* sysdeps/powerpc/powerpc32/power4/hp-timing.c: New file.
[glibc.git] / stdlib / mod_1.c
blob3273c9222da2d3aa79f21993c5b5f986607da986
1 /* mpn_mod_1(dividend_ptr, dividend_size, divisor_limb) --
2 Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
3 Return the single-limb remainder.
4 There are no constraints on the value of the divisor.
6 Copyright (C) 1991, 1993, 1994, Free Software Foundation, Inc.
8 This file is part of the GNU MP Library.
10 The GNU MP Library is free software; you can redistribute it and/or modify
11 it under the terms of the GNU Lesser General Public License as published by
12 the Free Software Foundation; either version 2.1 of the License, or (at your
13 option) any later version.
15 The GNU MP Library is distributed in the hope that it will be useful, but
16 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
18 License for more details.
20 You should have received a copy of the GNU Lesser General Public License
21 along with the GNU MP Library; see the file COPYING.LIB. If not, write to
22 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
23 MA 02111-1307, USA. */
25 #include <gmp.h>
26 #include "gmp-impl.h"
27 #include "longlong.h"
29 #ifndef UMUL_TIME
30 #define UMUL_TIME 1
31 #endif
33 #ifndef UDIV_TIME
34 #define UDIV_TIME UMUL_TIME
35 #endif
37 /* FIXME: We should be using invert_limb (or invert_normalized_limb)
38 here (not udiv_qrnnd). */
40 mp_limb_t
41 #if __STDC__
42 mpn_mod_1 (mp_srcptr dividend_ptr, mp_size_t dividend_size,
43 mp_limb_t divisor_limb)
44 #else
45 mpn_mod_1 (dividend_ptr, dividend_size, divisor_limb)
46 mp_srcptr dividend_ptr;
47 mp_size_t dividend_size;
48 mp_limb_t divisor_limb;
49 #endif
51 mp_size_t i;
52 mp_limb_t n1, n0, r;
53 int dummy;
55 /* Botch: Should this be handled at all? Rely on callers? */
56 if (dividend_size == 0)
57 return 0;
59 /* If multiplication is much faster than division, and the
60 dividend is large, pre-invert the divisor, and use
61 only multiplications in the inner loop. */
63 /* This test should be read:
64 Does it ever help to use udiv_qrnnd_preinv?
65 && Does what we save compensate for the inversion overhead? */
66 if (UDIV_TIME > (2 * UMUL_TIME + 6)
67 && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME)
69 int normalization_steps;
71 count_leading_zeros (normalization_steps, divisor_limb);
72 if (normalization_steps != 0)
74 mp_limb_t divisor_limb_inverted;
76 divisor_limb <<= normalization_steps;
78 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
79 result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
80 most significant bit (with weight 2**N) implicit. */
82 /* Special case for DIVISOR_LIMB == 100...000. */
83 if (divisor_limb << 1 == 0)
84 divisor_limb_inverted = ~(mp_limb_t) 0;
85 else
86 udiv_qrnnd (divisor_limb_inverted, dummy,
87 -divisor_limb, 0, divisor_limb);
89 n1 = dividend_ptr[dividend_size - 1];
90 r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
92 /* Possible optimization:
93 if (r == 0
94 && divisor_limb > ((n1 << normalization_steps)
95 | (dividend_ptr[dividend_size - 2] >> ...)))
96 ...one division less... */
98 for (i = dividend_size - 2; i >= 0; i--)
100 n0 = dividend_ptr[i];
101 udiv_qrnnd_preinv (dummy, r, r,
102 ((n1 << normalization_steps)
103 | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
104 divisor_limb, divisor_limb_inverted);
105 n1 = n0;
107 udiv_qrnnd_preinv (dummy, r, r,
108 n1 << normalization_steps,
109 divisor_limb, divisor_limb_inverted);
110 return r >> normalization_steps;
112 else
114 mp_limb_t divisor_limb_inverted;
116 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
117 result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
118 most significant bit (with weight 2**N) implicit. */
120 /* Special case for DIVISOR_LIMB == 100...000. */
121 if (divisor_limb << 1 == 0)
122 divisor_limb_inverted = ~(mp_limb_t) 0;
123 else
124 udiv_qrnnd (divisor_limb_inverted, dummy,
125 -divisor_limb, 0, divisor_limb);
127 i = dividend_size - 1;
128 r = dividend_ptr[i];
130 if (r >= divisor_limb)
131 r = 0;
132 else
133 i--;
135 for (; i >= 0; i--)
137 n0 = dividend_ptr[i];
138 udiv_qrnnd_preinv (dummy, r, r,
139 n0, divisor_limb, divisor_limb_inverted);
141 return r;
144 else
146 if (UDIV_NEEDS_NORMALIZATION)
148 int normalization_steps;
150 count_leading_zeros (normalization_steps, divisor_limb);
151 if (normalization_steps != 0)
153 divisor_limb <<= normalization_steps;
155 n1 = dividend_ptr[dividend_size - 1];
156 r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
158 /* Possible optimization:
159 if (r == 0
160 && divisor_limb > ((n1 << normalization_steps)
161 | (dividend_ptr[dividend_size - 2] >> ...)))
162 ...one division less... */
164 for (i = dividend_size - 2; i >= 0; i--)
166 n0 = dividend_ptr[i];
167 udiv_qrnnd (dummy, r, r,
168 ((n1 << normalization_steps)
169 | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
170 divisor_limb);
171 n1 = n0;
173 udiv_qrnnd (dummy, r, r,
174 n1 << normalization_steps,
175 divisor_limb);
176 return r >> normalization_steps;
179 /* No normalization needed, either because udiv_qrnnd doesn't require
180 it, or because DIVISOR_LIMB is already normalized. */
182 i = dividend_size - 1;
183 r = dividend_ptr[i];
185 if (r >= divisor_limb)
186 r = 0;
187 else
188 i--;
190 for (; i >= 0; i--)
192 n0 = dividend_ptr[i];
193 udiv_qrnnd (dummy, r, r, n0, divisor_limb);
195 return r;