Fix warnings in fwscanf / rewind tests.
[glibc.git] / manual / math.texi
blob206021c65d6dd20df17a66caf3036ceace28270d
1 @c We need some definitions here.
2 @ifclear mult
3 @ifhtml
4 @set mult ·
5 @set infty ∞
6 @set pie π
7 @end ifhtml
8 @iftex
9 @set mult @cdot
10 @set infty @infty
11 @end iftex
12 @ifclear mult
13 @set mult *
14 @set infty oo
15 @set pie pi
16 @end ifclear
17 @macro mul
18 @value{mult}
19 @end macro
20 @macro infinity
21 @value{infty}
22 @end macro
23 @ifnottex
24 @macro pi
25 @value{pie}
26 @end macro
27 @end ifnottex
28 @end ifclear
30 @node Mathematics, Arithmetic, Syslog, Top
31 @c %MENU% Math functions, useful constants, random numbers
32 @chapter Mathematics
34 This chapter contains information about functions for performing
35 mathematical computations, such as trigonometric functions.  Most of
36 these functions have prototypes declared in the header file
37 @file{math.h}.  The complex-valued functions are defined in
38 @file{complex.h}.
39 @pindex math.h
40 @pindex complex.h
42 All mathematical functions which take a floating-point argument
43 have three variants, one each for @code{double}, @code{float}, and
44 @code{long double} arguments.  The @code{double} versions are mostly
45 defined in @w{ISO C89}.  The @code{float} and @code{long double}
46 versions are from the numeric extensions to C included in @w{ISO C99}.
48 Which of the three versions of a function should be used depends on the
49 situation.  For most calculations, the @code{float} functions are the
50 fastest.  On the other hand, the @code{long double} functions have the
51 highest precision.  @code{double} is somewhere in between.  It is
52 usually wise to pick the narrowest type that can accommodate your data.
53 Not all machines have a distinct @code{long double} type; it may be the
54 same as @code{double}.
56 @menu
57 * Mathematical Constants::      Precise numeric values for often-used
58                                  constants.
59 * Trig Functions::              Sine, cosine, tangent, and friends.
60 * Inverse Trig Functions::      Arcsine, arccosine, etc.
61 * Exponents and Logarithms::    Also pow and sqrt.
62 * Hyperbolic Functions::        sinh, cosh, tanh, etc.
63 * Special Functions::           Bessel, gamma, erf.
64 * Errors in Math Functions::    Known Maximum Errors in Math Functions.
65 * Pseudo-Random Numbers::       Functions for generating pseudo-random
66                                  numbers.
67 * FP Function Optimizations::   Fast code or small code.
68 @end menu
70 @node Mathematical Constants
71 @section Predefined Mathematical Constants
72 @cindex constants
73 @cindex mathematical constants
75 The header @file{math.h} defines several useful mathematical constants.
76 All values are defined as preprocessor macros starting with @code{M_}.
77 The values provided are:
79 @vtable @code
80 @item M_E
81 The base of natural logarithms.
82 @item M_LOG2E
83 The logarithm to base @code{2} of @code{M_E}.
84 @item M_LOG10E
85 The logarithm to base @code{10} of @code{M_E}.
86 @item M_LN2
87 The natural logarithm of @code{2}.
88 @item M_LN10
89 The natural logarithm of @code{10}.
90 @item M_PI
91 Pi, the ratio of a circle's circumference to its diameter.
92 @item M_PI_2
93 Pi divided by two.
94 @item M_PI_4
95 Pi divided by four.
96 @item M_1_PI
97 The reciprocal of pi (1/pi)
98 @item M_2_PI
99 Two times the reciprocal of pi.
100 @item M_2_SQRTPI
101 Two times the reciprocal of the square root of pi.
102 @item M_SQRT2
103 The square root of two.
104 @item M_SQRT1_2
105 The reciprocal of the square root of two (also the square root of 1/2).
106 @end vtable
108 These constants come from the Unix98 standard and were also available in
109 4.4BSD; therefore they are only defined if
110 @code{_XOPEN_SOURCE=500}, or a more general feature select macro, is
111 defined.  The default set of features includes these constants.
112 @xref{Feature Test Macros}.
114 All values are of type @code{double}.  As an extension, @theglibc{}
115 also defines these constants with type @code{long double}.  The
116 @code{long double} macros have a lowercase @samp{l} appended to their
117 names: @code{M_El}, @code{M_PIl}, and so forth.  These are only
118 available if @code{_GNU_SOURCE} is defined.
120 @vindex PI
121 @emph{Note:} Some programs use a constant named @code{PI} which has the
122 same value as @code{M_PI}.  This constant is not standard; it may have
123 appeared in some old AT&T headers, and is mentioned in Stroustrup's book
124 on C++.  It infringes on the user's name space, so @theglibc{}
125 does not define it.  Fixing programs written to expect it is simple:
126 replace @code{PI} with @code{M_PI} throughout, or put @samp{-DPI=M_PI}
127 on the compiler command line.
129 @node Trig Functions
130 @section Trigonometric Functions
131 @cindex trigonometric functions
133 These are the familiar @code{sin}, @code{cos}, and @code{tan} functions.
134 The arguments to all of these functions are in units of radians; recall
135 that pi radians equals 180 degrees.
137 @cindex pi (trigonometric constant)
138 The math library normally defines @code{M_PI} to a @code{double}
139 approximation of pi.  If strict ISO and/or POSIX compliance
140 are requested this constant is not defined, but you can easily define it
141 yourself:
143 @smallexample
144 #define M_PI 3.14159265358979323846264338327
145 @end smallexample
147 @noindent
148 You can also compute the value of pi with the expression @code{acos
149 (-1.0)}.
151 @comment math.h
152 @comment ISO
153 @deftypefun double sin (double @var{x})
154 @comment math.h
155 @comment ISO
156 @deftypefunx float sinf (float @var{x})
157 @comment math.h
158 @comment ISO
159 @deftypefunx {long double} sinl (long double @var{x})
160 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
161 These functions return the sine of @var{x}, where @var{x} is given in
162 radians.  The return value is in the range @code{-1} to @code{1}.
163 @end deftypefun
165 @comment math.h
166 @comment ISO
167 @deftypefun double cos (double @var{x})
168 @comment math.h
169 @comment ISO
170 @deftypefunx float cosf (float @var{x})
171 @comment math.h
172 @comment ISO
173 @deftypefunx {long double} cosl (long double @var{x})
174 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
175 These functions return the cosine of @var{x}, where @var{x} is given in
176 radians.  The return value is in the range @code{-1} to @code{1}.
177 @end deftypefun
179 @comment math.h
180 @comment ISO
181 @deftypefun double tan (double @var{x})
182 @comment math.h
183 @comment ISO
184 @deftypefunx float tanf (float @var{x})
185 @comment math.h
186 @comment ISO
187 @deftypefunx {long double} tanl (long double @var{x})
188 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
189 These functions return the tangent of @var{x}, where @var{x} is given in
190 radians.
192 Mathematically, the tangent function has singularities at odd multiples
193 of pi/2.  If the argument @var{x} is too close to one of these
194 singularities, @code{tan} will signal overflow.
195 @end deftypefun
197 In many applications where @code{sin} and @code{cos} are used, the sine
198 and cosine of the same angle are needed at the same time.  It is more
199 efficient to compute them simultaneously, so the library provides a
200 function to do that.
202 @comment math.h
203 @comment GNU
204 @deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx})
205 @comment math.h
206 @comment GNU
207 @deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx})
208 @comment math.h
209 @comment GNU
210 @deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx})
211 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
212 These functions return the sine of @var{x} in @code{*@var{sinx}} and the
213 cosine of @var{x} in @code{*@var{cos}}, where @var{x} is given in
214 radians.  Both values, @code{*@var{sinx}} and @code{*@var{cosx}}, are in
215 the range of @code{-1} to @code{1}.
217 This function is a GNU extension.  Portable programs should be prepared
218 to cope with its absence.
219 @end deftypefun
221 @cindex complex trigonometric functions
223 @w{ISO C99} defines variants of the trig functions which work on
224 complex numbers.  @Theglibc{} provides these functions, but they
225 are only useful if your compiler supports the new complex types defined
226 by the standard.
227 @c XXX Change this when gcc is fixed. -zw
228 (As of this writing GCC supports complex numbers, but there are bugs in
229 the implementation.)
231 @comment complex.h
232 @comment ISO
233 @deftypefun {complex double} csin (complex double @var{z})
234 @comment complex.h
235 @comment ISO
236 @deftypefunx {complex float} csinf (complex float @var{z})
237 @comment complex.h
238 @comment ISO
239 @deftypefunx {complex long double} csinl (complex long double @var{z})
240 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
241 @c There are calls to nan* that could trigger @mtslocale if they didn't get
242 @c empty strings.
243 These functions return the complex sine of @var{z}.
244 The mathematical definition of the complex sine is
246 @ifnottex
247 @math{sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i))}.
248 @end ifnottex
249 @tex
250 $$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$
251 @end tex
252 @end deftypefun
254 @comment complex.h
255 @comment ISO
256 @deftypefun {complex double} ccos (complex double @var{z})
257 @comment complex.h
258 @comment ISO
259 @deftypefunx {complex float} ccosf (complex float @var{z})
260 @comment complex.h
261 @comment ISO
262 @deftypefunx {complex long double} ccosl (complex long double @var{z})
263 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
264 These functions return the complex cosine of @var{z}.
265 The mathematical definition of the complex cosine is
267 @ifnottex
268 @math{cos (z) = 1/2 * (exp (z*i) + exp (-z*i))}
269 @end ifnottex
270 @tex
271 $$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$
272 @end tex
273 @end deftypefun
275 @comment complex.h
276 @comment ISO
277 @deftypefun {complex double} ctan (complex double @var{z})
278 @comment complex.h
279 @comment ISO
280 @deftypefunx {complex float} ctanf (complex float @var{z})
281 @comment complex.h
282 @comment ISO
283 @deftypefunx {complex long double} ctanl (complex long double @var{z})
284 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
285 These functions return the complex tangent of @var{z}.
286 The mathematical definition of the complex tangent is
288 @ifnottex
289 @math{tan (z) = -i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i))}
290 @end ifnottex
291 @tex
292 $$\tan(z) = -i \cdot {e^{zi} - e^{-zi}\over e^{zi} + e^{-zi}}$$
293 @end tex
295 @noindent
296 The complex tangent has poles at @math{pi/2 + 2n}, where @math{n} is an
297 integer.  @code{ctan} may signal overflow if @var{z} is too close to a
298 pole.
299 @end deftypefun
302 @node Inverse Trig Functions
303 @section Inverse Trigonometric Functions
304 @cindex inverse trigonometric functions
306 These are the usual arc sine, arc cosine and arc tangent functions,
307 which are the inverses of the sine, cosine and tangent functions
308 respectively.
310 @comment math.h
311 @comment ISO
312 @deftypefun double asin (double @var{x})
313 @comment math.h
314 @comment ISO
315 @deftypefunx float asinf (float @var{x})
316 @comment math.h
317 @comment ISO
318 @deftypefunx {long double} asinl (long double @var{x})
319 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
320 These functions compute the arc sine of @var{x}---that is, the value whose
321 sine is @var{x}.  The value is in units of radians.  Mathematically,
322 there are infinitely many such values; the one actually returned is the
323 one between @code{-pi/2} and @code{pi/2} (inclusive).
325 The arc sine function is defined mathematically only
326 over the domain @code{-1} to @code{1}.  If @var{x} is outside the
327 domain, @code{asin} signals a domain error.
328 @end deftypefun
330 @comment math.h
331 @comment ISO
332 @deftypefun double acos (double @var{x})
333 @comment math.h
334 @comment ISO
335 @deftypefunx float acosf (float @var{x})
336 @comment math.h
337 @comment ISO
338 @deftypefunx {long double} acosl (long double @var{x})
339 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
340 These functions compute the arc cosine of @var{x}---that is, the value
341 whose cosine is @var{x}.  The value is in units of radians.
342 Mathematically, there are infinitely many such values; the one actually
343 returned is the one between @code{0} and @code{pi} (inclusive).
345 The arc cosine function is defined mathematically only
346 over the domain @code{-1} to @code{1}.  If @var{x} is outside the
347 domain, @code{acos} signals a domain error.
348 @end deftypefun
350 @comment math.h
351 @comment ISO
352 @deftypefun double atan (double @var{x})
353 @comment math.h
354 @comment ISO
355 @deftypefunx float atanf (float @var{x})
356 @comment math.h
357 @comment ISO
358 @deftypefunx {long double} atanl (long double @var{x})
359 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
360 These functions compute the arc tangent of @var{x}---that is, the value
361 whose tangent is @var{x}.  The value is in units of radians.
362 Mathematically, there are infinitely many such values; the one actually
363 returned is the one between @code{-pi/2} and @code{pi/2} (inclusive).
364 @end deftypefun
366 @comment math.h
367 @comment ISO
368 @deftypefun double atan2 (double @var{y}, double @var{x})
369 @comment math.h
370 @comment ISO
371 @deftypefunx float atan2f (float @var{y}, float @var{x})
372 @comment math.h
373 @comment ISO
374 @deftypefunx {long double} atan2l (long double @var{y}, long double @var{x})
375 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
376 This function computes the arc tangent of @var{y}/@var{x}, but the signs
377 of both arguments are used to determine the quadrant of the result, and
378 @var{x} is permitted to be zero.  The return value is given in radians
379 and is in the range @code{-pi} to @code{pi}, inclusive.
381 If @var{x} and @var{y} are coordinates of a point in the plane,
382 @code{atan2} returns the signed angle between the line from the origin
383 to that point and the x-axis.  Thus, @code{atan2} is useful for
384 converting Cartesian coordinates to polar coordinates.  (To compute the
385 radial coordinate, use @code{hypot}; see @ref{Exponents and
386 Logarithms}.)
388 @c This is experimentally true.  Should it be so? -zw
389 If both @var{x} and @var{y} are zero, @code{atan2} returns zero.
390 @end deftypefun
392 @cindex inverse complex trigonometric functions
393 @w{ISO C99} defines complex versions of the inverse trig functions.
395 @comment complex.h
396 @comment ISO
397 @deftypefun {complex double} casin (complex double @var{z})
398 @comment complex.h
399 @comment ISO
400 @deftypefunx {complex float} casinf (complex float @var{z})
401 @comment complex.h
402 @comment ISO
403 @deftypefunx {complex long double} casinl (complex long double @var{z})
404 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
405 These functions compute the complex arc sine of @var{z}---that is, the
406 value whose sine is @var{z}.  The value returned is in radians.
408 Unlike the real-valued functions, @code{casin} is defined for all
409 values of @var{z}.
410 @end deftypefun
412 @comment complex.h
413 @comment ISO
414 @deftypefun {complex double} cacos (complex double @var{z})
415 @comment complex.h
416 @comment ISO
417 @deftypefunx {complex float} cacosf (complex float @var{z})
418 @comment complex.h
419 @comment ISO
420 @deftypefunx {complex long double} cacosl (complex long double @var{z})
421 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
422 These functions compute the complex arc cosine of @var{z}---that is, the
423 value whose cosine is @var{z}.  The value returned is in radians.
425 Unlike the real-valued functions, @code{cacos} is defined for all
426 values of @var{z}.
427 @end deftypefun
430 @comment complex.h
431 @comment ISO
432 @deftypefun {complex double} catan (complex double @var{z})
433 @comment complex.h
434 @comment ISO
435 @deftypefunx {complex float} catanf (complex float @var{z})
436 @comment complex.h
437 @comment ISO
438 @deftypefunx {complex long double} catanl (complex long double @var{z})
439 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
440 These functions compute the complex arc tangent of @var{z}---that is,
441 the value whose tangent is @var{z}.  The value is in units of radians.
442 @end deftypefun
445 @node Exponents and Logarithms
446 @section Exponentiation and Logarithms
447 @cindex exponentiation functions
448 @cindex power functions
449 @cindex logarithm functions
451 @comment math.h
452 @comment ISO
453 @deftypefun double exp (double @var{x})
454 @comment math.h
455 @comment ISO
456 @deftypefunx float expf (float @var{x})
457 @comment math.h
458 @comment ISO
459 @deftypefunx {long double} expl (long double @var{x})
460 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
461 These functions compute @code{e} (the base of natural logarithms) raised
462 to the power @var{x}.
464 If the magnitude of the result is too large to be representable,
465 @code{exp} signals overflow.
466 @end deftypefun
468 @comment math.h
469 @comment ISO
470 @deftypefun double exp2 (double @var{x})
471 @comment math.h
472 @comment ISO
473 @deftypefunx float exp2f (float @var{x})
474 @comment math.h
475 @comment ISO
476 @deftypefunx {long double} exp2l (long double @var{x})
477 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
478 These functions compute @code{2} raised to the power @var{x}.
479 Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}.
480 @end deftypefun
482 @comment math.h
483 @comment GNU
484 @deftypefun double exp10 (double @var{x})
485 @comment math.h
486 @comment GNU
487 @deftypefunx float exp10f (float @var{x})
488 @comment math.h
489 @comment GNU
490 @deftypefunx {long double} exp10l (long double @var{x})
491 @comment math.h
492 @comment GNU
493 @deftypefunx double pow10 (double @var{x})
494 @comment math.h
495 @comment GNU
496 @deftypefunx float pow10f (float @var{x})
497 @comment math.h
498 @comment GNU
499 @deftypefunx {long double} pow10l (long double @var{x})
500 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
501 These functions compute @code{10} raised to the power @var{x}.
502 Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}.
504 These functions are GNU extensions.  The name @code{exp10} is
505 preferred, since it is analogous to @code{exp} and @code{exp2}.
506 @end deftypefun
509 @comment math.h
510 @comment ISO
511 @deftypefun double log (double @var{x})
512 @comment math.h
513 @comment ISO
514 @deftypefunx float logf (float @var{x})
515 @comment math.h
516 @comment ISO
517 @deftypefunx {long double} logl (long double @var{x})
518 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
519 These functions compute the natural logarithm of @var{x}.  @code{exp (log
520 (@var{x}))} equals @var{x}, exactly in mathematics and approximately in
523 If @var{x} is negative, @code{log} signals a domain error.  If @var{x}
524 is zero, it returns negative infinity; if @var{x} is too close to zero,
525 it may signal overflow.
526 @end deftypefun
528 @comment math.h
529 @comment ISO
530 @deftypefun double log10 (double @var{x})
531 @comment math.h
532 @comment ISO
533 @deftypefunx float log10f (float @var{x})
534 @comment math.h
535 @comment ISO
536 @deftypefunx {long double} log10l (long double @var{x})
537 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
538 These functions return the base-10 logarithm of @var{x}.
539 @code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}.
541 @end deftypefun
543 @comment math.h
544 @comment ISO
545 @deftypefun double log2 (double @var{x})
546 @comment math.h
547 @comment ISO
548 @deftypefunx float log2f (float @var{x})
549 @comment math.h
550 @comment ISO
551 @deftypefunx {long double} log2l (long double @var{x})
552 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
553 These functions return the base-2 logarithm of @var{x}.
554 @code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}.
555 @end deftypefun
557 @comment math.h
558 @comment ISO
559 @deftypefun double logb (double @var{x})
560 @comment math.h
561 @comment ISO
562 @deftypefunx float logbf (float @var{x})
563 @comment math.h
564 @comment ISO
565 @deftypefunx {long double} logbl (long double @var{x})
566 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
567 These functions extract the exponent of @var{x} and return it as a
568 floating-point value.  If @code{FLT_RADIX} is two, @code{logb} is equal
569 to @code{floor (log2 (x))}, except it's probably faster.
571 If @var{x} is de-normalized, @code{logb} returns the exponent @var{x}
572 would have if it were normalized.  If @var{x} is infinity (positive or
573 negative), @code{logb} returns @math{@infinity{}}.  If @var{x} is zero,
574 @code{logb} returns @math{@infinity{}}.  It does not signal.
575 @end deftypefun
577 @comment math.h
578 @comment ISO
579 @deftypefun int ilogb (double @var{x})
580 @comment math.h
581 @comment ISO
582 @deftypefunx int ilogbf (float @var{x})
583 @comment math.h
584 @comment ISO
585 @deftypefunx int ilogbl (long double @var{x})
586 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
587 These functions are equivalent to the corresponding @code{logb}
588 functions except that they return signed integer values.
589 @end deftypefun
591 @noindent
592 Since integers cannot represent infinity and NaN, @code{ilogb} instead
593 returns an integer that can't be the exponent of a normal floating-point
594 number.  @file{math.h} defines constants so you can check for this.
596 @comment math.h
597 @comment ISO
598 @deftypevr Macro int FP_ILOGB0
599 @code{ilogb} returns this value if its argument is @code{0}.  The
600 numeric value is either @code{INT_MIN} or @code{-INT_MAX}.
602 This macro is defined in @w{ISO C99}.
603 @end deftypevr
605 @comment math.h
606 @comment ISO
607 @deftypevr Macro int FP_ILOGBNAN
608 @code{ilogb} returns this value if its argument is @code{NaN}.  The
609 numeric value is either @code{INT_MIN} or @code{INT_MAX}.
611 This macro is defined in @w{ISO C99}.
612 @end deftypevr
614 These values are system specific.  They might even be the same.  The
615 proper way to test the result of @code{ilogb} is as follows:
617 @smallexample
618 i = ilogb (f);
619 if (i == FP_ILOGB0 || i == FP_ILOGBNAN)
620   @{
621     if (isnan (f))
622       @{
623         /* @r{Handle NaN.}  */
624       @}
625     else if (f  == 0.0)
626       @{
627         /* @r{Handle 0.0.}  */
628       @}
629     else
630       @{
631         /* @r{Some other value with large exponent,}
632            @r{perhaps +Inf.}  */
633       @}
634   @}
635 @end smallexample
637 @comment math.h
638 @comment ISO
639 @deftypefun double pow (double @var{base}, double @var{power})
640 @comment math.h
641 @comment ISO
642 @deftypefunx float powf (float @var{base}, float @var{power})
643 @comment math.h
644 @comment ISO
645 @deftypefunx {long double} powl (long double @var{base}, long double @var{power})
646 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
647 These are general exponentiation functions, returning @var{base} raised
648 to @var{power}.
650 Mathematically, @code{pow} would return a complex number when @var{base}
651 is negative and @var{power} is not an integral value.  @code{pow} can't
652 do that, so instead it signals a domain error. @code{pow} may also
653 underflow or overflow the destination type.
654 @end deftypefun
656 @cindex square root function
657 @comment math.h
658 @comment ISO
659 @deftypefun double sqrt (double @var{x})
660 @comment math.h
661 @comment ISO
662 @deftypefunx float sqrtf (float @var{x})
663 @comment math.h
664 @comment ISO
665 @deftypefunx {long double} sqrtl (long double @var{x})
666 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
667 These functions return the nonnegative square root of @var{x}.
669 If @var{x} is negative, @code{sqrt} signals a domain error.
670 Mathematically, it should return a complex number.
671 @end deftypefun
673 @cindex cube root function
674 @comment math.h
675 @comment BSD
676 @deftypefun double cbrt (double @var{x})
677 @comment math.h
678 @comment BSD
679 @deftypefunx float cbrtf (float @var{x})
680 @comment math.h
681 @comment BSD
682 @deftypefunx {long double} cbrtl (long double @var{x})
683 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
684 These functions return the cube root of @var{x}.  They cannot
685 fail; every representable real value has a representable real cube root.
686 @end deftypefun
688 @comment math.h
689 @comment ISO
690 @deftypefun double hypot (double @var{x}, double @var{y})
691 @comment math.h
692 @comment ISO
693 @deftypefunx float hypotf (float @var{x}, float @var{y})
694 @comment math.h
695 @comment ISO
696 @deftypefunx {long double} hypotl (long double @var{x}, long double @var{y})
697 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
698 These functions return @code{sqrt (@var{x}*@var{x} +
699 @var{y}*@var{y})}.  This is the length of the hypotenuse of a right
700 triangle with sides of length @var{x} and @var{y}, or the distance
701 of the point (@var{x}, @var{y}) from the origin.  Using this function
702 instead of the direct formula is wise, since the error is
703 much smaller.  See also the function @code{cabs} in @ref{Absolute Value}.
704 @end deftypefun
706 @comment math.h
707 @comment ISO
708 @deftypefun double expm1 (double @var{x})
709 @comment math.h
710 @comment ISO
711 @deftypefunx float expm1f (float @var{x})
712 @comment math.h
713 @comment ISO
714 @deftypefunx {long double} expm1l (long double @var{x})
715 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
716 These functions return a value equivalent to @code{exp (@var{x}) - 1}.
717 They are computed in a way that is accurate even if @var{x} is
718 near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing
719 to subtraction of two numbers that are nearly equal.
720 @end deftypefun
722 @comment math.h
723 @comment ISO
724 @deftypefun double log1p (double @var{x})
725 @comment math.h
726 @comment ISO
727 @deftypefunx float log1pf (float @var{x})
728 @comment math.h
729 @comment ISO
730 @deftypefunx {long double} log1pl (long double @var{x})
731 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
732 These functions returns a value equivalent to @w{@code{log (1 + @var{x})}}.
733 They are computed in a way that is accurate even if @var{x} is
734 near zero.
735 @end deftypefun
737 @cindex complex exponentiation functions
738 @cindex complex logarithm functions
740 @w{ISO C99} defines complex variants of some of the exponentiation and
741 logarithm functions.
743 @comment complex.h
744 @comment ISO
745 @deftypefun {complex double} cexp (complex double @var{z})
746 @comment complex.h
747 @comment ISO
748 @deftypefunx {complex float} cexpf (complex float @var{z})
749 @comment complex.h
750 @comment ISO
751 @deftypefunx {complex long double} cexpl (complex long double @var{z})
752 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
753 These functions return @code{e} (the base of natural
754 logarithms) raised to the power of @var{z}.
755 Mathematically, this corresponds to the value
757 @ifnottex
758 @math{exp (z) = exp (creal (z)) * (cos (cimag (z)) + I * sin (cimag (z)))}
759 @end ifnottex
760 @tex
761 $$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$
762 @end tex
763 @end deftypefun
765 @comment complex.h
766 @comment ISO
767 @deftypefun {complex double} clog (complex double @var{z})
768 @comment complex.h
769 @comment ISO
770 @deftypefunx {complex float} clogf (complex float @var{z})
771 @comment complex.h
772 @comment ISO
773 @deftypefunx {complex long double} clogl (complex long double @var{z})
774 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
775 These functions return the natural logarithm of @var{z}.
776 Mathematically, this corresponds to the value
778 @ifnottex
779 @math{log (z) = log (cabs (z)) + I * carg (z)}
780 @end ifnottex
781 @tex
782 $$\log(z) = \log |z| + i \arg z$$
783 @end tex
785 @noindent
786 @code{clog} has a pole at 0, and will signal overflow if @var{z} equals
787 or is very close to 0.  It is well-defined for all other values of
788 @var{z}.
789 @end deftypefun
792 @comment complex.h
793 @comment GNU
794 @deftypefun {complex double} clog10 (complex double @var{z})
795 @comment complex.h
796 @comment GNU
797 @deftypefunx {complex float} clog10f (complex float @var{z})
798 @comment complex.h
799 @comment GNU
800 @deftypefunx {complex long double} clog10l (complex long double @var{z})
801 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
802 These functions return the base 10 logarithm of the complex value
803 @var{z}.  Mathematically, this corresponds to the value
805 @ifnottex
806 @math{log (z) = log10 (cabs (z)) + I * carg (z)}
807 @end ifnottex
808 @tex
809 $$\log_{10}(z) = \log_{10}|z| + i \arg z$$
810 @end tex
812 These functions are GNU extensions.
813 @end deftypefun
815 @comment complex.h
816 @comment ISO
817 @deftypefun {complex double} csqrt (complex double @var{z})
818 @comment complex.h
819 @comment ISO
820 @deftypefunx {complex float} csqrtf (complex float @var{z})
821 @comment complex.h
822 @comment ISO
823 @deftypefunx {complex long double} csqrtl (complex long double @var{z})
824 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
825 These functions return the complex square root of the argument @var{z}.  Unlike
826 the real-valued functions, they are defined for all values of @var{z}.
827 @end deftypefun
829 @comment complex.h
830 @comment ISO
831 @deftypefun {complex double} cpow (complex double @var{base}, complex double @var{power})
832 @comment complex.h
833 @comment ISO
834 @deftypefunx {complex float} cpowf (complex float @var{base}, complex float @var{power})
835 @comment complex.h
836 @comment ISO
837 @deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power})
838 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
839 These functions return @var{base} raised to the power of
840 @var{power}.  This is equivalent to @w{@code{cexp (y * clog (x))}}
841 @end deftypefun
843 @node Hyperbolic Functions
844 @section Hyperbolic Functions
845 @cindex hyperbolic functions
847 The functions in this section are related to the exponential functions;
848 see @ref{Exponents and Logarithms}.
850 @comment math.h
851 @comment ISO
852 @deftypefun double sinh (double @var{x})
853 @comment math.h
854 @comment ISO
855 @deftypefunx float sinhf (float @var{x})
856 @comment math.h
857 @comment ISO
858 @deftypefunx {long double} sinhl (long double @var{x})
859 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
860 These functions return the hyperbolic sine of @var{x}, defined
861 mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}.  They
862 may signal overflow if @var{x} is too large.
863 @end deftypefun
865 @comment math.h
866 @comment ISO
867 @deftypefun double cosh (double @var{x})
868 @comment math.h
869 @comment ISO
870 @deftypefunx float coshf (float @var{x})
871 @comment math.h
872 @comment ISO
873 @deftypefunx {long double} coshl (long double @var{x})
874 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
875 These function return the hyperbolic cosine of @var{x},
876 defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}.
877 They may signal overflow if @var{x} is too large.
878 @end deftypefun
880 @comment math.h
881 @comment ISO
882 @deftypefun double tanh (double @var{x})
883 @comment math.h
884 @comment ISO
885 @deftypefunx float tanhf (float @var{x})
886 @comment math.h
887 @comment ISO
888 @deftypefunx {long double} tanhl (long double @var{x})
889 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
890 These functions return the hyperbolic tangent of @var{x},
891 defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}.
892 They may signal overflow if @var{x} is too large.
893 @end deftypefun
895 @cindex hyperbolic functions
897 There are counterparts for the hyperbolic functions which take
898 complex arguments.
900 @comment complex.h
901 @comment ISO
902 @deftypefun {complex double} csinh (complex double @var{z})
903 @comment complex.h
904 @comment ISO
905 @deftypefunx {complex float} csinhf (complex float @var{z})
906 @comment complex.h
907 @comment ISO
908 @deftypefunx {complex long double} csinhl (complex long double @var{z})
909 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
910 These functions return the complex hyperbolic sine of @var{z}, defined
911 mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}.
912 @end deftypefun
914 @comment complex.h
915 @comment ISO
916 @deftypefun {complex double} ccosh (complex double @var{z})
917 @comment complex.h
918 @comment ISO
919 @deftypefunx {complex float} ccoshf (complex float @var{z})
920 @comment complex.h
921 @comment ISO
922 @deftypefunx {complex long double} ccoshl (complex long double @var{z})
923 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
924 These functions return the complex hyperbolic cosine of @var{z}, defined
925 mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}.
926 @end deftypefun
928 @comment complex.h
929 @comment ISO
930 @deftypefun {complex double} ctanh (complex double @var{z})
931 @comment complex.h
932 @comment ISO
933 @deftypefunx {complex float} ctanhf (complex float @var{z})
934 @comment complex.h
935 @comment ISO
936 @deftypefunx {complex long double} ctanhl (complex long double @var{z})
937 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
938 These functions return the complex hyperbolic tangent of @var{z},
939 defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}.
940 @end deftypefun
943 @cindex inverse hyperbolic functions
945 @comment math.h
946 @comment ISO
947 @deftypefun double asinh (double @var{x})
948 @comment math.h
949 @comment ISO
950 @deftypefunx float asinhf (float @var{x})
951 @comment math.h
952 @comment ISO
953 @deftypefunx {long double} asinhl (long double @var{x})
954 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
955 These functions return the inverse hyperbolic sine of @var{x}---the
956 value whose hyperbolic sine is @var{x}.
957 @end deftypefun
959 @comment math.h
960 @comment ISO
961 @deftypefun double acosh (double @var{x})
962 @comment math.h
963 @comment ISO
964 @deftypefunx float acoshf (float @var{x})
965 @comment math.h
966 @comment ISO
967 @deftypefunx {long double} acoshl (long double @var{x})
968 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
969 These functions return the inverse hyperbolic cosine of @var{x}---the
970 value whose hyperbolic cosine is @var{x}.  If @var{x} is less than
971 @code{1}, @code{acosh} signals a domain error.
972 @end deftypefun
974 @comment math.h
975 @comment ISO
976 @deftypefun double atanh (double @var{x})
977 @comment math.h
978 @comment ISO
979 @deftypefunx float atanhf (float @var{x})
980 @comment math.h
981 @comment ISO
982 @deftypefunx {long double} atanhl (long double @var{x})
983 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
984 These functions return the inverse hyperbolic tangent of @var{x}---the
985 value whose hyperbolic tangent is @var{x}.  If the absolute value of
986 @var{x} is greater than @code{1}, @code{atanh} signals a domain error;
987 if it is equal to 1, @code{atanh} returns infinity.
988 @end deftypefun
990 @cindex inverse complex hyperbolic functions
992 @comment complex.h
993 @comment ISO
994 @deftypefun {complex double} casinh (complex double @var{z})
995 @comment complex.h
996 @comment ISO
997 @deftypefunx {complex float} casinhf (complex float @var{z})
998 @comment complex.h
999 @comment ISO
1000 @deftypefunx {complex long double} casinhl (complex long double @var{z})
1001 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1002 These functions return the inverse complex hyperbolic sine of
1003 @var{z}---the value whose complex hyperbolic sine is @var{z}.
1004 @end deftypefun
1006 @comment complex.h
1007 @comment ISO
1008 @deftypefun {complex double} cacosh (complex double @var{z})
1009 @comment complex.h
1010 @comment ISO
1011 @deftypefunx {complex float} cacoshf (complex float @var{z})
1012 @comment complex.h
1013 @comment ISO
1014 @deftypefunx {complex long double} cacoshl (complex long double @var{z})
1015 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1016 These functions return the inverse complex hyperbolic cosine of
1017 @var{z}---the value whose complex hyperbolic cosine is @var{z}.  Unlike
1018 the real-valued functions, there are no restrictions on the value of @var{z}.
1019 @end deftypefun
1021 @comment complex.h
1022 @comment ISO
1023 @deftypefun {complex double} catanh (complex double @var{z})
1024 @comment complex.h
1025 @comment ISO
1026 @deftypefunx {complex float} catanhf (complex float @var{z})
1027 @comment complex.h
1028 @comment ISO
1029 @deftypefunx {complex long double} catanhl (complex long double @var{z})
1030 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1031 These functions return the inverse complex hyperbolic tangent of
1032 @var{z}---the value whose complex hyperbolic tangent is @var{z}.  Unlike
1033 the real-valued functions, there are no restrictions on the value of
1034 @var{z}.
1035 @end deftypefun
1037 @node Special Functions
1038 @section Special Functions
1039 @cindex special functions
1040 @cindex Bessel functions
1041 @cindex gamma function
1043 These are some more exotic mathematical functions which are sometimes
1044 useful.  Currently they only have real-valued versions.
1046 @comment math.h
1047 @comment SVID
1048 @deftypefun double erf (double @var{x})
1049 @comment math.h
1050 @comment SVID
1051 @deftypefunx float erff (float @var{x})
1052 @comment math.h
1053 @comment SVID
1054 @deftypefunx {long double} erfl (long double @var{x})
1055 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1056 @code{erf} returns the error function of @var{x}.  The error
1057 function is defined as
1058 @tex
1059 $$\hbox{erf}(x) = {2\over\sqrt{\pi}}\cdot\int_0^x e^{-t^2} \hbox{d}t$$
1060 @end tex
1061 @ifnottex
1062 @smallexample
1063 erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt
1064 @end smallexample
1065 @end ifnottex
1066 @end deftypefun
1068 @comment math.h
1069 @comment SVID
1070 @deftypefun double erfc (double @var{x})
1071 @comment math.h
1072 @comment SVID
1073 @deftypefunx float erfcf (float @var{x})
1074 @comment math.h
1075 @comment SVID
1076 @deftypefunx {long double} erfcl (long double @var{x})
1077 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1078 @code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a
1079 fashion that avoids round-off error when @var{x} is large.
1080 @end deftypefun
1082 @comment math.h
1083 @comment SVID
1084 @deftypefun double lgamma (double @var{x})
1085 @comment math.h
1086 @comment SVID
1087 @deftypefunx float lgammaf (float @var{x})
1088 @comment math.h
1089 @comment SVID
1090 @deftypefunx {long double} lgammal (long double @var{x})
1091 @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
1092 @code{lgamma} returns the natural logarithm of the absolute value of
1093 the gamma function of @var{x}.  The gamma function is defined as
1094 @tex
1095 $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
1096 @end tex
1097 @ifnottex
1098 @smallexample
1099 gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
1100 @end smallexample
1101 @end ifnottex
1103 @vindex signgam
1104 The sign of the gamma function is stored in the global variable
1105 @var{signgam}, which is declared in @file{math.h}.  It is @code{1} if
1106 the intermediate result was positive or zero, or @code{-1} if it was
1107 negative.
1109 To compute the real gamma function you can use the @code{tgamma}
1110 function or you can compute the values as follows:
1111 @smallexample
1112 lgam = lgamma(x);
1113 gam  = signgam*exp(lgam);
1114 @end smallexample
1116 The gamma function has singularities at the non-positive integers.
1117 @code{lgamma} will raise the zero divide exception if evaluated at a
1118 singularity.
1119 @end deftypefun
1121 @comment math.h
1122 @comment XPG
1123 @deftypefun double lgamma_r (double @var{x}, int *@var{signp})
1124 @comment math.h
1125 @comment XPG
1126 @deftypefunx float lgammaf_r (float @var{x}, int *@var{signp})
1127 @comment math.h
1128 @comment XPG
1129 @deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp})
1130 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1131 @code{lgamma_r} is just like @code{lgamma}, but it stores the sign of
1132 the intermediate result in the variable pointed to by @var{signp}
1133 instead of in the @var{signgam} global.  This means it is reentrant.
1134 @end deftypefun
1136 @comment math.h
1137 @comment SVID
1138 @deftypefun double gamma (double @var{x})
1139 @comment math.h
1140 @comment SVID
1141 @deftypefunx float gammaf (float @var{x})
1142 @comment math.h
1143 @comment SVID
1144 @deftypefunx {long double} gammal (long double @var{x})
1145 @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
1146 These functions exist for compatibility reasons.  They are equivalent to
1147 @code{lgamma} etc.  It is better to use @code{lgamma} since for one the
1148 name reflects better the actual computation, moreover @code{lgamma} is
1149 standardized in @w{ISO C99} while @code{gamma} is not.
1150 @end deftypefun
1152 @comment math.h
1153 @comment XPG, ISO
1154 @deftypefun double tgamma (double @var{x})
1155 @comment math.h
1156 @comment XPG, ISO
1157 @deftypefunx float tgammaf (float @var{x})
1158 @comment math.h
1159 @comment XPG, ISO
1160 @deftypefunx {long double} tgammal (long double @var{x})
1161 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1162 @code{tgamma} applies the gamma function to @var{x}.  The gamma
1163 function is defined as
1164 @tex
1165 $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
1166 @end tex
1167 @ifnottex
1168 @smallexample
1169 gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
1170 @end smallexample
1171 @end ifnottex
1173 This function was introduced in @w{ISO C99}.
1174 @end deftypefun
1176 @comment math.h
1177 @comment SVID
1178 @deftypefun double j0 (double @var{x})
1179 @comment math.h
1180 @comment SVID
1181 @deftypefunx float j0f (float @var{x})
1182 @comment math.h
1183 @comment SVID
1184 @deftypefunx {long double} j0l (long double @var{x})
1185 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1186 @code{j0} returns the Bessel function of the first kind of order 0 of
1187 @var{x}.  It may signal underflow if @var{x} is too large.
1188 @end deftypefun
1190 @comment math.h
1191 @comment SVID
1192 @deftypefun double j1 (double @var{x})
1193 @comment math.h
1194 @comment SVID
1195 @deftypefunx float j1f (float @var{x})
1196 @comment math.h
1197 @comment SVID
1198 @deftypefunx {long double} j1l (long double @var{x})
1199 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1200 @code{j1} returns the Bessel function of the first kind of order 1 of
1201 @var{x}.  It may signal underflow if @var{x} is too large.
1202 @end deftypefun
1204 @comment math.h
1205 @comment SVID
1206 @deftypefun double jn (int @var{n}, double @var{x})
1207 @comment math.h
1208 @comment SVID
1209 @deftypefunx float jnf (int @var{n}, float @var{x})
1210 @comment math.h
1211 @comment SVID
1212 @deftypefunx {long double} jnl (int @var{n}, long double @var{x})
1213 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1214 @code{jn} returns the Bessel function of the first kind of order
1215 @var{n} of @var{x}.  It may signal underflow if @var{x} is too large.
1216 @end deftypefun
1218 @comment math.h
1219 @comment SVID
1220 @deftypefun double y0 (double @var{x})
1221 @comment math.h
1222 @comment SVID
1223 @deftypefunx float y0f (float @var{x})
1224 @comment math.h
1225 @comment SVID
1226 @deftypefunx {long double} y0l (long double @var{x})
1227 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1228 @code{y0} returns the Bessel function of the second kind of order 0 of
1229 @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
1230 is negative, @code{y0} signals a domain error; if it is zero,
1231 @code{y0} signals overflow and returns @math{-@infinity}.
1232 @end deftypefun
1234 @comment math.h
1235 @comment SVID
1236 @deftypefun double y1 (double @var{x})
1237 @comment math.h
1238 @comment SVID
1239 @deftypefunx float y1f (float @var{x})
1240 @comment math.h
1241 @comment SVID
1242 @deftypefunx {long double} y1l (long double @var{x})
1243 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1244 @code{y1} returns the Bessel function of the second kind of order 1 of
1245 @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
1246 is negative, @code{y1} signals a domain error; if it is zero,
1247 @code{y1} signals overflow and returns @math{-@infinity}.
1248 @end deftypefun
1250 @comment math.h
1251 @comment SVID
1252 @deftypefun double yn (int @var{n}, double @var{x})
1253 @comment math.h
1254 @comment SVID
1255 @deftypefunx float ynf (int @var{n}, float @var{x})
1256 @comment math.h
1257 @comment SVID
1258 @deftypefunx {long double} ynl (int @var{n}, long double @var{x})
1259 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1260 @code{yn} returns the Bessel function of the second kind of order @var{n} of
1261 @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
1262 is negative, @code{yn} signals a domain error; if it is zero,
1263 @code{yn} signals overflow and returns @math{-@infinity}.
1264 @end deftypefun
1266 @node Errors in Math Functions
1267 @section Known Maximum Errors in Math Functions
1268 @cindex math errors
1269 @cindex ulps
1271 This section lists the known errors of the functions in the math
1272 library.  Errors are measured in ``units of the last place''.  This is a
1273 measure for the relative error.  For a number @math{z} with the
1274 representation @math{d.d@dots{}d@mul{}2^e} (we assume IEEE
1275 floating-point numbers with base 2) the ULP is represented by
1277 @tex
1278 $${|d.d\dots d - (z/2^e)|}\over {2^{p-1}}$$
1279 @end tex
1280 @ifnottex
1281 @smallexample
1282 |d.d...d - (z / 2^e)| / 2^(p - 1)
1283 @end smallexample
1284 @end ifnottex
1286 @noindent
1287 where @math{p} is the number of bits in the mantissa of the
1288 floating-point number representation.  Ideally the error for all
1289 functions is always less than 0.5ulps in round-to-nearest mode.  Using
1290 rounding bits this is also
1291 possible and normally implemented for the basic operations.  Except
1292 for certain functions such as @code{sqrt}, @code{fma} and @code{rint}
1293 whose results are fully specified by reference to corresponding IEEE
1294 754 floating-point operations, and conversions between strings and
1295 floating point, @theglibc{} does not aim for correctly rounded results
1296 for functions in the math library, and does not aim for correctness in
1297 whether ``inexact'' exceptions are raised.  Instead, the goals for
1298 accuracy of functions without fully specified results are as follows;
1299 some functions have bugs meaning they do not meet these goals in all
1300 cases.  In future, @theglibc{} may provide some other correctly
1301 rounding functions under the names such as @code{crsin} proposed for
1302 an extension to ISO C.
1304 @itemize @bullet
1306 @item
1307 Each function with a floating-point result behaves as if it computes
1308 an infinite-precision result that is within a few ulp (in both real
1309 and complex parts, for functions with complex results) of the
1310 mathematically correct value of the function (interpreted together
1311 with ISO C or POSIX semantics for the function in question) at the
1312 exact value passed as the input.  Exceptions are raised appropriately
1313 for this value and in accordance with IEEE 754 / ISO C / POSIX
1314 semantics, and it is then rounded according to the current rounding
1315 direction to the result that is returned to the user.  @code{errno}
1316 may also be set (@pxref{Math Error Reporting}).
1318 @item
1319 For the IBM @code{long double} format, as used on PowerPC GNU/Linux,
1320 the accuracy goal is weaker for input values not exactly representable
1321 in 106 bits of precision; it is as if the input value is some value
1322 within 0.5ulp of the value actually passed, where ``ulp'' is
1323 interpreted in terms of a fixed-precision 106-bit mantissa, but not
1324 necessarily the exact value actually passed with discontiguous
1325 mantissa bits.
1327 @item
1328 Functions behave as if the infinite-precision result computed is zero,
1329 infinity or NaN if and only if that is the mathematically correct
1330 infinite-precision result.  They behave as if the infinite-precision
1331 result computed always has the same sign as the mathematically correct
1332 result.
1334 @item
1335 If the mathematical result is more than a few ulp above the overflow
1336 threshold for the current rounding direction, the value returned is
1337 the appropriate overflow value for the current rounding direction,
1338 with the overflow exception raised.
1340 @item
1341 If the mathematical result has magnitude well below half the least
1342 subnormal magnitude, the returned value is either zero or the least
1343 subnormal (in each case, with the correct sign), according to the
1344 current rounding direction and with the underflow exception raised.
1346 @item
1347 Where the mathematical result underflows and is not exactly
1348 representable as a floating-point value, the underflow exception is
1349 raised (so there may be spurious underflow exceptions in cases where
1350 the underflowing result is exact, but not missing underflow exceptions
1351 in cases where it is inexact).
1353 @item
1354 @Theglibc{} does not aim for functions to satisfy other properties of
1355 the underlying mathematical function, such as monotonicity, where not
1356 implied by the above goals.
1358 @item
1359 All the above applies to both real and complex parts, for complex
1360 functions.
1362 @end itemize
1364 Therefore many of the functions in the math library have errors.  The
1365 table lists the maximum error for each function which is exposed by one
1366 of the existing tests in the test suite.  The table tries to cover as much
1367 as possible and list the actual maximum error (or at least a ballpark
1368 figure) but this is often not achieved due to the large search space.
1370 The table lists the ULP values for different architectures.  Different
1371 architectures have different results since their hardware support for
1372 floating-point operations varies and also the existing hardware support
1373 is different.
1375 @page
1376 @c This multitable does not fit on a single page
1377 @include libm-err.texi
1379 @node Pseudo-Random Numbers
1380 @section Pseudo-Random Numbers
1381 @cindex random numbers
1382 @cindex pseudo-random numbers
1383 @cindex seed (for random numbers)
1385 This section describes the GNU facilities for generating a series of
1386 pseudo-random numbers.  The numbers generated are not truly random;
1387 typically, they form a sequence that repeats periodically, with a period
1388 so large that you can ignore it for ordinary purposes.  The random
1389 number generator works by remembering a @dfn{seed} value which it uses
1390 to compute the next random number and also to compute a new seed.
1392 Although the generated numbers look unpredictable within one run of a
1393 program, the sequence of numbers is @emph{exactly the same} from one run
1394 to the next.  This is because the initial seed is always the same.  This
1395 is convenient when you are debugging a program, but it is unhelpful if
1396 you want the program to behave unpredictably.  If you want a different
1397 pseudo-random series each time your program runs, you must specify a
1398 different seed each time.  For ordinary purposes, basing the seed on the
1399 current time works well.
1401 You can obtain repeatable sequences of numbers on a particular machine type
1402 by specifying the same initial seed value for the random number
1403 generator.  There is no standard meaning for a particular seed value;
1404 the same seed, used in different C libraries or on different CPU types,
1405 will give you different random numbers.
1407 @Theglibc{} supports the standard @w{ISO C} random number functions
1408 plus two other sets derived from BSD and SVID.  The BSD and @w{ISO C}
1409 functions provide identical, somewhat limited functionality.  If only a
1410 small number of random bits are required, we recommend you use the
1411 @w{ISO C} interface, @code{rand} and @code{srand}.  The SVID functions
1412 provide a more flexible interface, which allows better random number
1413 generator algorithms, provides more random bits (up to 48) per call, and
1414 can provide random floating-point numbers.  These functions are required
1415 by the XPG standard and therefore will be present in all modern Unix
1416 systems.
1418 @menu
1419 * ISO Random::                  @code{rand} and friends.
1420 * BSD Random::                  @code{random} and friends.
1421 * SVID Random::                 @code{drand48} and friends.
1422 @end menu
1424 @node ISO Random
1425 @subsection ISO C Random Number Functions
1427 This section describes the random number functions that are part of
1428 the @w{ISO C} standard.
1430 To use these facilities, you should include the header file
1431 @file{stdlib.h} in your program.
1432 @pindex stdlib.h
1434 @comment stdlib.h
1435 @comment ISO
1436 @deftypevr Macro int RAND_MAX
1437 The value of this macro is an integer constant representing the largest
1438 value the @code{rand} function can return.  In @theglibc{}, it is
1439 @code{2147483647}, which is the largest signed integer representable in
1440 32 bits.  In other libraries, it may be as low as @code{32767}.
1441 @end deftypevr
1443 @comment stdlib.h
1444 @comment ISO
1445 @deftypefun int rand (void)
1446 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1447 @c Just calls random.
1448 The @code{rand} function returns the next pseudo-random number in the
1449 series.  The value ranges from @code{0} to @code{RAND_MAX}.
1450 @end deftypefun
1452 @comment stdlib.h
1453 @comment ISO
1454 @deftypefun void srand (unsigned int @var{seed})
1455 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1456 @c Alias to srandom.
1457 This function establishes @var{seed} as the seed for a new series of
1458 pseudo-random numbers.  If you call @code{rand} before a seed has been
1459 established with @code{srand}, it uses the value @code{1} as a default
1460 seed.
1462 To produce a different pseudo-random series each time your program is
1463 run, do @code{srand (time (0))}.
1464 @end deftypefun
1466 POSIX.1 extended the C standard functions to support reproducible random
1467 numbers in multi-threaded programs.  However, the extension is badly
1468 designed and unsuitable for serious work.
1470 @comment stdlib.h
1471 @comment POSIX.1
1472 @deftypefun int rand_r (unsigned int *@var{seed})
1473 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1474 This function returns a random number in the range 0 to @code{RAND_MAX}
1475 just as @code{rand} does.  However, all its state is stored in the
1476 @var{seed} argument.  This means the RNG's state can only have as many
1477 bits as the type @code{unsigned int} has.  This is far too few to
1478 provide a good RNG.
1480 If your program requires a reentrant RNG, we recommend you use the
1481 reentrant GNU extensions to the SVID random number generator.  The
1482 POSIX.1 interface should only be used when the GNU extensions are not
1483 available.
1484 @end deftypefun
1487 @node BSD Random
1488 @subsection BSD Random Number Functions
1490 This section describes a set of random number generation functions that
1491 are derived from BSD.  There is no advantage to using these functions
1492 with @theglibc{}; we support them for BSD compatibility only.
1494 The prototypes for these functions are in @file{stdlib.h}.
1495 @pindex stdlib.h
1497 @comment stdlib.h
1498 @comment BSD
1499 @deftypefun {long int} random (void)
1500 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1501 @c Takes a lock and calls random_r with an automatic variable and the
1502 @c global state, while holding a lock.
1503 This function returns the next pseudo-random number in the sequence.
1504 The value returned ranges from @code{0} to @code{2147483647}.
1506 @strong{NB:} Temporarily this function was defined to return a
1507 @code{int32_t} value to indicate that the return value always contains
1508 32 bits even if @code{long int} is wider.  The standard demands it
1509 differently.  Users must always be aware of the 32-bit limitation,
1510 though.
1511 @end deftypefun
1513 @comment stdlib.h
1514 @comment BSD
1515 @deftypefun void srandom (unsigned int @var{seed})
1516 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1517 @c Takes a lock and calls srandom_r with an automatic variable and a
1518 @c static buffer.  There's no MT-safety issue because the static buffer
1519 @c is internally protected by a lock, although other threads may modify
1520 @c the set state before it is used.
1521 The @code{srandom} function sets the state of the random number
1522 generator based on the integer @var{seed}.  If you supply a @var{seed} value
1523 of @code{1}, this will cause @code{random} to reproduce the default set
1524 of random numbers.
1526 To produce a different set of pseudo-random numbers each time your
1527 program runs, do @code{srandom (time (0))}.
1528 @end deftypefun
1530 @comment stdlib.h
1531 @comment BSD
1532 @deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size})
1533 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1534 The @code{initstate} function is used to initialize the random number
1535 generator state.  The argument @var{state} is an array of @var{size}
1536 bytes, used to hold the state information.  It is initialized based on
1537 @var{seed}.  The size must be between 8 and 256 bytes, and should be a
1538 power of two.  The bigger the @var{state} array, the better.
1540 The return value is the previous value of the state information array.
1541 You can use this value later as an argument to @code{setstate} to
1542 restore that state.
1543 @end deftypefun
1545 @comment stdlib.h
1546 @comment BSD
1547 @deftypefun {char *} setstate (char *@var{state})
1548 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1549 The @code{setstate} function restores the random number state
1550 information @var{state}.  The argument must have been the result of
1551 a previous call to @var{initstate} or @var{setstate}.
1553 The return value is the previous value of the state information array.
1554 You can use this value later as an argument to @code{setstate} to
1555 restore that state.
1557 If the function fails the return value is @code{NULL}.
1558 @end deftypefun
1560 The four functions described so far in this section all work on a state
1561 which is shared by all threads.  The state is not directly accessible to
1562 the user and can only be modified by these functions.  This makes it
1563 hard to deal with situations where each thread should have its own
1564 pseudo-random number generator.
1566 @Theglibc{} contains four additional functions which contain the
1567 state as an explicit parameter and therefore make it possible to handle
1568 thread-local PRNGs.  Beside this there is no difference.  In fact, the
1569 four functions already discussed are implemented internally using the
1570 following interfaces.
1572 The @file{stdlib.h} header contains a definition of the following type:
1574 @comment stdlib.h
1575 @comment GNU
1576 @deftp {Data Type} {struct random_data}
1578 Objects of type @code{struct random_data} contain the information
1579 necessary to represent the state of the PRNG.  Although a complete
1580 definition of the type is present the type should be treated as opaque.
1581 @end deftp
1583 The functions modifying the state follow exactly the already described
1584 functions.
1586 @comment stdlib.h
1587 @comment GNU
1588 @deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result})
1589 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1590 The @code{random_r} function behaves exactly like the @code{random}
1591 function except that it uses and modifies the state in the object
1592 pointed to by the first parameter instead of the global state.
1593 @end deftypefun
1595 @comment stdlib.h
1596 @comment GNU
1597 @deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf})
1598 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1599 The @code{srandom_r} function behaves exactly like the @code{srandom}
1600 function except that it uses and modifies the state in the object
1601 pointed to by the second parameter instead of the global state.
1602 @end deftypefun
1604 @comment stdlib.h
1605 @comment GNU
1606 @deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf})
1607 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1608 The @code{initstate_r} function behaves exactly like the @code{initstate}
1609 function except that it uses and modifies the state in the object
1610 pointed to by the fourth parameter instead of the global state.
1611 @end deftypefun
1613 @comment stdlib.h
1614 @comment GNU
1615 @deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf})
1616 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1617 The @code{setstate_r} function behaves exactly like the @code{setstate}
1618 function except that it uses and modifies the state in the object
1619 pointed to by the first parameter instead of the global state.
1620 @end deftypefun
1622 @node SVID Random
1623 @subsection SVID Random Number Function
1625 The C library on SVID systems contains yet another kind of random number
1626 generator functions.  They use a state of 48 bits of data.  The user can
1627 choose among a collection of functions which return the random bits
1628 in different forms.
1630 Generally there are two kinds of function.  The first uses a state of
1631 the random number generator which is shared among several functions and
1632 by all threads of the process.  The second requires the user to handle
1633 the state.
1635 All functions have in common that they use the same congruential
1636 formula with the same constants.  The formula is
1638 @smallexample
1639 Y = (a * X + c) mod m
1640 @end smallexample
1642 @noindent
1643 where @var{X} is the state of the generator at the beginning and
1644 @var{Y} the state at the end.  @code{a} and @code{c} are constants
1645 determining the way the generator works.  By default they are
1647 @smallexample
1648 a = 0x5DEECE66D = 25214903917
1649 c = 0xb = 11
1650 @end smallexample
1652 @noindent
1653 but they can also be changed by the user.  @code{m} is of course 2^48
1654 since the state consists of a 48-bit array.
1656 The prototypes for these functions are in @file{stdlib.h}.
1657 @pindex stdlib.h
1660 @comment stdlib.h
1661 @comment SVID
1662 @deftypefun double drand48 (void)
1663 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1664 @c Uses of the static state buffer are not guarded by a lock (thus
1665 @c @mtasurace:drand48), so they may be found or left at a
1666 @c partially-updated state in case of calls from within signal handlers
1667 @c or cancellation.  None of this will break safety rules or invoke
1668 @c undefined behavior, but it may affect randomness.
1669 This function returns a @code{double} value in the range of @code{0.0}
1670 to @code{1.0} (exclusive).  The random bits are determined by the global
1671 state of the random number generator in the C library.
1673 Since the @code{double} type according to @w{IEEE 754} has a 52-bit
1674 mantissa this means 4 bits are not initialized by the random number
1675 generator.  These are (of course) chosen to be the least significant
1676 bits and they are initialized to @code{0}.
1677 @end deftypefun
1679 @comment stdlib.h
1680 @comment SVID
1681 @deftypefun double erand48 (unsigned short int @var{xsubi}[3])
1682 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1683 @c The static buffer is just initialized with default parameters, which
1684 @c are later read to advance the state held in xsubi.
1685 This function returns a @code{double} value in the range of @code{0.0}
1686 to @code{1.0} (exclusive), similarly to @code{drand48}.  The argument is
1687 an array describing the state of the random number generator.
1689 This function can be called subsequently since it updates the array to
1690 guarantee random numbers.  The array should have been initialized before
1691 initial use to obtain reproducible results.
1692 @end deftypefun
1694 @comment stdlib.h
1695 @comment SVID
1696 @deftypefun {long int} lrand48 (void)
1697 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1698 The @code{lrand48} function returns an integer value in the range of
1699 @code{0} to @code{2^31} (exclusive).  Even if the size of the @code{long
1700 int} type can take more than 32 bits, no higher numbers are returned.
1701 The random bits are determined by the global state of the random number
1702 generator in the C library.
1703 @end deftypefun
1705 @comment stdlib.h
1706 @comment SVID
1707 @deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3])
1708 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1709 This function is similar to the @code{lrand48} function in that it
1710 returns a number in the range of @code{0} to @code{2^31} (exclusive) but
1711 the state of the random number generator used to produce the random bits
1712 is determined by the array provided as the parameter to the function.
1714 The numbers in the array are updated afterwards so that subsequent calls
1715 to this function yield different results (as is expected of a random
1716 number generator).  The array should have been initialized before the
1717 first call to obtain reproducible results.
1718 @end deftypefun
1720 @comment stdlib.h
1721 @comment SVID
1722 @deftypefun {long int} mrand48 (void)
1723 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1724 The @code{mrand48} function is similar to @code{lrand48}.  The only
1725 difference is that the numbers returned are in the range @code{-2^31} to
1726 @code{2^31} (exclusive).
1727 @end deftypefun
1729 @comment stdlib.h
1730 @comment SVID
1731 @deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3])
1732 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1733 The @code{jrand48} function is similar to @code{nrand48}.  The only
1734 difference is that the numbers returned are in the range @code{-2^31} to
1735 @code{2^31} (exclusive).  For the @code{xsubi} parameter the same
1736 requirements are necessary.
1737 @end deftypefun
1739 The internal state of the random number generator can be initialized in
1740 several ways.  The methods differ in the completeness of the
1741 information provided.
1743 @comment stdlib.h
1744 @comment SVID
1745 @deftypefun void srand48 (long int @var{seedval})
1746 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1747 The @code{srand48} function sets the most significant 32 bits of the
1748 internal state of the random number generator to the least
1749 significant 32 bits of the @var{seedval} parameter.  The lower 16 bits
1750 are initialized to the value @code{0x330E}.  Even if the @code{long
1751 int} type contains more than 32 bits only the lower 32 bits are used.
1753 Owing to this limitation, initialization of the state of this
1754 function is not very useful.  But it makes it easy to use a construct
1755 like @code{srand48 (time (0))}.
1757 A side-effect of this function is that the values @code{a} and @code{c}
1758 from the internal state, which are used in the congruential formula,
1759 are reset to the default values given above.  This is of importance once
1760 the user has called the @code{lcong48} function (see below).
1761 @end deftypefun
1763 @comment stdlib.h
1764 @comment SVID
1765 @deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3])
1766 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1767 The @code{seed48} function initializes all 48 bits of the state of the
1768 internal random number generator from the contents of the parameter
1769 @var{seed16v}.  Here the lower 16 bits of the first element of
1770 @var{see16v} initialize the least significant 16 bits of the internal
1771 state, the lower 16 bits of @code{@var{seed16v}[1]} initialize the mid-order
1772 16 bits of the state and the 16 lower bits of @code{@var{seed16v}[2]}
1773 initialize the most significant 16 bits of the state.
1775 Unlike @code{srand48} this function lets the user initialize all 48 bits
1776 of the state.
1778 The value returned by @code{seed48} is a pointer to an array containing
1779 the values of the internal state before the change.  This might be
1780 useful to restart the random number generator at a certain state.
1781 Otherwise the value can simply be ignored.
1783 As for @code{srand48}, the values @code{a} and @code{c} from the
1784 congruential formula are reset to the default values.
1785 @end deftypefun
1787 There is one more function to initialize the random number generator
1788 which enables you to specify even more information by allowing you to
1789 change the parameters in the congruential formula.
1791 @comment stdlib.h
1792 @comment SVID
1793 @deftypefun void lcong48 (unsigned short int @var{param}[7])
1794 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1795 The @code{lcong48} function allows the user to change the complete state
1796 of the random number generator.  Unlike @code{srand48} and
1797 @code{seed48}, this function also changes the constants in the
1798 congruential formula.
1800 From the seven elements in the array @var{param} the least significant
1801 16 bits of the entries @code{@var{param}[0]} to @code{@var{param}[2]}
1802 determine the initial state, the least significant 16 bits of
1803 @code{@var{param}[3]} to @code{@var{param}[5]} determine the 48 bit
1804 constant @code{a} and @code{@var{param}[6]} determines the 16-bit value
1805 @code{c}.
1806 @end deftypefun
1808 All the above functions have in common that they use the global
1809 parameters for the congruential formula.  In multi-threaded programs it
1810 might sometimes be useful to have different parameters in different
1811 threads.  For this reason all the above functions have a counterpart
1812 which works on a description of the random number generator in the
1813 user-supplied buffer instead of the global state.
1815 Please note that it is no problem if several threads use the global
1816 state if all threads use the functions which take a pointer to an array
1817 containing the state.  The random numbers are computed following the
1818 same loop but if the state in the array is different all threads will
1819 obtain an individual random number generator.
1821 The user-supplied buffer must be of type @code{struct drand48_data}.
1822 This type should be regarded as opaque and not manipulated directly.
1824 @comment stdlib.h
1825 @comment GNU
1826 @deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result})
1827 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1828 This function is equivalent to the @code{drand48} function with the
1829 difference that it does not modify the global random number generator
1830 parameters but instead the parameters in the buffer supplied through the
1831 pointer @var{buffer}.  The random number is returned in the variable
1832 pointed to by @var{result}.
1834 The return value of the function indicates whether the call succeeded.
1835 If the value is less than @code{0} an error occurred and @var{errno} is
1836 set to indicate the problem.
1838 This function is a GNU extension and should not be used in portable
1839 programs.
1840 @end deftypefun
1842 @comment stdlib.h
1843 @comment GNU
1844 @deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result})
1845 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1846 The @code{erand48_r} function works like @code{erand48}, but in addition
1847 it takes an argument @var{buffer} which describes the random number
1848 generator.  The state of the random number generator is taken from the
1849 @code{xsubi} array, the parameters for the congruential formula from the
1850 global random number generator data.  The random number is returned in
1851 the variable pointed to by @var{result}.
1853 The return value is non-negative if the call succeeded.
1855 This function is a GNU extension and should not be used in portable
1856 programs.
1857 @end deftypefun
1859 @comment stdlib.h
1860 @comment GNU
1861 @deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
1862 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1863 This function is similar to @code{lrand48}, but in addition it takes a
1864 pointer to a buffer describing the state of the random number generator
1865 just like @code{drand48}.
1867 If the return value of the function is non-negative the variable pointed
1868 to by @var{result} contains the result.  Otherwise an error occurred.
1870 This function is a GNU extension and should not be used in portable
1871 programs.
1872 @end deftypefun
1874 @comment stdlib.h
1875 @comment GNU
1876 @deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
1877 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1878 The @code{nrand48_r} function works like @code{nrand48} in that it
1879 produces a random number in the range @code{0} to @code{2^31}.  But instead
1880 of using the global parameters for the congruential formula it uses the
1881 information from the buffer pointed to by @var{buffer}.  The state is
1882 described by the values in @var{xsubi}.
1884 If the return value is non-negative the variable pointed to by
1885 @var{result} contains the result.
1887 This function is a GNU extension and should not be used in portable
1888 programs.
1889 @end deftypefun
1891 @comment stdlib.h
1892 @comment GNU
1893 @deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
1894 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1895 This function is similar to @code{mrand48} but like the other reentrant
1896 functions it uses the random number generator described by the value in
1897 the buffer pointed to by @var{buffer}.
1899 If the return value is non-negative the variable pointed to by
1900 @var{result} contains the result.
1902 This function is a GNU extension and should not be used in portable
1903 programs.
1904 @end deftypefun
1906 @comment stdlib.h
1907 @comment GNU
1908 @deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
1909 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1910 The @code{jrand48_r} function is similar to @code{jrand48}.  Like the
1911 other reentrant functions of this function family it uses the
1912 congruential formula parameters from the buffer pointed to by
1913 @var{buffer}.
1915 If the return value is non-negative the variable pointed to by
1916 @var{result} contains the result.
1918 This function is a GNU extension and should not be used in portable
1919 programs.
1920 @end deftypefun
1922 Before any of the above functions are used the buffer of type
1923 @code{struct drand48_data} should be initialized.  The easiest way to do
1924 this is to fill the whole buffer with null bytes, e.g. by
1926 @smallexample
1927 memset (buffer, '\0', sizeof (struct drand48_data));
1928 @end smallexample
1930 @noindent
1931 Using any of the reentrant functions of this family now will
1932 automatically initialize the random number generator to the default
1933 values for the state and the parameters of the congruential formula.
1935 The other possibility is to use any of the functions which explicitly
1936 initialize the buffer.  Though it might be obvious how to initialize the
1937 buffer from looking at the parameter to the function, it is highly
1938 recommended to use these functions since the result might not always be
1939 what you expect.
1941 @comment stdlib.h
1942 @comment GNU
1943 @deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer})
1944 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1945 The description of the random number generator represented by the
1946 information in @var{buffer} is initialized similarly to what the function
1947 @code{srand48} does.  The state is initialized from the parameter
1948 @var{seedval} and the parameters for the congruential formula are
1949 initialized to their default values.
1951 If the return value is non-negative the function call succeeded.
1953 This function is a GNU extension and should not be used in portable
1954 programs.
1955 @end deftypefun
1957 @comment stdlib.h
1958 @comment GNU
1959 @deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer})
1960 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1961 This function is similar to @code{srand48_r} but like @code{seed48} it
1962 initializes all 48 bits of the state from the parameter @var{seed16v}.
1964 If the return value is non-negative the function call succeeded.  It
1965 does not return a pointer to the previous state of the random number
1966 generator like the @code{seed48} function does.  If the user wants to
1967 preserve the state for a later re-run s/he can copy the whole buffer
1968 pointed to by @var{buffer}.
1970 This function is a GNU extension and should not be used in portable
1971 programs.
1972 @end deftypefun
1974 @comment stdlib.h
1975 @comment GNU
1976 @deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer})
1977 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1978 This function initializes all aspects of the random number generator
1979 described in @var{buffer} with the data in @var{param}.  Here it is
1980 especially true that the function does more than just copying the
1981 contents of @var{param} and @var{buffer}.  More work is required and
1982 therefore it is important to use this function rather than initializing
1983 the random number generator directly.
1985 If the return value is non-negative the function call succeeded.
1987 This function is a GNU extension and should not be used in portable
1988 programs.
1989 @end deftypefun
1991 @node FP Function Optimizations
1992 @section Is Fast Code or Small Code preferred?
1993 @cindex Optimization
1995 If an application uses many floating point functions it is often the case
1996 that the cost of the function calls themselves is not negligible.
1997 Modern processors can often execute the operations themselves
1998 very fast, but the function call disrupts the instruction pipeline.
2000 For this reason @theglibc{} provides optimizations for many of the
2001 frequently-used math functions.  When GNU CC is used and the user
2002 activates the optimizer, several new inline functions and macros are
2003 defined.  These new functions and macros have the same names as the
2004 library functions and so are used instead of the latter.  In the case of
2005 inline functions the compiler will decide whether it is reasonable to
2006 use them, and this decision is usually correct.
2008 This means that no calls to the library functions may be necessary, and
2009 can increase the speed of generated code significantly.  The drawback is
2010 that code size will increase, and the increase is not always negligible.
2012 There are two kind of inline functions: Those that give the same result
2013 as the library functions and others that might not set @code{errno} and
2014 might have a reduced precision and/or argument range in comparison with
2015 the library functions.  The latter inline functions are only available
2016 if the flag @code{-ffast-math} is given to GNU CC.
2018 In cases where the inline functions and macros are not wanted the symbol
2019 @code{__NO_MATH_INLINES} should be defined before any system header is
2020 included.  This will ensure that only library functions are used.  Of
2021 course, it can be determined for each file in the project whether
2022 giving this option is preferable or not.
2024 Not all hardware implements the entire @w{IEEE 754} standard, and even
2025 if it does there may be a substantial performance penalty for using some
2026 of its features.  For example, enabling traps on some processors forces
2027 the FPU to run un-pipelined, which can more than double calculation time.
2028 @c ***Add explanation of -lieee, -mieee.