type;
195 /* Counter for number of written characters. */
196 int done = 0;
198 /* General helper (carry limb). */
199 mp_limb_t cy;
201 /* Nonzero if this is output on a wide character stream. */
202 int wide = info->wide;
204 auto wchar_t hack_digit (void);
206 wchar_t hack_digit (void)
208 mp_limb_t hi;
210 if (expsign != 0 && type == 'f' && exponent-- > 0)
211 hi = 0;
212 else if (scalesize == 0)
214 hi = frac[fracsize - 1];
215 cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
216 frac[fracsize - 1] = cy;
218 else
220 if (fracsize < scalesize)
221 hi = 0;
222 else
224 hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
225 tmp[fracsize - scalesize] = hi;
226 hi = tmp[0];
228 fracsize = scalesize;
229 while (fracsize != 0 && frac[fracsize - 1] == 0)
230 --fracsize;
231 if (fracsize == 0)
233 /* We're not prepared for an mpn variable with zero
234 limbs. */
235 fracsize = 1;
236 return L'0' + hi;
240 cy = __mpn_mul_1 (frac, frac, fracsize, 10);
241 if (cy != 0)
242 frac[fracsize++] = cy;
245 return L'0' + hi;
249 /* Figure out the decimal point character. */
250 if (info->extra == 0)
252 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
253 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
255 else
257 decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
258 if (*decimal == '\0')
259 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
260 decimalwc = _NL_CURRENT_WORD (LC_MONETARY,
261 _NL_MONETARY_DECIMAL_POINT_WC);
262 if (decimalwc == L'\0')
263 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC,
264 _NL_NUMERIC_DECIMAL_POINT_WC);
266 /* The decimal point character must not be zero. */
267 assert (*decimal != '\0');
268 assert (decimalwc != L'\0');
270 if (info->group)
272 if (info->extra == 0)
273 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
274 else
275 grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
277 if (*grouping <= 0 || *grouping == CHAR_MAX)
278 grouping = NULL;
279 else
281 /* Figure out the thousands separator character. */
282 if (wide)
284 if (info->extra == 0)
285 thousands_sepwc =
286 _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC);
287 else
288 thousands_sepwc =
289 _NL_CURRENT_WORD (LC_MONETARY,
290 _NL_MONETARY_THOUSANDS_SEP_WC);
292 else
294 if (info->extra == 0)
295 thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
296 else
297 thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP);
300 if ((wide && thousands_sepwc == L'\0')
301 || (! wide && *thousands_sep == '\0'))
302 grouping = NULL;
303 else if (thousands_sepwc == L'\0')
304 /* If we are printing multibyte characters and there is a
305 multibyte representation for the thousands separator,
306 we must ensure the wide character thousands separator
307 is available, even if it is fake. */
308 thousands_sepwc = 0xfffffffe;
311 else
312 grouping = NULL;
314 /* Fetch the argument value. */
315 #ifndef __NO_LONG_DOUBLE_MATH
316 if (info->is_long_double && sizeof (long double) > sizeof (double))
318 fpnum.ldbl = *(const long double *) args[0];
320 /* Check for special values: not a number or infinity. */
321 if (INTUSE(__isnanl) (fpnum.ldbl))
323 if (isupper (info->spec))
325 special = "NAN";
326 wspecial = L"NAN";
328 else
330 special = "nan";
331 wspecial = L"nan";
333 is_neg = 0;
335 else if (INTUSE(__isinfl) (fpnum.ldbl))
337 if (isupper (info->spec))
339 special = "INF";
340 wspecial = L"INF";
342 else
344 special = "inf";
345 wspecial = L"inf";
347 is_neg = fpnum.ldbl < 0;
349 else
351 fracsize = __mpn_extract_long_double (fp_input,
352 (sizeof (fp_input) /
353 sizeof (fp_input[0])),
354 &exponent, &is_neg,
355 fpnum.ldbl);
356 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
359 else
360 #endif /* no long double */
362 fpnum.dbl = *(const double *) args[0];
364 /* Check for special values: not a number or infinity. */
365 if (INTUSE(__isnan) (fpnum.dbl))
367 if (isupper (info->spec))
369 special = "NAN";
370 wspecial = L"NAN";
372 else
374 special = "nan";
375 wspecial = L"nan";
377 is_neg = 0;
379 else if (INTUSE(__isinf) (fpnum.dbl))
381 if (isupper (info->spec))
383 special = "INF";
384 wspecial = L"INF";
386 else
388 special = "inf";
389 wspecial = L"inf";
391 is_neg = fpnum.dbl < 0;
393 else
395 fracsize = __mpn_extract_double (fp_input,
396 (sizeof (fp_input)
397 / sizeof (fp_input[0])),
398 &exponent, &is_neg, fpnum.dbl);
399 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
403 if (special)
405 int width = info->width;
407 if (is_neg || info->showsign || info->space)
408 --width;
409 width -= 3;
411 if (!info->left && width > 0)
412 PADN (' ', width);
414 if (is_neg)
415 outchar ('-');
416 else if (info->showsign)
417 outchar ('+');
418 else if (info->space)
419 outchar (' ');
421 PRINT (special, wspecial, 3);
423 if (info->left && width > 0)
424 PADN (' ', width);
426 return done;
430 /* We need three multiprecision variables. Now that we have the exponent
431 of the number we can allocate the needed memory. It would be more
432 efficient to use variables of the fixed maximum size but because this
433 would be really big it could lead to memory problems. */
435 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
436 / BITS_PER_MP_LIMB + 4) * sizeof (mp_limb_t);
437 frac = (mp_limb_t *) alloca (bignum_size);
438 tmp = (mp_limb_t *) alloca (bignum_size);
439 scale = (mp_limb_t *) alloca (bignum_size);
442 /* We now have to distinguish between numbers with positive and negative
443 exponents because the method used for the one is not applicable/efficient
444 for the other. */
445 scalesize = 0;
446 if (exponent > 2)
448 /* |FP| >= 8.0. */
449 int scaleexpo = 0;
450 int explog = LDBL_MAX_10_EXP_LOG;
451 int exp10 = 0;
452 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
453 int cnt_h, cnt_l, i;
455 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
457 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
458 fp_input, fracsize);
459 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
461 else
463 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
464 fp_input, fracsize,
465 (exponent + to_shift) % BITS_PER_MP_LIMB);
466 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
467 if (cy)
468 frac[fracsize++] = cy;
470 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
472 assert (powers > &_fpioconst_pow10[0]);
475 --powers;
477 /* The number of the product of two binary numbers with n and m
478 bits respectively has m+n or m+n-1 bits. */
479 if (exponent >= scaleexpo + powers->p_expo - 1)
481 if (scalesize == 0)
483 #ifndef __NO_LONG_DOUBLE_MATH
484 if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB
485 && info->is_long_double)
487 #define _FPIO_CONST_SHIFT \
488 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
489 - _FPIO_CONST_OFFSET)
490 /* 64bit const offset is not enough for
491 IEEE quad long double. */
492 tmpsize = powers->arraysize + _FPIO_CONST_SHIFT;
493 memcpy (tmp + _FPIO_CONST_SHIFT,
494 &__tens[powers->arrayoff],
495 tmpsize * sizeof (mp_limb_t));
496 MPN_ZERO (tmp, _FPIO_CONST_SHIFT);
497 /* Adjust exponent, as scaleexpo will be this much
498 bigger too. */
499 exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB;
501 else
502 #endif
504 tmpsize = powers->arraysize;
505 memcpy (tmp, &__tens[powers->arrayoff],
506 tmpsize * sizeof (mp_limb_t));
509 else
511 cy = __mpn_mul (tmp, scale, scalesize,
512 &__tens[powers->arrayoff
513 + _FPIO_CONST_OFFSET],
514 powers->arraysize - _FPIO_CONST_OFFSET);
515 tmpsize = scalesize + powers->arraysize - _FPIO_CONST_OFFSET;
516 if (cy == 0)
517 --tmpsize;
520 if (MPN_GE (frac, tmp))
522 int cnt;
523 MPN_ASSIGN (scale, tmp);
524 count_leading_zeros (cnt, scale[scalesize - 1]);
525 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
526 exp10 |= 1 << explog;
529 --explog;
531 while (powers > &_fpioconst_pow10[0]);
532 exponent = exp10;
534 /* Optimize number representations. We want to represent the numbers
535 with the lowest number of bytes possible without losing any
536 bytes. Also the highest bit in the scaling factor has to be set
537 (this is a requirement of the MPN division routines). */
538 if (scalesize > 0)
540 /* Determine minimum number of zero bits at the end of
541 both numbers. */
542 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
545 /* Determine number of bits the scaling factor is misplaced. */
546 count_leading_zeros (cnt_h, scale[scalesize - 1]);
548 if (cnt_h == 0)
550 /* The highest bit of the scaling factor is already set. So
551 we only have to remove the trailing empty limbs. */
552 if (i > 0)
554 MPN_COPY_INCR (scale, scale + i, scalesize - i);
555 scalesize -= i;
556 MPN_COPY_INCR (frac, frac + i, fracsize - i);
557 fracsize -= i;
560 else
562 if (scale[i] != 0)
564 count_trailing_zeros (cnt_l, scale[i]);
565 if (frac[i] != 0)
567 int cnt_l2;
568 count_trailing_zeros (cnt_l2, frac[i]);
569 if (cnt_l2 < cnt_l)
570 cnt_l = cnt_l2;
573 else
574 count_trailing_zeros (cnt_l, frac[i]);
576 /* Now shift the numbers to their optimal position. */
577 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
579 /* We cannot save any memory. So just roll both numbers
580 so that the scaling factor has its highest bit set. */
582 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
583 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
584 if (cy != 0)
585 frac[fracsize++] = cy;
587 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
589 /* We can save memory by removing the trailing zero limbs
590 and by packing the non-zero limbs which gain another
591 free one. */
593 (void) __mpn_rshift (scale, scale + i, scalesize - i,
594 BITS_PER_MP_LIMB - cnt_h);
595 scalesize -= i + 1;
596 (void) __mpn_rshift (frac, frac + i, fracsize - i,
597 BITS_PER_MP_LIMB - cnt_h);
598 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
600 else
602 /* We can only save the memory of the limbs which are zero.
603 The non-zero parts occupy the same number of limbs. */
605 (void) __mpn_rshift (scale, scale + (i - 1),
606 scalesize - (i - 1),
607 BITS_PER_MP_LIMB - cnt_h);
608 scalesize -= i;
609 (void) __mpn_rshift (frac, frac + (i - 1),
610 fracsize - (i - 1),
611 BITS_PER_MP_LIMB - cnt_h);
612 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
617 else if (exponent < 0)
619 /* |FP| < 1.0. */
620 int exp10 = 0;
621 int explog = LDBL_MAX_10_EXP_LOG;
622 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
623 mp_size_t used_limbs = fracsize - 1;
625 /* Now shift the input value to its right place. */
626 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
627 frac[fracsize++] = cy;
628 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
630 expsign = 1;
631 exponent = -exponent;
633 assert (powers != &_fpioconst_pow10[0]);
636 --powers;
638 if (exponent >= powers->m_expo)
640 int i, incr, cnt_h, cnt_l;
641 mp_limb_t topval[2];
643 /* The __mpn_mul function expects the first argument to be
644 bigger than the second. */
645 if (fracsize < powers->arraysize - _FPIO_CONST_OFFSET)
646 cy = __mpn_mul (tmp, &__tens[powers->arrayoff
647 + _FPIO_CONST_OFFSET],
648 powers->arraysize - _FPIO_CONST_OFFSET,
649 frac, fracsize);
650 else
651 cy = __mpn_mul (tmp, frac, fracsize,
652 &__tens[powers->arrayoff + _FPIO_CONST_OFFSET],
653 powers->arraysize - _FPIO_CONST_OFFSET);
654 tmpsize = fracsize + powers->arraysize - _FPIO_CONST_OFFSET;
655 if (cy == 0)
656 --tmpsize;
658 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
659 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
660 + BITS_PER_MP_LIMB - 1 - cnt_h;
662 assert (incr <= powers->p_expo);
664 /* If we increased the exponent by exactly 3 we have to test
665 for overflow. This is done by comparing with 10 shifted
666 to the right position. */
667 if (incr == exponent + 3)
669 if (cnt_h <= BITS_PER_MP_LIMB - 4)
671 topval[0] = 0;
672 topval[1]
673 = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
675 else
677 topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
678 topval[1] = 0;
679 (void) __mpn_lshift (topval, topval, 2,
680 BITS_PER_MP_LIMB - cnt_h);
684 /* We have to be careful when multiplying the last factor.
685 If the result is greater than 1.0 be have to test it
686 against 10.0. If it is greater or equal to 10.0 the
687 multiplication was not valid. This is because we cannot
688 determine the number of bits in the result in advance. */
689 if (incr < exponent + 3
690 || (incr == exponent + 3 &&
691 (tmp[tmpsize - 1] < topval[1]
692 || (tmp[tmpsize - 1] == topval[1]
693 && tmp[tmpsize - 2] < topval[0]))))
695 /* The factor is right. Adapt binary and decimal
696 exponents. */
697 exponent -= incr;
698 exp10 |= 1 << explog;
700 /* If this factor yields a number greater or equal to
701 1.0, we must not shift the non-fractional digits down. */
702 if (exponent < 0)
703 cnt_h += -exponent;
705 /* Now we optimize the number representation. */
706 for (i = 0; tmp[i] == 0; ++i);
707 if (cnt_h == BITS_PER_MP_LIMB - 1)
709 MPN_COPY (frac, tmp + i, tmpsize - i);
710 fracsize = tmpsize - i;
712 else
714 count_trailing_zeros (cnt_l, tmp[i]);
716 /* Now shift the numbers to their optimal position. */
717 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
719 /* We cannot save any memory. Just roll the
720 number so that the leading digit is in a
721 separate limb. */
723 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
724 fracsize = tmpsize + 1;
725 frac[fracsize - 1] = cy;
727 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
729 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
730 BITS_PER_MP_LIMB - 1 - cnt_h);
731 fracsize = tmpsize - i;
733 else
735 /* We can only save the memory of the limbs which
736 are zero. The non-zero parts occupy the same
737 number of limbs. */
739 (void) __mpn_rshift (frac, tmp + (i - 1),
740 tmpsize - (i - 1),
741 BITS_PER_MP_LIMB - 1 - cnt_h);
742 fracsize = tmpsize - (i - 1);
745 used_limbs = fracsize - 1;
748 --explog;
750 while (powers != &_fpioconst_pow10[1] && exponent > 0);
751 /* All factors but 10^-1 are tested now. */
752 if (exponent > 0)
754 int cnt_l;
756 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
757 tmpsize = fracsize;
758 assert (cy == 0 || tmp[tmpsize - 1] < 20);
760 count_trailing_zeros (cnt_l, tmp[0]);
761 if (cnt_l < MIN (4, exponent))
763 cy = __mpn_lshift (frac, tmp, tmpsize,
764 BITS_PER_MP_LIMB - MIN (4, exponent));
765 if (cy != 0)
766 frac[tmpsize++] = cy;
768 else
769 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
770 fracsize = tmpsize;
771 exp10 |= 1;
772 assert (frac[fracsize - 1] < 10);
774 exponent = exp10;
776 else
778 /* This is a special case. We don't need a factor because the
779 numbers are in the range of 0.0 <= fp < 8.0. We simply
780 shift it to the right place and divide it by 1.0 to get the
781 leading digit. (Of course this division is not really made.) */
782 assert (0 <= exponent && exponent < 3 &&
783 exponent + to_shift < BITS_PER_MP_LIMB);
785 /* Now shift the input value to its right place. */
786 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
787 frac[fracsize++] = cy;
788 exponent = 0;
792 int width = info->width;
793 wchar_t *wbuffer, *wstartp, *wcp;
794 int buffer_malloced;
795 int chars_needed;
796 int expscale;
797 int intdig_max, intdig_no = 0;
798 int fracdig_min, fracdig_max, fracdig_no = 0;
799 int dig_max;
800 int significant;
801 int ngroups = 0;
803 if (_tolower (info->spec) == 'e')
805 type = info->spec;
806 intdig_max = 1;
807 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
808 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
809 /* d . ddd e +- ddd */
810 dig_max = INT_MAX; /* Unlimited. */
811 significant = 1; /* Does not matter here. */
813 else if (_tolower (info->spec) == 'f')
815 type = 'f';
816 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
817 if (expsign == 0)
819 intdig_max = exponent + 1;
820 /* This can be really big! */ /* XXX Maybe malloc if too big? */
821 chars_needed = exponent + 1 + 1 + fracdig_max;
823 else
825 intdig_max = 1;
826 chars_needed = 1 + 1 + fracdig_max;
828 dig_max = INT_MAX; /* Unlimited. */
829 significant = 1; /* Does not matter here. */
831 else
833 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
834 if ((expsign == 0 && exponent >= dig_max)
835 || (expsign != 0 && exponent > 4))
837 if ('g' - 'G' == 'e' - 'E')
838 type = 'E' + (info->spec - 'G');
839 else
840 type = isupper (info->spec) ? 'E' : 'e';
841 fracdig_max = dig_max - 1;
842 intdig_max = 1;
843 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
845 else
847 type = 'f';
848 intdig_max = expsign == 0 ? exponent + 1 : 0;
849 fracdig_max = dig_max - intdig_max;
850 /* We need space for the significant digits and perhaps
851 for leading zeros when < 1.0. The number of leading
852 zeros can be as many as would be required for
853 exponential notation with a negative two-digit
854 exponent, which is 4. */
855 chars_needed = dig_max + 1 + 4;
857 fracdig_min = info->alt ? fracdig_max : 0;
858 significant = 0; /* We count significant digits. */
861 if (grouping)
863 /* Guess the number of groups we will make, and thus how
864 many spaces we need for separator characters. */
865 ngroups = __guess_grouping (intdig_max, grouping);
866 chars_needed += ngroups;
869 /* Allocate buffer for output. We need two more because while rounding
870 it is possible that we need two more characters in front of all the
871 other output. If the amount of memory we have to allocate is too
872 large use `malloc' instead of `alloca'. */
873 buffer_malloced = chars_needed > 5000;
874 if (buffer_malloced)
876 wbuffer = (wchar_t *) malloc ((2 + chars_needed) * sizeof (wchar_t));
877 if (wbuffer == NULL)
878 /* Signal an error to the caller. */
879 return -1;
881 else
882 wbuffer = (wchar_t *) alloca ((2 + chars_needed) * sizeof (wchar_t));
883 wcp = wstartp = wbuffer + 2; /* Let room for rounding. */
885 /* Do the real work: put digits in allocated buffer. */
886 if (expsign == 0 || type != 'f')
888 assert (expsign == 0 || intdig_max == 1);
889 while (intdig_no < intdig_max)
891 ++intdig_no;
892 *wcp++ = hack_digit ();
894 significant = 1;
895 if (info->alt
896 || fracdig_min > 0
897 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
898 *wcp++ = decimalwc;
900 else
902 /* |fp| < 1.0 and the selected type is 'f', so put "0."
903 in the buffer. */
904 *wcp++ = L'0';
905 --exponent;
906 *wcp++ = decimalwc;
909 /* Generate the needed number of fractional digits. */
910 while (fracdig_no < fracdig_min
911 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
913 ++fracdig_no;
914 *wcp = hack_digit ();
915 if (*wcp != L'0')
916 significant = 1;
917 else if (significant == 0)
919 ++fracdig_max;
920 if (fracdig_min > 0)
921 ++fracdig_min;
923 ++wcp;
926 /* Do rounding. */
927 digit = hack_digit ();
928 if (digit > L'4')
930 wchar_t *wtp = wcp;
932 if (digit == L'5'
933 && ((*(wcp - 1) != decimalwc && (*(wcp - 1) & 1) == 0)
934 || ((*(wcp - 1) == decimalwc && (*(wcp - 2) & 1) == 0))))
936 /* This is the critical case. */
937 if (fracsize == 1 && frac[0] == 0)
938 /* Rest of the number is zero -> round to even.
939 (IEEE 754-1985 4.1 says this is the default rounding.) */
940 goto do_expo;
941 else if (scalesize == 0)
943 /* Here we have to see whether all limbs are zero since no
944 normalization happened. */
945 size_t lcnt = fracsize;
946 while (lcnt >= 1 && frac[lcnt - 1] == 0)
947 --lcnt;
948 if (lcnt == 0)
949 /* Rest of the number is zero -> round to even.
950 (IEEE 754-1985 4.1 says this is the default rounding.) */
951 goto do_expo;
955 if (fracdig_no > 0)
957 /* Process fractional digits. Terminate if not rounded or
958 radix character is reached. */
959 while (*--wtp != decimalwc && *wtp == L'9')
960 *wtp = '0';
961 if (*wtp != decimalwc)
962 /* Round up. */
963 (*wtp)++;
966 if (fracdig_no == 0 || *wtp == decimalwc)
968 /* Round the integer digits. */
969 if (*(wtp - 1) == decimalwc)
970 --wtp;
972 while (--wtp >= wstartp && *wtp == L'9')
973 *wtp = L'0';
975 if (wtp >= wstartp)
976 /* Round up. */
977 (*wtp)++;
978 else
979 /* It is more critical. All digits were 9's. */
981 if (type != 'f')
983 *wstartp = '1';
984 exponent += expsign == 0 ? 1 : -1;
986 else if (intdig_no == dig_max)
988 /* This is the case where for type %g the number fits
989 really in the range for %f output but after rounding
990 the number of digits is too big. */
991 *--wstartp = decimalwc;
992 *--wstartp = L'1';
994 if (info->alt || fracdig_no > 0)
996 /* Overwrite the old radix character. */
997 wstartp[intdig_no + 2] = L'0';
998 ++fracdig_no;
1001 fracdig_no += intdig_no;
1002 intdig_no = 1;
1003 fracdig_max = intdig_max - intdig_no;
1004 ++exponent;
1005 /* Now we must print the exponent. */
1006 type = isupper (info->spec) ? 'E' : 'e';
1008 else
1010 /* We can simply add another another digit before the
1011 radix. */
1012 *--wstartp = L'1';
1013 ++intdig_no;
1016 /* While rounding the number of digits can change.
1017 If the number now exceeds the limits remove some
1018 fractional digits. */
1019 if (intdig_no + fracdig_no > dig_max)
1021 wcp -= intdig_no + fracdig_no - dig_max;
1022 fracdig_no -= intdig_no + fracdig_no - dig_max;
1028 do_expo:
1029 /* Now remove unnecessary '0' at the end of the string. */
1030 while (fracdig_no > fracdig_min && *(wcp - 1) == L'0')
1032 --wcp;
1033 --fracdig_no;
1035 /* If we eliminate all fractional digits we perhaps also can remove
1036 the radix character. */
1037 if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc)
1038 --wcp;
1040 if (grouping)
1041 /* Add in separator characters, overwriting the same buffer. */
1042 wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc,
1043 ngroups);
1045 /* Write the exponent if it is needed. */
1046 if (type != 'f')
1048 *wcp++ = (wchar_t) type;
1049 *wcp++ = expsign ? L'-' : L'+';
1051 /* Find the magnitude of the exponent. */
1052 expscale = 10;
1053 while (expscale <= exponent)
1054 expscale *= 10;
1056 if (exponent < 10)
1057 /* Exponent always has at least two digits. */
1058 *wcp++ = L'0';
1059 else
1062 expscale /= 10;
1063 *wcp++ = L'0' + (exponent / expscale);
1064 exponent %= expscale;
1066 while (expscale > 10);
1067 *wcp++ = L'0' + exponent;
1070 /* Compute number of characters which must be filled with the padding
1071 character. */
1072 if (is_neg || info->showsign || info->space)
1073 --width;
1074 width -= wcp - wstartp;
1076 if (!info->left && info->pad != '0' && width > 0)
1077 PADN (info->pad, width);
1079 if (is_neg)
1080 outchar ('-');
1081 else if (info->showsign)
1082 outchar ('+');
1083 else if (info->space)
1084 outchar (' ');
1086 if (!info->left && info->pad == '0' && width > 0)
1087 PADN ('0', width);
1090 char *buffer = NULL;
1091 char *cp = NULL;
1092 char *tmpptr;
1094 if (! wide)
1096 /* Create the single byte string. */
1097 size_t decimal_len;
1098 size_t thousands_sep_len;
1099 wchar_t *copywc;
1101 decimal_len = strlen (decimal);
1103 if (thousands_sep == NULL)
1104 thousands_sep_len = 0;
1105 else
1106 thousands_sep_len = strlen (thousands_sep);
1108 if (buffer_malloced)
1110 buffer = (char *) malloc (2 + chars_needed + decimal_len
1111 + ngroups * thousands_sep_len);
1112 if (buffer == NULL)
1113 /* Signal an error to the caller. */
1114 return -1;
1116 else
1117 buffer = (char *) alloca (2 + chars_needed + decimal_len
1118 + ngroups * thousands_sep_len);
1120 /* Now copy the wide character string. Since the character
1121 (except for the decimal point and thousands separator) must
1122 be coming from the ASCII range we can esily convert the
1123 string without mapping tables. */
1124 for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc)
1125 if (*copywc == decimalwc)
1126 cp = (char *) __mempcpy (cp, decimal, decimal_len);
1127 else if (*copywc == thousands_sepwc)
1128 cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len);
1129 else
1130 *cp++ = (char) *copywc;
1133 tmpptr = buffer;
1134 PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr);
1136 /* Free the memory if necessary. */
1137 if (buffer_malloced)
1139 free (buffer);
1140 free (wbuffer);
1144 if (info->left && width > 0)
1145 PADN (info->pad, width);
1147 return done;
1149 libc_hidden_def (__printf_fp)
1151 /* Return the number of extra grouping characters that will be inserted
1152 into a number with INTDIG_MAX integer digits. */
1154 unsigned int
1155 __guess_grouping (unsigned int intdig_max, const char *grouping)
1157 unsigned int groups;
1159 /* We treat all negative values like CHAR_MAX. */
1161 if (*grouping == CHAR_MAX || *grouping <= 0)
1162 /* No grouping should be done. */
1163 return 0;
1165 groups = 0;
1166 while (intdig_max > (unsigned int) *grouping)
1168 ++groups;
1169 intdig_max -= *grouping++;
1171 if (*grouping == CHAR_MAX
1172 #if CHAR_MIN < 0
1173 || *grouping < 0
1174 #endif
1176 /* No more grouping should be done. */
1177 break;
1178 else if (*grouping == 0)
1180 /* Same grouping repeats. */
1181 groups += (intdig_max - 1) / grouping[-1];
1182 break;
1186 return groups;
1189 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1190 There is guaranteed enough space past BUFEND to extend it.
1191 Return the new end of buffer. */
1193 static wchar_t *
1194 internal_function
1195 group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no,
1196 const char *grouping, wchar_t thousands_sep, int ngroups)
1198 wchar_t *p;
1200 if (ngroups == 0)
1201 return bufend;
1203 /* Move the fractional part down. */
1204 __wmemmove (buf + intdig_no + ngroups, buf + intdig_no,
1205 bufend - (buf + intdig_no));
1207 p = buf + intdig_no + ngroups - 1;
1210 unsigned int len = *grouping++;
1212 *p-- = buf[--intdig_no];
1213 while (--len > 0);
1214 *p-- = thousands_sep;
1216 if (*grouping == CHAR_MAX
1217 #if CHAR_MIN < 0
1218 || *grouping < 0
1219 #endif
1221 /* No more grouping should be done. */
1222 break;
1223 else if (*grouping == 0)
1224 /* Same grouping repeats. */
1225 --grouping;
1226 } while (intdig_no > (unsigned int) *grouping);
1228 /* Copy the remaining ungrouped digits. */
1230 *p-- = buf[--intdig_no];
1231 while (p > buf);
1233 return bufend + ngroups;