Fix jn precision
[glibc.git] / sysdeps / ieee754 / ldbl-128ibm / e_jnl.c
blob372f942bfc489eebee442b3d98ecfb079d6f288b
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* Modifications for 128-bit long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
17 the following terms:
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, write to the Free Software
31 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
34 * __ieee754_jn(n, x), __ieee754_yn(n, x)
35 * floating point Bessel's function of the 1st and 2nd kind
36 * of order n
38 * Special cases:
39 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41 * Note 2. About jn(n,x), yn(n,x)
42 * For n=0, j0(x) is called,
43 * for n=1, j1(x) is called,
44 * for n<x, forward recursion us used starting
45 * from values of j0(x) and j1(x).
46 * for n>x, a continued fraction approximation to
47 * j(n,x)/j(n-1,x) is evaluated and then backward
48 * recursion is used starting from a supposed value
49 * for j(n,x). The resulting value of j(0,x) is
50 * compared with the actual value to correct the
51 * supposed value of j(n,x).
53 * yn(n,x) is similar in all respects, except
54 * that forward recursion is used for all
55 * values of n>1.
59 #include "math.h"
60 #include "math_private.h"
62 #ifdef __STDC__
63 static const long double
64 #else
65 static long double
66 #endif
67 invsqrtpi = 5.6418958354775628694807945156077258584405E-1L,
68 two = 2.0e0L,
69 one = 1.0e0L,
70 zero = 0.0L;
73 #ifdef __STDC__
74 long double
75 __ieee754_jnl (int n, long double x)
76 #else
77 long double
78 __ieee754_jnl (n, x)
79 int n;
80 long double x;
81 #endif
83 u_int32_t se;
84 int32_t i, ix, sgn;
85 long double a, b, temp, di;
86 long double z, w;
87 ieee854_long_double_shape_type u;
90 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
91 * Thus, J(-n,x) = J(n,-x)
94 u.value = x;
95 se = u.parts32.w0;
96 ix = se & 0x7fffffff;
98 /* if J(n,NaN) is NaN */
99 if (ix >= 0x7ff00000)
101 if ((u.parts32.w0 & 0xfffff) | u.parts32.w1
102 | (u.parts32.w2 & 0x7fffffff) | u.parts32.w3)
103 return x + x;
106 if (n < 0)
108 n = -n;
109 x = -x;
110 se ^= 0x80000000;
112 if (n == 0)
113 return (__ieee754_j0l (x));
114 if (n == 1)
115 return (__ieee754_j1l (x));
116 sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
117 x = fabsl (x);
119 if (x == 0.0L || ix >= 0x7ff00000) /* if x is 0 or inf */
120 b = zero;
121 else if ((long double) n <= x)
123 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
124 if (ix >= 0x52d00000)
125 { /* x > 2**302 */
127 /* ??? Could use an expansion for large x here. */
129 /* (x >> n**2)
130 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
131 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
132 * Let s=sin(x), c=cos(x),
133 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
135 * n sin(xn)*sqt2 cos(xn)*sqt2
136 * ----------------------------------
137 * 0 s-c c+s
138 * 1 -s-c -c+s
139 * 2 -s+c -c-s
140 * 3 s+c c-s
142 long double s;
143 long double c;
144 __sincosl (x, &s, &c);
145 switch (n & 3)
147 case 0:
148 temp = c + s;
149 break;
150 case 1:
151 temp = -c + s;
152 break;
153 case 2:
154 temp = -c - s;
155 break;
156 case 3:
157 temp = c - s;
158 break;
160 b = invsqrtpi * temp / __ieee754_sqrtl (x);
162 else
164 a = __ieee754_j0l (x);
165 b = __ieee754_j1l (x);
166 for (i = 1; i < n; i++)
168 temp = b;
169 b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
170 a = temp;
174 else
176 if (ix < 0x3e100000)
177 { /* x < 2**-29 */
178 /* x is tiny, return the first Taylor expansion of J(n,x)
179 * J(n,x) = 1/n!*(x/2)^n - ...
181 if (n >= 33) /* underflow, result < 10^-300 */
182 b = zero;
183 else
185 temp = x * 0.5;
186 b = temp;
187 for (a = one, i = 2; i <= n; i++)
189 a *= (long double) i; /* a = n! */
190 b *= temp; /* b = (x/2)^n */
192 b = b / a;
195 else
197 /* use backward recurrence */
198 /* x x^2 x^2
199 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
200 * 2n - 2(n+1) - 2(n+2)
202 * 1 1 1
203 * (for large x) = ---- ------ ------ .....
204 * 2n 2(n+1) 2(n+2)
205 * -- - ------ - ------ -
206 * x x x
208 * Let w = 2n/x and h=2/x, then the above quotient
209 * is equal to the continued fraction:
211 * = -----------------------
213 * w - -----------------
215 * w+h - ---------
216 * w+2h - ...
218 * To determine how many terms needed, let
219 * Q(0) = w, Q(1) = w(w+h) - 1,
220 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
221 * When Q(k) > 1e4 good for single
222 * When Q(k) > 1e9 good for double
223 * When Q(k) > 1e17 good for quadruple
225 /* determine k */
226 long double t, v;
227 long double q0, q1, h, tmp;
228 int32_t k, m;
229 w = (n + n) / (long double) x;
230 h = 2.0L / (long double) x;
231 q0 = w;
232 z = w + h;
233 q1 = w * z - 1.0L;
234 k = 1;
235 while (q1 < 1.0e17L)
237 k += 1;
238 z += h;
239 tmp = z * q1 - q0;
240 q0 = q1;
241 q1 = tmp;
243 m = n + n;
244 for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
245 t = one / (i / x - t);
246 a = t;
247 b = one;
248 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
249 * Hence, if n*(log(2n/x)) > ...
250 * single 8.8722839355e+01
251 * double 7.09782712893383973096e+02
252 * long double 1.1356523406294143949491931077970765006170e+04
253 * then recurrent value may overflow and the result is
254 * likely underflow to zero
256 tmp = n;
257 v = two / x;
258 tmp = tmp * __ieee754_logl (fabsl (v * tmp));
260 if (tmp < 1.1356523406294143949491931077970765006170e+04L)
262 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
264 temp = b;
265 b *= di;
266 b = b / x - a;
267 a = temp;
268 di -= two;
271 else
273 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
275 temp = b;
276 b *= di;
277 b = b / x - a;
278 a = temp;
279 di -= two;
280 /* scale b to avoid spurious overflow */
281 if (b > 1e100L)
283 a /= b;
284 t /= b;
285 b = one;
289 /* j0() and j1() suffer enormous loss of precision at and
290 * near zero; however, we know that their zero points never
291 * coincide, so just choose the one further away from zero.
293 z = __ieee754_j0l (x);
294 w = __ieee754_j1l (x);
295 if (fabsl (z) >= fabsl (w))
296 b = (t * z / b);
297 else
298 b = (t * w / a);
301 if (sgn == 1)
302 return -b;
303 else
304 return b;
307 #ifdef __STDC__
308 long double
309 __ieee754_ynl (int n, long double x)
310 #else
311 long double
312 __ieee754_ynl (n, x)
313 int n;
314 long double x;
315 #endif
317 u_int32_t se;
318 int32_t i, ix;
319 int32_t sign;
320 long double a, b, temp;
321 ieee854_long_double_shape_type u;
323 u.value = x;
324 se = u.parts32.w0;
325 ix = se & 0x7fffffff;
327 /* if Y(n,NaN) is NaN */
328 if (ix >= 0x7ff00000)
330 if ((u.parts32.w0 & 0xfffff) | u.parts32.w1
331 | (u.parts32.w2 & 0x7fffffff) | u.parts32.w3)
332 return x + x;
334 if (x <= 0.0L)
336 if (x == 0.0L)
337 return -HUGE_VALL + x;
338 if (se & 0x80000000)
339 return zero / (zero * x);
341 sign = 1;
342 if (n < 0)
344 n = -n;
345 sign = 1 - ((n & 1) << 1);
347 if (n == 0)
348 return (__ieee754_y0l (x));
349 if (n == 1)
350 return (sign * __ieee754_y1l (x));
351 if (ix >= 0x7ff00000)
352 return zero;
353 if (ix >= 0x52D00000)
354 { /* x > 2**302 */
356 /* ??? See comment above on the possible futility of this. */
358 /* (x >> n**2)
359 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
360 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
361 * Let s=sin(x), c=cos(x),
362 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
364 * n sin(xn)*sqt2 cos(xn)*sqt2
365 * ----------------------------------
366 * 0 s-c c+s
367 * 1 -s-c -c+s
368 * 2 -s+c -c-s
369 * 3 s+c c-s
371 long double s;
372 long double c;
373 __sincosl (x, &s, &c);
374 switch (n & 3)
376 case 0:
377 temp = s - c;
378 break;
379 case 1:
380 temp = -s - c;
381 break;
382 case 2:
383 temp = -s + c;
384 break;
385 case 3:
386 temp = s + c;
387 break;
389 b = invsqrtpi * temp / __ieee754_sqrtl (x);
391 else
393 a = __ieee754_y0l (x);
394 b = __ieee754_y1l (x);
395 /* quit if b is -inf */
396 u.value = b;
397 se = u.parts32.w0 & 0xfff00000;
398 for (i = 1; i < n && se != 0xfff00000; i++)
400 temp = b;
401 b = ((long double) (i + i) / x) * b - a;
402 u.value = b;
403 se = u.parts32.w0 & 0xfff00000;
404 a = temp;
407 if (sign > 0)
408 return b;
409 else
410 return -b;