alpha: Add string-fza, string-fzb.h, string-fzi.h, and string-shift.h
[glibc.git] / manual / math.texi
blob7f0499ab8de03378501e63f895dd65e25eff1916
1 @c We need some definitions here.
2 @ifclear mult
3 @ifhtml
4 @set mult @U{00B7}
5 @set infty @U{221E}
6 @set pie @U{03C0}
7 @end ifhtml
8 @iftex
9 @set mult @cdot
10 @set infty @infty
11 @end iftex
12 @ifclear mult
13 @set mult *
14 @set infty oo
15 @set pie pi
16 @end ifclear
17 @macro mul
18 @value{mult}
19 @end macro
20 @macro infinity
21 @value{infty}
22 @end macro
23 @ifnottex
24 @macro pi
25 @value{pie}
26 @end macro
27 @end ifnottex
28 @end ifclear
30 @node Mathematics, Arithmetic, Syslog, Top
31 @c %MENU% Math functions, useful constants, random numbers
32 @chapter Mathematics
34 This chapter contains information about functions for performing
35 mathematical computations, such as trigonometric functions.  Most of
36 these functions have prototypes declared in the header file
37 @file{math.h}.  The complex-valued functions are defined in
38 @file{complex.h}.
39 @pindex math.h
40 @pindex complex.h
42 All mathematical functions which take a floating-point argument
43 have three variants, one each for @code{double}, @code{float}, and
44 @code{long double} arguments.  The @code{double} versions are mostly
45 defined in @w{ISO C89}.  The @code{float} and @code{long double}
46 versions are from the numeric extensions to C included in @w{ISO C99}.
48 Which of the three versions of a function should be used depends on the
49 situation.  For most calculations, the @code{float} functions are the
50 fastest.  On the other hand, the @code{long double} functions have the
51 highest precision.  @code{double} is somewhere in between.  It is
52 usually wise to pick the narrowest type that can accommodate your data.
53 Not all machines have a distinct @code{long double} type; it may be the
54 same as @code{double}.
56 @Theglibc{} also provides @code{_Float@var{N}} and
57 @code{_Float@var{N}x} types.  These types are defined in @w{ISO/IEC TS
58 18661-3}, which extends @w{ISO C} and defines floating-point types that
59 are not machine-dependent.  When such a type, such as @code{_Float128},
60 is supported by @theglibc{}, extra variants for most of the mathematical
61 functions provided for @code{double}, @code{float}, and @code{long
62 double} are also provided for the supported type.  Throughout this
63 manual, the @code{_Float@var{N}} and @code{_Float@var{N}x} variants of
64 these functions are described along with the @code{double},
65 @code{float}, and @code{long double} variants and they come from
66 @w{ISO/IEC TS 18661-3}, unless explicitly stated otherwise.
68 Support for @code{_Float@var{N}} or @code{_Float@var{N}x} types is
69 provided for @code{_Float32}, @code{_Float64} and @code{_Float32x} on
70 all platforms.
71 It is also provided for @code{_Float128} and @code{_Float64x} on
72 powerpc64le (PowerPC 64-bits little-endian), x86_64, x86, ia64,
73 aarch64, alpha, loongarch, mips64, riscv, s390 and sparc.
75 @menu
76 * Mathematical Constants::      Precise numeric values for often-used
77                                  constants.
78 * Trig Functions::              Sine, cosine, tangent, and friends.
79 * Inverse Trig Functions::      Arcsine, arccosine, etc.
80 * Exponents and Logarithms::    Also pow and sqrt.
81 * Hyperbolic Functions::        sinh, cosh, tanh, etc.
82 * Special Functions::           Bessel, gamma, erf.
83 * Errors in Math Functions::    Known Maximum Errors in Math Functions.
84 * Pseudo-Random Numbers::       Functions for generating pseudo-random
85                                  numbers.
86 * FP Function Optimizations::   Fast code or small code.
87 @end menu
89 @node Mathematical Constants
90 @section Predefined Mathematical Constants
91 @cindex constants
92 @cindex mathematical constants
94 The header @file{math.h} defines several useful mathematical constants.
95 All values are defined as preprocessor macros starting with @code{M_}.
96 The values provided are:
98 @vtable @code
99 @item M_E
100 The base of natural logarithms.
101 @item M_LOG2E
102 The logarithm to base @code{2} of @code{M_E}.
103 @item M_LOG10E
104 The logarithm to base @code{10} of @code{M_E}.
105 @item M_LN2
106 The natural logarithm of @code{2}.
107 @item M_LN10
108 The natural logarithm of @code{10}.
109 @item M_PI
110 Pi, the ratio of a circle's circumference to its diameter.
111 @item M_PI_2
112 Pi divided by two.
113 @item M_PI_4
114 Pi divided by four.
115 @item M_1_PI
116 The reciprocal of pi (1/pi)
117 @item M_2_PI
118 Two times the reciprocal of pi.
119 @item M_2_SQRTPI
120 Two times the reciprocal of the square root of pi.
121 @item M_SQRT2
122 The square root of two.
123 @item M_SQRT1_2
124 The reciprocal of the square root of two (also the square root of 1/2).
125 @end vtable
127 These constants come from the Unix98 standard and were also available in
128 4.4BSD; therefore they are only defined if
129 @code{_XOPEN_SOURCE=500}, or a more general feature select macro, is
130 defined.  The default set of features includes these constants.
131 @xref{Feature Test Macros}.
133 All values are of type @code{double}.  As an extension, @theglibc{}
134 also defines these constants with type @code{long double} and
135 @code{float}.  The @code{long double} macros have a lowercase @samp{l}
136 while the @code{float} macros have a lowercase @samp{f} appended to
137 their names: @code{M_El}, @code{M_PIl}, and so forth.  These are only
138 available if @code{_GNU_SOURCE} is defined.
140 Likewise, @theglibc{} also defines these constants with the types
141 @code{_Float@var{N}} and @code{_Float@var{N}x} for the machines that
142 have support for such types enabled (@pxref{Mathematics}) and if
143 @code{_GNU_SOURCE} is defined.  When available, the macros names are
144 appended with @samp{f@var{N}} or @samp{f@var{N}x}, such as @samp{f128}
145 for the type @code{_Float128}.
147 @vindex PI
148 @emph{Note:} Some programs use a constant named @code{PI} which has the
149 same value as @code{M_PI}.  This constant is not standard; it may have
150 appeared in some old AT&T headers, and is mentioned in Stroustrup's book
151 on C++.  It infringes on the user's name space, so @theglibc{}
152 does not define it.  Fixing programs written to expect it is simple:
153 replace @code{PI} with @code{M_PI} throughout, or put @samp{-DPI=M_PI}
154 on the compiler command line.
156 @node Trig Functions
157 @section Trigonometric Functions
158 @cindex trigonometric functions
160 These are the familiar @code{sin}, @code{cos}, and @code{tan} functions.
161 The arguments to all of these functions are in units of radians; recall
162 that pi radians equals 180 degrees.
164 @cindex pi (trigonometric constant)
165 The math library normally defines @code{M_PI} to a @code{double}
166 approximation of pi.  If strict ISO and/or POSIX compliance
167 are requested this constant is not defined, but you can easily define it
168 yourself:
170 @smallexample
171 #define M_PI 3.14159265358979323846264338327
172 @end smallexample
174 @noindent
175 You can also compute the value of pi with the expression @code{acos
176 (-1.0)}.
178 @deftypefun double sin (double @var{x})
179 @deftypefunx float sinf (float @var{x})
180 @deftypefunx {long double} sinl (long double @var{x})
181 @deftypefunx _FloatN sinfN (_Float@var{N} @var{x})
182 @deftypefunx _FloatNx sinfNx (_Float@var{N}x @var{x})
183 @standards{ISO, math.h}
184 @standardsx{sinfN, TS 18661-3:2015, math.h}
185 @standardsx{sinfNx, TS 18661-3:2015, math.h}
186 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
187 These functions return the sine of @var{x}, where @var{x} is given in
188 radians.  The return value is in the range @code{-1} to @code{1}.
189 @end deftypefun
191 @deftypefun double cos (double @var{x})
192 @deftypefunx float cosf (float @var{x})
193 @deftypefunx {long double} cosl (long double @var{x})
194 @deftypefunx _FloatN cosfN (_Float@var{N} @var{x})
195 @deftypefunx _FloatNx cosfNx (_Float@var{N}x @var{x})
196 @standards{ISO, math.h}
197 @standardsx{cosfN, TS 18661-3:2015, math.h}
198 @standardsx{cosfNx, TS 18661-3:2015, math.h}
199 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
200 These functions return the cosine of @var{x}, where @var{x} is given in
201 radians.  The return value is in the range @code{-1} to @code{1}.
202 @end deftypefun
204 @deftypefun double tan (double @var{x})
205 @deftypefunx float tanf (float @var{x})
206 @deftypefunx {long double} tanl (long double @var{x})
207 @deftypefunx _FloatN tanfN (_Float@var{N} @var{x})
208 @deftypefunx _FloatNx tanfNx (_Float@var{N}x @var{x})
209 @standards{ISO, math.h}
210 @standardsx{tanfN, TS 18661-3:2015, math.h}
211 @standardsx{tanfNx, TS 18661-3:2015, math.h}
212 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
213 These functions return the tangent of @var{x}, where @var{x} is given in
214 radians.
216 Mathematically, the tangent function has singularities at odd multiples
217 of pi/2.  If the argument @var{x} is too close to one of these
218 singularities, @code{tan} will signal overflow.
219 @end deftypefun
221 In many applications where @code{sin} and @code{cos} are used, the sine
222 and cosine of the same angle are needed at the same time.  It is more
223 efficient to compute them simultaneously, so the library provides a
224 function to do that.
226 @deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx})
227 @deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx})
228 @deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx})
229 @deftypefunx _FloatN sincosfN (_Float@var{N} @var{x}, _Float@var{N} *@var{sinx}, _Float@var{N} *@var{cosx})
230 @deftypefunx _FloatNx sincosfNx (_Float@var{N}x @var{x}, _Float@var{N}x *@var{sinx}, _Float@var{N}x *@var{cosx})
231 @standards{GNU, math.h}
232 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
233 These functions return the sine of @var{x} in @code{*@var{sinx}} and the
234 cosine of @var{x} in @code{*@var{cosx}}, where @var{x} is given in
235 radians.  Both values, @code{*@var{sinx}} and @code{*@var{cosx}}, are in
236 the range of @code{-1} to @code{1}.
238 All these functions, including the @code{_Float@var{N}} and
239 @code{_Float@var{N}x} variants, are GNU extensions.  Portable programs
240 should be prepared to cope with their absence.
241 @end deftypefun
243 @cindex complex trigonometric functions
245 @w{ISO C99} defines variants of the trig functions which work on
246 complex numbers.  @Theglibc{} provides these functions, but they
247 are only useful if your compiler supports the new complex types defined
248 by the standard.
249 @c XXX Change this when gcc is fixed. -zw
250 (As of this writing GCC supports complex numbers, but there are bugs in
251 the implementation.)
253 @deftypefun {complex double} csin (complex double @var{z})
254 @deftypefunx {complex float} csinf (complex float @var{z})
255 @deftypefunx {complex long double} csinl (complex long double @var{z})
256 @deftypefunx {complex _FloatN} csinfN (complex _Float@var{N} @var{z})
257 @deftypefunx {complex _FloatNx} csinfNx (complex _Float@var{N}x @var{z})
258 @standards{ISO, complex.h}
259 @standardsx{csinfN, TS 18661-3:2015, complex.h}
260 @standardsx{csinfNx, TS 18661-3:2015, complex.h}
261 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
262 @c There are calls to nan* that could trigger @mtslocale if they didn't get
263 @c empty strings.
264 These functions return the complex sine of @var{z}.
265 The mathematical definition of the complex sine is
267 @ifnottex
268 @math{sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i))}.
269 @end ifnottex
270 @tex
271 $$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$
272 @end tex
273 @end deftypefun
275 @deftypefun {complex double} ccos (complex double @var{z})
276 @deftypefunx {complex float} ccosf (complex float @var{z})
277 @deftypefunx {complex long double} ccosl (complex long double @var{z})
278 @deftypefunx {complex _FloatN} ccosfN (complex _Float@var{N} @var{z})
279 @deftypefunx {complex _FloatNx} ccosfNx (complex _Float@var{N}x @var{z})
280 @standards{ISO, complex.h}
281 @standardsx{ccosfN, TS 18661-3:2015, complex.h}
282 @standardsx{ccosfNx, TS 18661-3:2015, complex.h}
283 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
284 These functions return the complex cosine of @var{z}.
285 The mathematical definition of the complex cosine is
287 @ifnottex
288 @math{cos (z) = 1/2 * (exp (z*i) + exp (-z*i))}
289 @end ifnottex
290 @tex
291 $$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$
292 @end tex
293 @end deftypefun
295 @deftypefun {complex double} ctan (complex double @var{z})
296 @deftypefunx {complex float} ctanf (complex float @var{z})
297 @deftypefunx {complex long double} ctanl (complex long double @var{z})
298 @deftypefunx {complex _FloatN} ctanfN (complex _Float@var{N} @var{z})
299 @deftypefunx {complex _FloatNx} ctanfNx (complex _Float@var{N}x @var{z})
300 @standards{ISO, complex.h}
301 @standardsx{ctanfN, TS 18661-3:2015, complex.h}
302 @standardsx{ctanfNx, TS 18661-3:2015, complex.h}
303 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
304 These functions return the complex tangent of @var{z}.
305 The mathematical definition of the complex tangent is
307 @ifnottex
308 @math{tan (z) = -i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i))}
309 @end ifnottex
310 @tex
311 $$\tan(z) = -i \cdot {e^{zi} - e^{-zi}\over e^{zi} + e^{-zi}}$$
312 @end tex
314 @noindent
315 The complex tangent has poles at @math{pi/2 + 2n}, where @math{n} is an
316 integer.  @code{ctan} may signal overflow if @var{z} is too close to a
317 pole.
318 @end deftypefun
321 @node Inverse Trig Functions
322 @section Inverse Trigonometric Functions
323 @cindex inverse trigonometric functions
325 These are the usual arcsine, arccosine and arctangent functions,
326 which are the inverses of the sine, cosine and tangent functions
327 respectively.
329 @deftypefun double asin (double @var{x})
330 @deftypefunx float asinf (float @var{x})
331 @deftypefunx {long double} asinl (long double @var{x})
332 @deftypefunx _FloatN asinfN (_Float@var{N} @var{x})
333 @deftypefunx _FloatNx asinfNx (_Float@var{N}x @var{x})
334 @standards{ISO, math.h}
335 @standardsx{asinfN, TS 18661-3:2015, math.h}
336 @standardsx{asinfNx, TS 18661-3:2015, math.h}
337 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
338 These functions compute the arcsine of @var{x}---that is, the value whose
339 sine is @var{x}.  The value is in units of radians.  Mathematically,
340 there are infinitely many such values; the one actually returned is the
341 one between @code{-pi/2} and @code{pi/2} (inclusive).
343 The arcsine function is defined mathematically only
344 over the domain @code{-1} to @code{1}.  If @var{x} is outside the
345 domain, @code{asin} signals a domain error.
346 @end deftypefun
348 @deftypefun double acos (double @var{x})
349 @deftypefunx float acosf (float @var{x})
350 @deftypefunx {long double} acosl (long double @var{x})
351 @deftypefunx _FloatN acosfN (_Float@var{N} @var{x})
352 @deftypefunx _FloatNx acosfNx (_Float@var{N}x @var{x})
353 @standards{ISO, math.h}
354 @standardsx{acosfN, TS 18661-3:2015, math.h}
355 @standardsx{acosfNx, TS 18661-3:2015, math.h}
356 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
357 These functions compute the arccosine of @var{x}---that is, the value
358 whose cosine is @var{x}.  The value is in units of radians.
359 Mathematically, there are infinitely many such values; the one actually
360 returned is the one between @code{0} and @code{pi} (inclusive).
362 The arccosine function is defined mathematically only
363 over the domain @code{-1} to @code{1}.  If @var{x} is outside the
364 domain, @code{acos} signals a domain error.
365 @end deftypefun
367 @deftypefun double atan (double @var{x})
368 @deftypefunx float atanf (float @var{x})
369 @deftypefunx {long double} atanl (long double @var{x})
370 @deftypefunx _FloatN atanfN (_Float@var{N} @var{x})
371 @deftypefunx _FloatNx atanfNx (_Float@var{N}x @var{x})
372 @standards{ISO, math.h}
373 @standardsx{atanfN, TS 18661-3:2015, math.h}
374 @standardsx{atanfNx, TS 18661-3:2015, math.h}
375 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
376 These functions compute the arctangent of @var{x}---that is, the value
377 whose tangent is @var{x}.  The value is in units of radians.
378 Mathematically, there are infinitely many such values; the one actually
379 returned is the one between @code{-pi/2} and @code{pi/2} (inclusive).
380 @end deftypefun
382 @deftypefun double atan2 (double @var{y}, double @var{x})
383 @deftypefunx float atan2f (float @var{y}, float @var{x})
384 @deftypefunx {long double} atan2l (long double @var{y}, long double @var{x})
385 @deftypefunx _FloatN atan2fN (_Float@var{N} @var{y}, _Float@var{N} @var{x})
386 @deftypefunx _FloatNx atan2fNx (_Float@var{N}x @var{y}, _Float@var{N}x @var{x})
387 @standards{ISO, math.h}
388 @standardsx{atan2fN, TS 18661-3:2015, math.h}
389 @standardsx{atan2fNx, TS 18661-3:2015, math.h}
390 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
391 This function computes the arctangent of @var{y}/@var{x}, but the signs
392 of both arguments are used to determine the quadrant of the result, and
393 @var{x} is permitted to be zero.  The return value is given in radians
394 and is in the range @code{-pi} to @code{pi}, inclusive.
396 If @var{x} and @var{y} are coordinates of a point in the plane,
397 @code{atan2} returns the signed angle between the line from the origin
398 to that point and the x-axis.  Thus, @code{atan2} is useful for
399 converting Cartesian coordinates to polar coordinates.  (To compute the
400 radial coordinate, use @code{hypot}; see @ref{Exponents and
401 Logarithms}.)
403 @c This is experimentally true.  Should it be so? -zw
404 If both @var{x} and @var{y} are zero, @code{atan2} returns zero.
405 @end deftypefun
407 @cindex inverse complex trigonometric functions
408 @w{ISO C99} defines complex versions of the inverse trig functions.
410 @deftypefun {complex double} casin (complex double @var{z})
411 @deftypefunx {complex float} casinf (complex float @var{z})
412 @deftypefunx {complex long double} casinl (complex long double @var{z})
413 @deftypefunx {complex _FloatN} casinfN (complex _Float@var{N} @var{z})
414 @deftypefunx {complex _FloatNx} casinfNx (complex _Float@var{N}x @var{z})
415 @standards{ISO, complex.h}
416 @standardsx{casinfN, TS 18661-3:2015, complex.h}
417 @standardsx{casinfNx, TS 18661-3:2015, complex.h}
418 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
419 These functions compute the complex arcsine of @var{z}---that is, the
420 value whose sine is @var{z}.  The value returned is in radians.
422 Unlike the real-valued functions, @code{casin} is defined for all
423 values of @var{z}.
424 @end deftypefun
426 @deftypefun {complex double} cacos (complex double @var{z})
427 @deftypefunx {complex float} cacosf (complex float @var{z})
428 @deftypefunx {complex long double} cacosl (complex long double @var{z})
429 @deftypefunx {complex _FloatN} cacosfN (complex _Float@var{N} @var{z})
430 @deftypefunx {complex _FloatNx} cacosfNx (complex _Float@var{N}x @var{z})
431 @standards{ISO, complex.h}
432 @standardsx{cacosfN, TS 18661-3:2015, complex.h}
433 @standardsx{cacosfNx, TS 18661-3:2015, complex.h}
434 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
435 These functions compute the complex arccosine of @var{z}---that is, the
436 value whose cosine is @var{z}.  The value returned is in radians.
438 Unlike the real-valued functions, @code{cacos} is defined for all
439 values of @var{z}.
440 @end deftypefun
443 @deftypefun {complex double} catan (complex double @var{z})
444 @deftypefunx {complex float} catanf (complex float @var{z})
445 @deftypefunx {complex long double} catanl (complex long double @var{z})
446 @deftypefunx {complex _FloatN} catanfN (complex _Float@var{N} @var{z})
447 @deftypefunx {complex _FloatNx} catanfNx (complex _Float@var{N}x @var{z})
448 @standards{ISO, complex.h}
449 @standardsx{catanfN, TS 18661-3:2015, complex.h}
450 @standardsx{catanfNx, TS 18661-3:2015, complex.h}
451 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
452 These functions compute the complex arctangent of @var{z}---that is,
453 the value whose tangent is @var{z}.  The value is in units of radians.
454 @end deftypefun
457 @node Exponents and Logarithms
458 @section Exponentiation and Logarithms
459 @cindex exponentiation functions
460 @cindex power functions
461 @cindex logarithm functions
463 @deftypefun double exp (double @var{x})
464 @deftypefunx float expf (float @var{x})
465 @deftypefunx {long double} expl (long double @var{x})
466 @deftypefunx _FloatN expfN (_Float@var{N} @var{x})
467 @deftypefunx _FloatNx expfNx (_Float@var{N}x @var{x})
468 @standards{ISO, math.h}
469 @standardsx{expfN, TS 18661-3:2015, math.h}
470 @standardsx{expfNx, TS 18661-3:2015, math.h}
471 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
472 These functions compute @code{e} (the base of natural logarithms) raised
473 to the power @var{x}.
475 If the magnitude of the result is too large to be representable,
476 @code{exp} signals overflow.
477 @end deftypefun
479 @deftypefun double exp2 (double @var{x})
480 @deftypefunx float exp2f (float @var{x})
481 @deftypefunx {long double} exp2l (long double @var{x})
482 @deftypefunx _FloatN exp2fN (_Float@var{N} @var{x})
483 @deftypefunx _FloatNx exp2fNx (_Float@var{N}x @var{x})
484 @standards{ISO, math.h}
485 @standardsx{exp2fN, TS 18661-3:2015, math.h}
486 @standardsx{exp2fNx, TS 18661-3:2015, math.h}
487 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
488 These functions compute @code{2} raised to the power @var{x}.
489 Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}.
490 @end deftypefun
492 @deftypefun double exp10 (double @var{x})
493 @deftypefunx float exp10f (float @var{x})
494 @deftypefunx {long double} exp10l (long double @var{x})
495 @deftypefunx _FloatN exp10fN (_Float@var{N} @var{x})
496 @deftypefunx _FloatNx exp10fNx (_Float@var{N}x @var{x})
497 @standards{ISO, math.h}
498 @standardsx{exp10fN, TS 18661-4:2015, math.h}
499 @standardsx{exp10fNx, TS 18661-4:2015, math.h}
500 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
501 These functions compute @code{10} raised to the power @var{x}.
502 Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}.
504 The @code{exp10} functions are from TS 18661-4:2015.
505 @end deftypefun
508 @deftypefun double log (double @var{x})
509 @deftypefunx float logf (float @var{x})
510 @deftypefunx {long double} logl (long double @var{x})
511 @deftypefunx _FloatN logfN (_Float@var{N} @var{x})
512 @deftypefunx _FloatNx logfNx (_Float@var{N}x @var{x})
513 @standards{ISO, math.h}
514 @standardsx{logfN, TS 18661-3:2015, math.h}
515 @standardsx{logfNx, TS 18661-3:2015, math.h}
516 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
517 These functions compute the natural logarithm of @var{x}.  @code{exp (log
518 (@var{x}))} equals @var{x}, exactly in mathematics and approximately in
521 If @var{x} is negative, @code{log} signals a domain error.  If @var{x}
522 is zero, it returns negative infinity; if @var{x} is too close to zero,
523 it may signal overflow.
524 @end deftypefun
526 @deftypefun double log10 (double @var{x})
527 @deftypefunx float log10f (float @var{x})
528 @deftypefunx {long double} log10l (long double @var{x})
529 @deftypefunx _FloatN log10fN (_Float@var{N} @var{x})
530 @deftypefunx _FloatNx log10fNx (_Float@var{N}x @var{x})
531 @standards{ISO, math.h}
532 @standardsx{log10fN, TS 18661-3:2015, math.h}
533 @standardsx{log10fNx, TS 18661-3:2015, math.h}
534 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
535 These functions return the base-10 logarithm of @var{x}.
536 @code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}.
538 @end deftypefun
540 @deftypefun double log2 (double @var{x})
541 @deftypefunx float log2f (float @var{x})
542 @deftypefunx {long double} log2l (long double @var{x})
543 @deftypefunx _FloatN log2fN (_Float@var{N} @var{x})
544 @deftypefunx _FloatNx log2fNx (_Float@var{N}x @var{x})
545 @standards{ISO, math.h}
546 @standardsx{log2fN, TS 18661-3:2015, math.h}
547 @standardsx{log2fNx, TS 18661-3:2015, math.h}
548 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
549 These functions return the base-2 logarithm of @var{x}.
550 @code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}.
551 @end deftypefun
553 @deftypefun double logb (double @var{x})
554 @deftypefunx float logbf (float @var{x})
555 @deftypefunx {long double} logbl (long double @var{x})
556 @deftypefunx _FloatN logbfN (_Float@var{N} @var{x})
557 @deftypefunx _FloatNx logbfNx (_Float@var{N}x @var{x})
558 @standards{ISO, math.h}
559 @standardsx{logbfN, TS 18661-3:2015, math.h}
560 @standardsx{logbfNx, TS 18661-3:2015, math.h}
561 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
562 These functions extract the exponent of @var{x} and return it as a
563 floating-point value.  If @code{FLT_RADIX} is two, @code{logb} is equal
564 to @code{floor (log2 (x))}, except it's probably faster.
566 If @var{x} is de-normalized, @code{logb} returns the exponent @var{x}
567 would have if it were normalized.  If @var{x} is infinity (positive or
568 negative), @code{logb} returns @math{@infinity{}}.  If @var{x} is zero,
569 @code{logb} returns @math{@infinity{}}.  It does not signal.
570 @end deftypefun
572 @deftypefun int ilogb (double @var{x})
573 @deftypefunx int ilogbf (float @var{x})
574 @deftypefunx int ilogbl (long double @var{x})
575 @deftypefunx int ilogbfN (_Float@var{N} @var{x})
576 @deftypefunx int ilogbfNx (_Float@var{N}x @var{x})
577 @deftypefunx {long int} llogb (double @var{x})
578 @deftypefunx {long int} llogbf (float @var{x})
579 @deftypefunx {long int} llogbl (long double @var{x})
580 @deftypefunx {long int} llogbfN (_Float@var{N} @var{x})
581 @deftypefunx {long int} llogbfNx (_Float@var{N}x @var{x})
582 @standards{ISO, math.h}
583 @standardsx{ilogbfN, TS 18661-3:2015, math.h}
584 @standardsx{ilogbfNx, TS 18661-3:2015, math.h}
585 @standardsx{llogbfN, TS 18661-3:2015, math.h}
586 @standardsx{llogbfNx, TS 18661-3:2015, math.h}
587 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
588 These functions are equivalent to the corresponding @code{logb}
589 functions except that they return signed integer values.  The
590 @code{ilogb}, @code{ilogbf}, and @code{ilogbl} functions are from ISO
591 C99; the @code{llogb}, @code{llogbf}, @code{llogbl} functions are from
592 TS 18661-1:2014; the @code{ilogbfN}, @code{ilogbfNx}, @code{llogbfN},
593 and @code{llogbfNx} functions are from TS 18661-3:2015.
594 @end deftypefun
596 @noindent
597 Since integers cannot represent infinity and NaN, @code{ilogb} instead
598 returns an integer that can't be the exponent of a normal floating-point
599 number.  @file{math.h} defines constants so you can check for this.
601 @deftypevr Macro int FP_ILOGB0
602 @standards{ISO, math.h}
603 @code{ilogb} returns this value if its argument is @code{0}.  The
604 numeric value is either @code{INT_MIN} or @code{-INT_MAX}.
606 This macro is defined in @w{ISO C99}.
607 @end deftypevr
609 @deftypevr Macro {long int} FP_LLOGB0
610 @standards{ISO, math.h}
611 @code{llogb} returns this value if its argument is @code{0}.  The
612 numeric value is either @code{LONG_MIN} or @code{-LONG_MAX}.
614 This macro is defined in TS 18661-1:2014.
615 @end deftypevr
617 @deftypevr Macro int FP_ILOGBNAN
618 @standards{ISO, math.h}
619 @code{ilogb} returns this value if its argument is @code{NaN}.  The
620 numeric value is either @code{INT_MIN} or @code{INT_MAX}.
622 This macro is defined in @w{ISO C99}.
623 @end deftypevr
625 @deftypevr Macro {long int} FP_LLOGBNAN
626 @standards{ISO, math.h}
627 @code{llogb} returns this value if its argument is @code{NaN}.  The
628 numeric value is either @code{LONG_MIN} or @code{LONG_MAX}.
630 This macro is defined in TS 18661-1:2014.
631 @end deftypevr
633 These values are system specific.  They might even be the same.  The
634 proper way to test the result of @code{ilogb} is as follows:
636 @smallexample
637 i = ilogb (f);
638 if (i == FP_ILOGB0 || i == FP_ILOGBNAN)
639   @{
640     if (isnan (f))
641       @{
642         /* @r{Handle NaN.}  */
643       @}
644     else if (f  == 0.0)
645       @{
646         /* @r{Handle 0.0.}  */
647       @}
648     else
649       @{
650         /* @r{Some other value with large exponent,}
651            @r{perhaps +Inf.}  */
652       @}
653   @}
654 @end smallexample
656 @deftypefun double pow (double @var{base}, double @var{power})
657 @deftypefunx float powf (float @var{base}, float @var{power})
658 @deftypefunx {long double} powl (long double @var{base}, long double @var{power})
659 @deftypefunx _FloatN powfN (_Float@var{N} @var{base}, _Float@var{N} @var{power})
660 @deftypefunx _FloatNx powfNx (_Float@var{N}x @var{base}, _Float@var{N}x @var{power})
661 @standards{ISO, math.h}
662 @standardsx{powfN, TS 18661-3:2015, math.h}
663 @standardsx{powfNx, TS 18661-3:2015, math.h}
664 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
665 These are general exponentiation functions, returning @var{base} raised
666 to @var{power}.
668 Mathematically, @code{pow} would return a complex number when @var{base}
669 is negative and @var{power} is not an integral value.  @code{pow} can't
670 do that, so instead it signals a domain error. @code{pow} may also
671 underflow or overflow the destination type.
672 @end deftypefun
674 @cindex square root function
675 @deftypefun double sqrt (double @var{x})
676 @deftypefunx float sqrtf (float @var{x})
677 @deftypefunx {long double} sqrtl (long double @var{x})
678 @deftypefunx _FloatN sqrtfN (_Float@var{N} @var{x})
679 @deftypefunx _FloatNx sqrtfNx (_Float@var{N}x @var{x})
680 @standards{ISO, math.h}
681 @standardsx{sqrtfN, TS 18661-3:2015, math.h}
682 @standardsx{sqrtfNx, TS 18661-3:2015, math.h}
683 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
684 These functions return the nonnegative square root of @var{x}.
686 If @var{x} is negative, @code{sqrt} signals a domain error.
687 Mathematically, it should return a complex number.
688 @end deftypefun
690 @cindex cube root function
691 @deftypefun double cbrt (double @var{x})
692 @deftypefunx float cbrtf (float @var{x})
693 @deftypefunx {long double} cbrtl (long double @var{x})
694 @deftypefunx _FloatN cbrtfN (_Float@var{N} @var{x})
695 @deftypefunx _FloatNx cbrtfNx (_Float@var{N}x @var{x})
696 @standards{BSD, math.h}
697 @standardsx{cbrtfN, TS 18661-3:2015, math.h}
698 @standardsx{cbrtfNx, TS 18661-3:2015, math.h}
699 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
700 These functions return the cube root of @var{x}.  They cannot
701 fail; every representable real value has a representable real cube root.
702 @end deftypefun
704 @deftypefun double hypot (double @var{x}, double @var{y})
705 @deftypefunx float hypotf (float @var{x}, float @var{y})
706 @deftypefunx {long double} hypotl (long double @var{x}, long double @var{y})
707 @deftypefunx _FloatN hypotfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
708 @deftypefunx _FloatNx hypotfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
709 @standards{ISO, math.h}
710 @standardsx{hypotfN, TS 18661-3:2015, math.h}
711 @standardsx{hypotfNx, TS 18661-3:2015, math.h}
712 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
713 These functions return @code{sqrt (@var{x}*@var{x} +
714 @var{y}*@var{y})}.  This is the length of the hypotenuse of a right
715 triangle with sides of length @var{x} and @var{y}, or the distance
716 of the point (@var{x}, @var{y}) from the origin.  Using this function
717 instead of the direct formula is wise, since the error is
718 much smaller.  See also the function @code{cabs} in @ref{Absolute Value}.
719 @end deftypefun
721 @deftypefun double expm1 (double @var{x})
722 @deftypefunx float expm1f (float @var{x})
723 @deftypefunx {long double} expm1l (long double @var{x})
724 @deftypefunx _FloatN expm1fN (_Float@var{N} @var{x})
725 @deftypefunx _FloatNx expm1fNx (_Float@var{N}x @var{x})
726 @standards{ISO, math.h}
727 @standardsx{expm1fN, TS 18661-3:2015, math.h}
728 @standardsx{expm1fNx, TS 18661-3:2015, math.h}
729 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
730 These functions return a value equivalent to @code{exp (@var{x}) - 1}.
731 They are computed in a way that is accurate even if @var{x} is
732 near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing
733 to subtraction of two numbers that are nearly equal.
734 @end deftypefun
736 @deftypefun double log1p (double @var{x})
737 @deftypefunx float log1pf (float @var{x})
738 @deftypefunx {long double} log1pl (long double @var{x})
739 @deftypefunx _FloatN log1pfN (_Float@var{N} @var{x})
740 @deftypefunx _FloatNx log1pfNx (_Float@var{N}x @var{x})
741 @standards{ISO, math.h}
742 @standardsx{log1pfN, TS 18661-3:2015, math.h}
743 @standardsx{log1pfNx, TS 18661-3:2015, math.h}
744 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
745 These functions return a value equivalent to @w{@code{log (1 + @var{x})}}.
746 They are computed in a way that is accurate even if @var{x} is
747 near zero.
748 @end deftypefun
750 @cindex complex exponentiation functions
751 @cindex complex logarithm functions
753 @w{ISO C99} defines complex variants of some of the exponentiation and
754 logarithm functions.
756 @deftypefun {complex double} cexp (complex double @var{z})
757 @deftypefunx {complex float} cexpf (complex float @var{z})
758 @deftypefunx {complex long double} cexpl (complex long double @var{z})
759 @deftypefunx {complex _FloatN} cexpfN (complex _Float@var{N} @var{z})
760 @deftypefunx {complex _FloatNx} cexpfNx (complex _Float@var{N}x @var{z})
761 @standards{ISO, complex.h}
762 @standardsx{cexpfN, TS 18661-3:2015, complex.h}
763 @standardsx{cexpfNx, TS 18661-3:2015, complex.h}
764 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
765 These functions return @code{e} (the base of natural
766 logarithms) raised to the power of @var{z}.
767 Mathematically, this corresponds to the value
769 @ifnottex
770 @math{exp (z) = exp (creal (z)) * (cos (cimag (z)) + I * sin (cimag (z)))}
771 @end ifnottex
772 @tex
773 $$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$
774 @end tex
775 @end deftypefun
777 @deftypefun {complex double} clog (complex double @var{z})
778 @deftypefunx {complex float} clogf (complex float @var{z})
779 @deftypefunx {complex long double} clogl (complex long double @var{z})
780 @deftypefunx {complex _FloatN} clogfN (complex _Float@var{N} @var{z})
781 @deftypefunx {complex _FloatNx} clogfNx (complex _Float@var{N}x @var{z})
782 @standards{ISO, complex.h}
783 @standardsx{clogfN, TS 18661-3:2015, complex.h}
784 @standardsx{clogfNx, TS 18661-3:2015, complex.h}
785 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
786 These functions return the natural logarithm of @var{z}.
787 Mathematically, this corresponds to the value
789 @ifnottex
790 @math{log (z) = log (cabs (z)) + I * carg (z)}
791 @end ifnottex
792 @tex
793 $$\log(z) = \log |z| + i \arg z$$
794 @end tex
796 @noindent
797 @code{clog} has a pole at 0, and will signal overflow if @var{z} equals
798 or is very close to 0.  It is well-defined for all other values of
799 @var{z}.
800 @end deftypefun
803 @deftypefun {complex double} clog10 (complex double @var{z})
804 @deftypefunx {complex float} clog10f (complex float @var{z})
805 @deftypefunx {complex long double} clog10l (complex long double @var{z})
806 @deftypefunx {complex _FloatN} clog10fN (complex _Float@var{N} @var{z})
807 @deftypefunx {complex _FloatNx} clog10fNx (complex _Float@var{N}x @var{z})
808 @standards{GNU, complex.h}
809 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
810 These functions return the base 10 logarithm of the complex value
811 @var{z}.  Mathematically, this corresponds to the value
813 @ifnottex
814 @math{log10 (z) = log10 (cabs (z)) + I * carg (z) / log (10)}
815 @end ifnottex
816 @tex
817 $$\log_{10}(z) = \log_{10}|z| + i \arg z / \log (10)$$
818 @end tex
820 All these functions, including the @code{_Float@var{N}} and
821 @code{_Float@var{N}x} variants, are GNU extensions.
822 @end deftypefun
824 @deftypefun {complex double} csqrt (complex double @var{z})
825 @deftypefunx {complex float} csqrtf (complex float @var{z})
826 @deftypefunx {complex long double} csqrtl (complex long double @var{z})
827 @deftypefunx {complex _FloatN} csqrtfN (_Float@var{N} @var{z})
828 @deftypefunx {complex _FloatNx} csqrtfNx (complex _Float@var{N}x @var{z})
829 @standards{ISO, complex.h}
830 @standardsx{csqrtfN, TS 18661-3:2015, complex.h}
831 @standardsx{csqrtfNx, TS 18661-3:2015, complex.h}
832 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
833 These functions return the complex square root of the argument @var{z}.  Unlike
834 the real-valued functions, they are defined for all values of @var{z}.
835 @end deftypefun
837 @deftypefun {complex double} cpow (complex double @var{base}, complex double @var{power})
838 @deftypefunx {complex float} cpowf (complex float @var{base}, complex float @var{power})
839 @deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power})
840 @deftypefunx {complex _FloatN} cpowfN (complex _Float@var{N} @var{base}, complex _Float@var{N} @var{power})
841 @deftypefunx {complex _FloatNx} cpowfNx (complex _Float@var{N}x @var{base}, complex _Float@var{N}x @var{power})
842 @standards{ISO, complex.h}
843 @standardsx{cpowfN, TS 18661-3:2015, complex.h}
844 @standardsx{cpowfNx, TS 18661-3:2015, complex.h}
845 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
846 These functions return @var{base} raised to the power of
847 @var{power}.  This is equivalent to @w{@code{cexp (y * clog (x))}}
848 @end deftypefun
850 @node Hyperbolic Functions
851 @section Hyperbolic Functions
852 @cindex hyperbolic functions
854 The functions in this section are related to the exponential functions;
855 see @ref{Exponents and Logarithms}.
857 @deftypefun double sinh (double @var{x})
858 @deftypefunx float sinhf (float @var{x})
859 @deftypefunx {long double} sinhl (long double @var{x})
860 @deftypefunx _FloatN sinhfN (_Float@var{N} @var{x})
861 @deftypefunx _FloatNx sinhfNx (_Float@var{N}x @var{x})
862 @standards{ISO, math.h}
863 @standardsx{sinhfN, TS 18661-3:2015, math.h}
864 @standardsx{sinhfNx, TS 18661-3:2015, math.h}
865 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
866 These functions return the hyperbolic sine of @var{x}, defined
867 mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}.  They
868 may signal overflow if @var{x} is too large.
869 @end deftypefun
871 @deftypefun double cosh (double @var{x})
872 @deftypefunx float coshf (float @var{x})
873 @deftypefunx {long double} coshl (long double @var{x})
874 @deftypefunx _FloatN coshfN (_Float@var{N} @var{x})
875 @deftypefunx _FloatNx coshfNx (_Float@var{N}x @var{x})
876 @standards{ISO, math.h}
877 @standardsx{coshfN, TS 18661-3:2015, math.h}
878 @standardsx{coshfNx, TS 18661-3:2015, math.h}
879 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
880 These functions return the hyperbolic cosine of @var{x},
881 defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}.
882 They may signal overflow if @var{x} is too large.
883 @end deftypefun
885 @deftypefun double tanh (double @var{x})
886 @deftypefunx float tanhf (float @var{x})
887 @deftypefunx {long double} tanhl (long double @var{x})
888 @deftypefunx _FloatN tanhfN (_Float@var{N} @var{x})
889 @deftypefunx _FloatNx tanhfNx (_Float@var{N}x @var{x})
890 @standards{ISO, math.h}
891 @standardsx{tanhfN, TS 18661-3:2015, math.h}
892 @standardsx{tanhfNx, TS 18661-3:2015, math.h}
893 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
894 These functions return the hyperbolic tangent of @var{x},
895 defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}.
896 They may signal overflow if @var{x} is too large.
897 @end deftypefun
899 @cindex hyperbolic functions
901 There are counterparts for the hyperbolic functions which take
902 complex arguments.
904 @deftypefun {complex double} csinh (complex double @var{z})
905 @deftypefunx {complex float} csinhf (complex float @var{z})
906 @deftypefunx {complex long double} csinhl (complex long double @var{z})
907 @deftypefunx {complex _FloatN} csinhfN (complex _Float@var{N} @var{z})
908 @deftypefunx {complex _FloatNx} csinhfNx (complex _Float@var{N}x @var{z})
909 @standards{ISO, complex.h}
910 @standardsx{csinhfN, TS 18661-3:2015, complex.h}
911 @standardsx{csinhfNx, TS 18661-3:2015, complex.h}
912 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
913 These functions return the complex hyperbolic sine of @var{z}, defined
914 mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}.
915 @end deftypefun
917 @deftypefun {complex double} ccosh (complex double @var{z})
918 @deftypefunx {complex float} ccoshf (complex float @var{z})
919 @deftypefunx {complex long double} ccoshl (complex long double @var{z})
920 @deftypefunx {complex _FloatN} ccoshfN (complex _Float@var{N} @var{z})
921 @deftypefunx {complex _FloatNx} ccoshfNx (complex _Float@var{N}x @var{z})
922 @standards{ISO, complex.h}
923 @standardsx{ccoshfN, TS 18661-3:2015, complex.h}
924 @standardsx{ccoshfNx, TS 18661-3:2015, complex.h}
925 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
926 These functions return the complex hyperbolic cosine of @var{z}, defined
927 mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}.
928 @end deftypefun
930 @deftypefun {complex double} ctanh (complex double @var{z})
931 @deftypefunx {complex float} ctanhf (complex float @var{z})
932 @deftypefunx {complex long double} ctanhl (complex long double @var{z})
933 @deftypefunx {complex _FloatN} ctanhfN (complex _Float@var{N} @var{z})
934 @deftypefunx {complex _FloatNx} ctanhfNx (complex _Float@var{N}x @var{z})
935 @standards{ISO, complex.h}
936 @standardsx{ctanhfN, TS 18661-3:2015, complex.h}
937 @standardsx{ctanhfNx, TS 18661-3:2015, complex.h}
938 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
939 These functions return the complex hyperbolic tangent of @var{z},
940 defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}.
941 @end deftypefun
944 @cindex inverse hyperbolic functions
946 @deftypefun double asinh (double @var{x})
947 @deftypefunx float asinhf (float @var{x})
948 @deftypefunx {long double} asinhl (long double @var{x})
949 @deftypefunx _FloatN asinhfN (_Float@var{N} @var{x})
950 @deftypefunx _FloatNx asinhfNx (_Float@var{N}x @var{x})
951 @standards{ISO, math.h}
952 @standardsx{asinhfN, TS 18661-3:2015, math.h}
953 @standardsx{asinhfNx, TS 18661-3:2015, math.h}
954 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
955 These functions return the inverse hyperbolic sine of @var{x}---the
956 value whose hyperbolic sine is @var{x}.
957 @end deftypefun
959 @deftypefun double acosh (double @var{x})
960 @deftypefunx float acoshf (float @var{x})
961 @deftypefunx {long double} acoshl (long double @var{x})
962 @deftypefunx _FloatN acoshfN (_Float@var{N} @var{x})
963 @deftypefunx _FloatNx acoshfNx (_Float@var{N}x @var{x})
964 @standards{ISO, math.h}
965 @standardsx{acoshfN, TS 18661-3:2015, math.h}
966 @standardsx{acoshfNx, TS 18661-3:2015, math.h}
967 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
968 These functions return the inverse hyperbolic cosine of @var{x}---the
969 value whose hyperbolic cosine is @var{x}.  If @var{x} is less than
970 @code{1}, @code{acosh} signals a domain error.
971 @end deftypefun
973 @deftypefun double atanh (double @var{x})
974 @deftypefunx float atanhf (float @var{x})
975 @deftypefunx {long double} atanhl (long double @var{x})
976 @deftypefunx _FloatN atanhfN (_Float@var{N} @var{x})
977 @deftypefunx _FloatNx atanhfNx (_Float@var{N}x @var{x})
978 @standards{ISO, math.h}
979 @standardsx{atanhfN, TS 18661-3:2015, math.h}
980 @standardsx{atanhfNx, TS 18661-3:2015, math.h}
981 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
982 These functions return the inverse hyperbolic tangent of @var{x}---the
983 value whose hyperbolic tangent is @var{x}.  If the absolute value of
984 @var{x} is greater than @code{1}, @code{atanh} signals a domain error;
985 if it is equal to 1, @code{atanh} returns infinity.
986 @end deftypefun
988 @cindex inverse complex hyperbolic functions
990 @deftypefun {complex double} casinh (complex double @var{z})
991 @deftypefunx {complex float} casinhf (complex float @var{z})
992 @deftypefunx {complex long double} casinhl (complex long double @var{z})
993 @deftypefunx {complex _FloatN} casinhfN (complex _Float@var{N} @var{z})
994 @deftypefunx {complex _FloatNx} casinhfNx (complex _Float@var{N}x @var{z})
995 @standards{ISO, complex.h}
996 @standardsx{casinhfN, TS 18661-3:2015, complex.h}
997 @standardsx{casinhfNx, TS 18661-3:2015, complex.h}
998 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
999 These functions return the inverse complex hyperbolic sine of
1000 @var{z}---the value whose complex hyperbolic sine is @var{z}.
1001 @end deftypefun
1003 @deftypefun {complex double} cacosh (complex double @var{z})
1004 @deftypefunx {complex float} cacoshf (complex float @var{z})
1005 @deftypefunx {complex long double} cacoshl (complex long double @var{z})
1006 @deftypefunx {complex _FloatN} cacoshfN (complex _Float@var{N} @var{z})
1007 @deftypefunx {complex _FloatNx} cacoshfNx (complex _Float@var{N}x @var{z})
1008 @standards{ISO, complex.h}
1009 @standardsx{cacoshfN, TS 18661-3:2015, complex.h}
1010 @standardsx{cacoshfNx, TS 18661-3:2015, complex.h}
1011 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1012 These functions return the inverse complex hyperbolic cosine of
1013 @var{z}---the value whose complex hyperbolic cosine is @var{z}.  Unlike
1014 the real-valued functions, there are no restrictions on the value of @var{z}.
1015 @end deftypefun
1017 @deftypefun {complex double} catanh (complex double @var{z})
1018 @deftypefunx {complex float} catanhf (complex float @var{z})
1019 @deftypefunx {complex long double} catanhl (complex long double @var{z})
1020 @deftypefunx {complex _FloatN} catanhfN (complex _Float@var{N} @var{z})
1021 @deftypefunx {complex _FloatNx} catanhfNx (complex _Float@var{N}x @var{z})
1022 @standards{ISO, complex.h}
1023 @standardsx{catanhfN, TS 18661-3:2015, complex.h}
1024 @standardsx{catanhfNx, TS 18661-3:2015, complex.h}
1025 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1026 These functions return the inverse complex hyperbolic tangent of
1027 @var{z}---the value whose complex hyperbolic tangent is @var{z}.  Unlike
1028 the real-valued functions, there are no restrictions on the value of
1029 @var{z}.
1030 @end deftypefun
1032 @node Special Functions
1033 @section Special Functions
1034 @cindex special functions
1035 @cindex Bessel functions
1036 @cindex gamma function
1038 These are some more exotic mathematical functions which are sometimes
1039 useful.  Currently they only have real-valued versions.
1041 @deftypefun double erf (double @var{x})
1042 @deftypefunx float erff (float @var{x})
1043 @deftypefunx {long double} erfl (long double @var{x})
1044 @deftypefunx _FloatN erffN (_Float@var{N} @var{x})
1045 @deftypefunx _FloatNx erffNx (_Float@var{N}x @var{x})
1046 @standards{SVID, math.h}
1047 @standardsx{erffN, TS 18661-3:2015, math.h}
1048 @standardsx{erffNx, TS 18661-3:2015, math.h}
1049 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1050 @code{erf} returns the error function of @var{x}.  The error
1051 function is defined as
1052 @tex
1053 $$\hbox{erf}(x) = {2\over\sqrt{\pi}}\cdot\int_0^x e^{-t^2} \hbox{d}t$$
1054 @end tex
1055 @ifnottex
1056 @smallexample
1057 erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt
1058 @end smallexample
1059 @end ifnottex
1060 @end deftypefun
1062 @deftypefun double erfc (double @var{x})
1063 @deftypefunx float erfcf (float @var{x})
1064 @deftypefunx {long double} erfcl (long double @var{x})
1065 @deftypefunx _FloatN erfcfN (_Float@var{N} @var{x})
1066 @deftypefunx _FloatNx erfcfNx (_Float@var{N}x @var{x})
1067 @standards{SVID, math.h}
1068 @standardsx{erfcfN, TS 18661-3:2015, math.h}
1069 @standardsx{erfcfNx, TS 18661-3:2015, math.h}
1070 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1071 @code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a
1072 fashion that avoids round-off error when @var{x} is large.
1073 @end deftypefun
1075 @deftypefun double lgamma (double @var{x})
1076 @deftypefunx float lgammaf (float @var{x})
1077 @deftypefunx {long double} lgammal (long double @var{x})
1078 @deftypefunx _FloatN lgammafN (_Float@var{N} @var{x})
1079 @deftypefunx _FloatNx lgammafNx (_Float@var{N}x @var{x})
1080 @standards{SVID, math.h}
1081 @standardsx{lgammafN, TS 18661-3:2015, math.h}
1082 @standardsx{lgammafNx, TS 18661-3:2015, math.h}
1083 @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
1084 @code{lgamma} returns the natural logarithm of the absolute value of
1085 the gamma function of @var{x}.  The gamma function is defined as
1086 @tex
1087 $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
1088 @end tex
1089 @ifnottex
1090 @smallexample
1091 gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
1092 @end smallexample
1093 @end ifnottex
1095 @vindex signgam
1096 The sign of the gamma function is stored in the global variable
1097 @var{signgam}, which is declared in @file{math.h}.  It is @code{1} if
1098 the intermediate result was positive or zero, or @code{-1} if it was
1099 negative.
1101 To compute the real gamma function you can use the @code{tgamma}
1102 function or you can compute the values as follows:
1103 @smallexample
1104 lgam = lgamma(x);
1105 gam  = signgam*exp(lgam);
1106 @end smallexample
1108 The gamma function has singularities at the non-positive integers.
1109 @code{lgamma} will raise the zero divide exception if evaluated at a
1110 singularity.
1111 @end deftypefun
1113 @deftypefun double lgamma_r (double @var{x}, int *@var{signp})
1114 @deftypefunx float lgammaf_r (float @var{x}, int *@var{signp})
1115 @deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp})
1116 @deftypefunx _FloatN lgammafN_r (_Float@var{N} @var{x}, int *@var{signp})
1117 @deftypefunx _FloatNx lgammafNx_r (_Float@var{N}x @var{x}, int *@var{signp})
1118 @standards{XPG, math.h}
1119 @standardsx{lgammafN_r, GNU, math.h}
1120 @standardsx{lgammafNx_r, GNU, math.h}
1121 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1122 @code{lgamma_r} is just like @code{lgamma}, but it stores the sign of
1123 the intermediate result in the variable pointed to by @var{signp}
1124 instead of in the @var{signgam} global.  This means it is reentrant.
1126 The @code{lgammaf@var{N}_r} and @code{lgammaf@var{N}x_r} functions are
1127 GNU extensions.
1128 @end deftypefun
1130 @deftypefun double gamma (double @var{x})
1131 @deftypefunx float gammaf (float @var{x})
1132 @deftypefunx {long double} gammal (long double @var{x})
1133 @standards{SVID, math.h}
1134 @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
1135 These functions exist for compatibility reasons.  They are equivalent to
1136 @code{lgamma} etc.  It is better to use @code{lgamma} since for one the
1137 name reflects better the actual computation, and moreover @code{lgamma} is
1138 standardized in @w{ISO C99} while @code{gamma} is not.
1139 @end deftypefun
1141 @deftypefun double tgamma (double @var{x})
1142 @deftypefunx float tgammaf (float @var{x})
1143 @deftypefunx {long double} tgammal (long double @var{x})
1144 @deftypefunx _FloatN tgammafN (_Float@var{N} @var{x})
1145 @deftypefunx _FloatNx tgammafNx (_Float@var{N}x @var{x})
1146 @standardsx{tgamma, XPG, math.h}
1147 @standardsx{tgamma, ISO, math.h}
1148 @standardsx{tgammaf, XPG, math.h}
1149 @standardsx{tgammaf, ISO, math.h}
1150 @standardsx{tgammal, XPG, math.h}
1151 @standardsx{tgammal, ISO, math.h}
1152 @standardsx{tgammafN, TS 18661-3:2015, math.h}
1153 @standardsx{tgammafNx, TS 18661-3:2015, math.h}
1154 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1155 @code{tgamma} applies the gamma function to @var{x}.  The gamma
1156 function is defined as
1157 @tex
1158 $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
1159 @end tex
1160 @ifnottex
1161 @smallexample
1162 gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
1163 @end smallexample
1164 @end ifnottex
1166 This function was introduced in @w{ISO C99}.  The @code{_Float@var{N}}
1167 and @code{_Float@var{N}x} variants were introduced in @w{ISO/IEC TS
1168 18661-3}.
1169 @end deftypefun
1171 @deftypefun double j0 (double @var{x})
1172 @deftypefunx float j0f (float @var{x})
1173 @deftypefunx {long double} j0l (long double @var{x})
1174 @deftypefunx _FloatN j0fN (_Float@var{N} @var{x})
1175 @deftypefunx _FloatNx j0fNx (_Float@var{N}x @var{x})
1176 @standards{SVID, math.h}
1177 @standardsx{j0fN, GNU, math.h}
1178 @standardsx{j0fNx, GNU, math.h}
1179 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1180 @code{j0} returns the Bessel function of the first kind of order 0 of
1181 @var{x}.  It may signal underflow if @var{x} is too large.
1183 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1184 extensions.
1185 @end deftypefun
1187 @deftypefun double j1 (double @var{x})
1188 @deftypefunx float j1f (float @var{x})
1189 @deftypefunx {long double} j1l (long double @var{x})
1190 @deftypefunx _FloatN j1fN (_Float@var{N} @var{x})
1191 @deftypefunx _FloatNx j1fNx (_Float@var{N}x @var{x})
1192 @standards{SVID, math.h}
1193 @standardsx{j1fN, GNU, math.h}
1194 @standardsx{j1fNx, GNU, math.h}
1195 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1196 @code{j1} returns the Bessel function of the first kind of order 1 of
1197 @var{x}.  It may signal underflow if @var{x} is too large.
1199 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1200 extensions.
1201 @end deftypefun
1203 @deftypefun double jn (int @var{n}, double @var{x})
1204 @deftypefunx float jnf (int @var{n}, float @var{x})
1205 @deftypefunx {long double} jnl (int @var{n}, long double @var{x})
1206 @deftypefunx _FloatN jnfN (int @var{n}, _Float@var{N} @var{x})
1207 @deftypefunx _FloatNx jnfNx (int @var{n}, _Float@var{N}x @var{x})
1208 @standards{SVID, math.h}
1209 @standardsx{jnfN, GNU, math.h}
1210 @standardsx{jnfNx, GNU, math.h}
1211 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1212 @code{jn} returns the Bessel function of the first kind of order
1213 @var{n} of @var{x}.  It may signal underflow if @var{x} is too large.
1215 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1216 extensions.
1217 @end deftypefun
1219 @deftypefun double y0 (double @var{x})
1220 @deftypefunx float y0f (float @var{x})
1221 @deftypefunx {long double} y0l (long double @var{x})
1222 @deftypefunx _FloatN y0fN (_Float@var{N} @var{x})
1223 @deftypefunx _FloatNx y0fNx (_Float@var{N}x @var{x})
1224 @standards{SVID, math.h}
1225 @standardsx{y0fN, GNU, math.h}
1226 @standardsx{y0fNx, GNU, math.h}
1227 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1228 @code{y0} returns the Bessel function of the second kind of order 0 of
1229 @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
1230 is negative, @code{y0} signals a domain error; if it is zero,
1231 @code{y0} signals overflow and returns @math{-@infinity}.
1233 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1234 extensions.
1235 @end deftypefun
1237 @deftypefun double y1 (double @var{x})
1238 @deftypefunx float y1f (float @var{x})
1239 @deftypefunx {long double} y1l (long double @var{x})
1240 @deftypefunx _FloatN y1fN (_Float@var{N} @var{x})
1241 @deftypefunx _FloatNx y1fNx (_Float@var{N}x @var{x})
1242 @standards{SVID, math.h}
1243 @standardsx{y1fN, GNU, math.h}
1244 @standardsx{y1fNx, GNU, math.h}
1245 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1246 @code{y1} returns the Bessel function of the second kind of order 1 of
1247 @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
1248 is negative, @code{y1} signals a domain error; if it is zero,
1249 @code{y1} signals overflow and returns @math{-@infinity}.
1251 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1252 extensions.
1253 @end deftypefun
1255 @deftypefun double yn (int @var{n}, double @var{x})
1256 @deftypefunx float ynf (int @var{n}, float @var{x})
1257 @deftypefunx {long double} ynl (int @var{n}, long double @var{x})
1258 @deftypefunx _FloatN ynfN (int @var{n}, _Float@var{N} @var{x})
1259 @deftypefunx _FloatNx ynfNx (int @var{n}, _Float@var{N}x @var{x})
1260 @standards{SVID, math.h}
1261 @standardsx{ynfN, GNU, math.h}
1262 @standardsx{ynfNx, GNU, math.h}
1263 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1264 @code{yn} returns the Bessel function of the second kind of order @var{n} of
1265 @var{x}.  It may signal underflow if @var{x} is too large.  If @var{x}
1266 is negative, @code{yn} signals a domain error; if it is zero,
1267 @code{yn} signals overflow and returns @math{-@infinity}.
1269 The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
1270 extensions.
1271 @end deftypefun
1273 @node Errors in Math Functions
1274 @section Known Maximum Errors in Math Functions
1275 @cindex math errors
1276 @cindex ulps
1278 This section lists the known errors of the functions in the math
1279 library.  Errors are measured in ``units of the last place''.  This is a
1280 measure for the relative error.  For a number @math{z} with the
1281 representation @math{d.d@dots{}d@mul{}2^e} (we assume IEEE
1282 floating-point numbers with base 2) the ULP is represented by
1284 @tex
1285 $${|d.d\dots d - (z/2^e)|}\over {2^{p-1}}$$
1286 @end tex
1287 @ifnottex
1288 @smallexample
1289 |d.d...d - (z / 2^e)| / 2^(p - 1)
1290 @end smallexample
1291 @end ifnottex
1293 @noindent
1294 where @math{p} is the number of bits in the mantissa of the
1295 floating-point number representation.  Ideally the error for all
1296 functions is always less than 0.5ulps in round-to-nearest mode.  Using
1297 rounding bits this is also
1298 possible and normally implemented for the basic operations.  Except
1299 for certain functions such as @code{sqrt}, @code{fma} and @code{rint}
1300 whose results are fully specified by reference to corresponding IEEE
1301 754 floating-point operations, and conversions between strings and
1302 floating point, @theglibc{} does not aim for correctly rounded results
1303 for functions in the math library, and does not aim for correctness in
1304 whether ``inexact'' exceptions are raised.  Instead, the goals for
1305 accuracy of functions without fully specified results are as follows;
1306 some functions have bugs meaning they do not meet these goals in all
1307 cases.  In the future, @theglibc{} may provide some other correctly
1308 rounding functions under the names such as @code{crsin} proposed for
1309 an extension to ISO C.
1311 @itemize @bullet
1313 @item
1314 Each function with a floating-point result behaves as if it computes
1315 an infinite-precision result that is within a few ulp (in both real
1316 and complex parts, for functions with complex results) of the
1317 mathematically correct value of the function (interpreted together
1318 with ISO C or POSIX semantics for the function in question) at the
1319 exact value passed as the input.  Exceptions are raised appropriately
1320 for this value and in accordance with IEEE 754 / ISO C / POSIX
1321 semantics, and it is then rounded according to the current rounding
1322 direction to the result that is returned to the user.  @code{errno}
1323 may also be set (@pxref{Math Error Reporting}).  (The ``inexact''
1324 exception may be raised, or not raised, even if this is inconsistent
1325 with the infinite-precision value.)
1327 @item
1328 For the IBM @code{long double} format, as used on PowerPC GNU/Linux,
1329 the accuracy goal is weaker for input values not exactly representable
1330 in 106 bits of precision; it is as if the input value is some value
1331 within 0.5ulp of the value actually passed, where ``ulp'' is
1332 interpreted in terms of a fixed-precision 106-bit mantissa, but not
1333 necessarily the exact value actually passed with discontiguous
1334 mantissa bits.
1336 @item
1337 For the IBM @code{long double} format, functions whose results are
1338 fully specified by reference to corresponding IEEE 754 floating-point
1339 operations have the same accuracy goals as other functions, but with
1340 the error bound being the same as that for division (3ulp).
1341 Furthermore, ``inexact'' and ``underflow'' exceptions may be raised
1342 for all functions for any inputs, even where such exceptions are
1343 inconsistent with the returned value, since the underlying
1344 floating-point arithmetic has that property.
1346 @item
1347 Functions behave as if the infinite-precision result computed is zero,
1348 infinity or NaN if and only if that is the mathematically correct
1349 infinite-precision result.  They behave as if the infinite-precision
1350 result computed always has the same sign as the mathematically correct
1351 result.
1353 @item
1354 If the mathematical result is more than a few ulp above the overflow
1355 threshold for the current rounding direction, the value returned is
1356 the appropriate overflow value for the current rounding direction,
1357 with the overflow exception raised.
1359 @item
1360 If the mathematical result has magnitude well below half the least
1361 subnormal magnitude, the returned value is either zero or the least
1362 subnormal (in each case, with the correct sign), according to the
1363 current rounding direction and with the underflow exception raised.
1365 @item
1366 Where the mathematical result underflows (before rounding) and is not
1367 exactly representable as a floating-point value, the function does not
1368 behave as if the computed infinite-precision result is an exact value
1369 in the subnormal range.  This means that the underflow exception is
1370 raised other than possibly for cases where the mathematical result is
1371 very close to the underflow threshold and the function behaves as if
1372 it computes an infinite-precision result that does not underflow.  (So
1373 there may be spurious underflow exceptions in cases where the
1374 underflowing result is exact, but not missing underflow exceptions in
1375 cases where it is inexact.)
1377 @item
1378 @Theglibc{} does not aim for functions to satisfy other properties of
1379 the underlying mathematical function, such as monotonicity, where not
1380 implied by the above goals.
1382 @item
1383 All the above applies to both real and complex parts, for complex
1384 functions.
1386 @end itemize
1388 Therefore many of the functions in the math library have errors.  The
1389 table lists the maximum error for each function which is exposed by one
1390 of the existing tests in the test suite.  The table tries to cover as much
1391 as possible and list the actual maximum error (or at least a ballpark
1392 figure) but this is often not achieved due to the large search space.
1394 The table lists the ULP values for different architectures.  Different
1395 architectures have different results since their hardware support for
1396 floating-point operations varies and also the existing hardware support
1397 is different.  Only the round-to-nearest rounding mode is covered by
1398 this table.  Functions not listed do not have known errors.  Vector
1399 versions of functions in the x86_64 libmvec library have a maximum error
1400 of 4 ulps.
1402 @page
1403 @c This multitable does not fit on a single page
1404 @include libm-err.texi
1406 @node Pseudo-Random Numbers
1407 @section Pseudo-Random Numbers
1408 @cindex random numbers
1409 @cindex pseudo-random numbers
1410 @cindex seed (for random numbers)
1412 This section describes the GNU facilities for generating a series of
1413 pseudo-random numbers.  The numbers generated are not truly random;
1414 typically, they form a sequence that repeats periodically, with a period
1415 so large that you can ignore it for ordinary purposes.  The random
1416 number generator works by remembering a @dfn{seed} value which it uses
1417 to compute the next random number and also to compute a new seed.
1419 Although the generated numbers look unpredictable within one run of a
1420 program, the sequence of numbers is @emph{exactly the same} from one run
1421 to the next.  This is because the initial seed is always the same.  This
1422 is convenient when you are debugging a program, but it is unhelpful if
1423 you want the program to behave unpredictably.  If you want a different
1424 pseudo-random series each time your program runs, you must specify a
1425 different seed each time.  For ordinary purposes, basing the seed on the
1426 current time works well.  For random numbers in cryptography,
1427 @pxref{Unpredictable Bytes}.
1429 You can obtain repeatable sequences of numbers on a particular machine type
1430 by specifying the same initial seed value for the random number
1431 generator.  There is no standard meaning for a particular seed value;
1432 the same seed, used in different C libraries or on different CPU types,
1433 will give you different random numbers.
1435 @Theglibc{} supports the standard @w{ISO C} random number functions
1436 plus two other sets derived from BSD and SVID.  The BSD and @w{ISO C}
1437 functions provide identical, somewhat limited functionality.  If only a
1438 small number of random bits are required, we recommend you use the
1439 @w{ISO C} interface, @code{rand} and @code{srand}.  The SVID functions
1440 provide a more flexible interface, which allows better random number
1441 generator algorithms, provides more random bits (up to 48) per call, and
1442 can provide random floating-point numbers.  These functions are required
1443 by the XPG standard and therefore will be present in all modern Unix
1444 systems.
1446 @menu
1447 * ISO Random::                  @code{rand} and friends.
1448 * BSD Random::                  @code{random} and friends.
1449 * SVID Random::                 @code{drand48} and friends.
1450 * High Quality Random::         @code{arc4random} and friends.
1451 @end menu
1453 @node ISO Random
1454 @subsection ISO C Random Number Functions
1456 This section describes the random number functions that are part of
1457 the @w{ISO C} standard.
1459 To use these facilities, you should include the header file
1460 @file{stdlib.h} in your program.
1461 @pindex stdlib.h
1463 @deftypevr Macro int RAND_MAX
1464 @standards{ISO, stdlib.h}
1465 The value of this macro is an integer constant representing the largest
1466 value the @code{rand} function can return.  In @theglibc{}, it is
1467 @code{2147483647}, which is the largest signed integer representable in
1468 32 bits.  In other libraries, it may be as low as @code{32767}.
1469 @end deftypevr
1471 @deftypefun int rand (void)
1472 @standards{ISO, stdlib.h}
1473 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1474 @c Just calls random.
1475 The @code{rand} function returns the next pseudo-random number in the
1476 series.  The value ranges from @code{0} to @code{RAND_MAX}.
1477 @end deftypefun
1479 @deftypefun void srand (unsigned int @var{seed})
1480 @standards{ISO, stdlib.h}
1481 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1482 @c Alias to srandom.
1483 This function establishes @var{seed} as the seed for a new series of
1484 pseudo-random numbers.  If you call @code{rand} before a seed has been
1485 established with @code{srand}, it uses the value @code{1} as a default
1486 seed.
1488 To produce a different pseudo-random series each time your program is
1489 run, do @code{srand (time (0))}.
1490 @end deftypefun
1492 POSIX.1 extended the C standard functions to support reproducible random
1493 numbers in multi-threaded programs.  However, the extension is badly
1494 designed and unsuitable for serious work.
1496 @deftypefun int rand_r (unsigned int *@var{seed})
1497 @standards{POSIX.1, stdlib.h}
1498 @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1499 This function returns a random number in the range 0 to @code{RAND_MAX}
1500 just as @code{rand} does.  However, all its state is stored in the
1501 @var{seed} argument.  This means the RNG's state can only have as many
1502 bits as the type @code{unsigned int} has.  This is far too few to
1503 provide a good RNG.
1505 If your program requires a reentrant RNG, we recommend you use the
1506 reentrant GNU extensions to the SVID random number generator.  The
1507 POSIX.1 interface should only be used when the GNU extensions are not
1508 available.
1509 @end deftypefun
1512 @node BSD Random
1513 @subsection BSD Random Number Functions
1515 This section describes a set of random number generation functions that
1516 are derived from BSD.  There is no advantage to using these functions
1517 with @theglibc{}; we support them for BSD compatibility only.
1519 The prototypes for these functions are in @file{stdlib.h}.
1520 @pindex stdlib.h
1522 @deftypefun {long int} random (void)
1523 @standards{BSD, stdlib.h}
1524 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1525 @c Takes a lock and calls random_r with an automatic variable and the
1526 @c global state, while holding a lock.
1527 This function returns the next pseudo-random number in the sequence.
1528 The value returned ranges from @code{0} to @code{2147483647}.
1530 @strong{NB:} Temporarily this function was defined to return a
1531 @code{int32_t} value to indicate that the return value always contains
1532 32 bits even if @code{long int} is wider.  The standard demands it
1533 differently.  Users must always be aware of the 32-bit limitation,
1534 though.
1535 @end deftypefun
1537 @deftypefun void srandom (unsigned int @var{seed})
1538 @standards{BSD, stdlib.h}
1539 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1540 @c Takes a lock and calls srandom_r with an automatic variable and a
1541 @c static buffer.  There's no MT-safety issue because the static buffer
1542 @c is internally protected by a lock, although other threads may modify
1543 @c the set state before it is used.
1544 The @code{srandom} function sets the state of the random number
1545 generator based on the integer @var{seed}.  If you supply a @var{seed} value
1546 of @code{1}, this will cause @code{random} to reproduce the default set
1547 of random numbers.
1549 To produce a different set of pseudo-random numbers each time your
1550 program runs, do @code{srandom (time (0))}.
1551 @end deftypefun
1553 @deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size})
1554 @standards{BSD, stdlib.h}
1555 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1556 The @code{initstate} function is used to initialize the random number
1557 generator state.  The argument @var{state} is an array of @var{size}
1558 bytes, used to hold the state information.  It is initialized based on
1559 @var{seed}.  The size must be between 8 and 256 bytes, and should be a
1560 power of two.  The bigger the @var{state} array, the better.
1562 The return value is the previous value of the state information array.
1563 You can use this value later as an argument to @code{setstate} to
1564 restore that state.
1565 @end deftypefun
1567 @deftypefun {char *} setstate (char *@var{state})
1568 @standards{BSD, stdlib.h}
1569 @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
1570 The @code{setstate} function restores the random number state
1571 information @var{state}.  The argument must have been the result of
1572 a previous call to @var{initstate} or @var{setstate}.
1574 The return value is the previous value of the state information array.
1575 You can use this value later as an argument to @code{setstate} to
1576 restore that state.
1578 If the function fails the return value is @code{NULL}.
1579 @end deftypefun
1581 The four functions described so far in this section all work on a state
1582 which is shared by all threads.  The state is not directly accessible to
1583 the user and can only be modified by these functions.  This makes it
1584 hard to deal with situations where each thread should have its own
1585 pseudo-random number generator.
1587 @Theglibc{} contains four additional functions which contain the
1588 state as an explicit parameter and therefore make it possible to handle
1589 thread-local PRNGs.  Besides this there is no difference.  In fact, the
1590 four functions already discussed are implemented internally using the
1591 following interfaces.
1593 The @file{stdlib.h} header contains a definition of the following type:
1595 @deftp {Data Type} {struct random_data}
1596 @standards{GNU, stdlib.h}
1598 Objects of type @code{struct random_data} contain the information
1599 necessary to represent the state of the PRNG.  Although a complete
1600 definition of the type is present the type should be treated as opaque.
1601 @end deftp
1603 The functions modifying the state follow exactly the already described
1604 functions.
1606 @deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result})
1607 @standards{GNU, stdlib.h}
1608 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1609 The @code{random_r} function behaves exactly like the @code{random}
1610 function except that it uses and modifies the state in the object
1611 pointed to by the first parameter instead of the global state.
1612 @end deftypefun
1614 @deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf})
1615 @standards{GNU, stdlib.h}
1616 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1617 The @code{srandom_r} function behaves exactly like the @code{srandom}
1618 function except that it uses and modifies the state in the object
1619 pointed to by the second parameter instead of the global state.
1620 @end deftypefun
1622 @deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf})
1623 @standards{GNU, stdlib.h}
1624 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1625 The @code{initstate_r} function behaves exactly like the @code{initstate}
1626 function except that it uses and modifies the state in the object
1627 pointed to by the fourth parameter instead of the global state.
1628 @end deftypefun
1630 @deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf})
1631 @standards{GNU, stdlib.h}
1632 @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
1633 The @code{setstate_r} function behaves exactly like the @code{setstate}
1634 function except that it uses and modifies the state in the object
1635 pointed to by the first parameter instead of the global state.
1636 @end deftypefun
1638 @node SVID Random
1639 @subsection SVID Random Number Function
1641 The C library on SVID systems contains yet another kind of random number
1642 generator functions.  They use a state of 48 bits of data.  The user can
1643 choose among a collection of functions which return the random bits
1644 in different forms.
1646 Generally there are two kinds of function.  The first uses a state of
1647 the random number generator which is shared among several functions and
1648 by all threads of the process.  The second requires the user to handle
1649 the state.
1651 All functions have in common that they use the same congruential
1652 formula with the same constants.  The formula is
1654 @smallexample
1655 Y = (a * X + c) mod m
1656 @end smallexample
1658 @noindent
1659 where @var{X} is the state of the generator at the beginning and
1660 @var{Y} the state at the end.  @code{a} and @code{c} are constants
1661 determining the way the generator works.  By default they are
1663 @smallexample
1664 a = 0x5DEECE66D = 25214903917
1665 c = 0xb = 11
1666 @end smallexample
1668 @noindent
1669 but they can also be changed by the user.  @code{m} is of course 2^48
1670 since the state consists of a 48-bit array.
1672 The prototypes for these functions are in @file{stdlib.h}.
1673 @pindex stdlib.h
1676 @deftypefun double drand48 (void)
1677 @standards{SVID, stdlib.h}
1678 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1679 @c Uses of the static state buffer are not guarded by a lock (thus
1680 @c @mtasurace:drand48), so they may be found or left at a
1681 @c partially-updated state in case of calls from within signal handlers
1682 @c or cancellation.  None of this will break safety rules or invoke
1683 @c undefined behavior, but it may affect randomness.
1684 This function returns a @code{double} value in the range of @code{0.0}
1685 to @code{1.0} (exclusive).  The random bits are determined by the global
1686 state of the random number generator in the C library.
1688 Since the @code{double} type according to @w{IEEE 754} has a 52-bit
1689 mantissa this means 4 bits are not initialized by the random number
1690 generator.  These are (of course) chosen to be the least significant
1691 bits and they are initialized to @code{0}.
1692 @end deftypefun
1694 @deftypefun double erand48 (unsigned short int @var{xsubi}[3])
1695 @standards{SVID, stdlib.h}
1696 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1697 @c The static buffer is just initialized with default parameters, which
1698 @c are later read to advance the state held in xsubi.
1699 This function returns a @code{double} value in the range of @code{0.0}
1700 to @code{1.0} (exclusive), similarly to @code{drand48}.  The argument is
1701 an array describing the state of the random number generator.
1703 This function can be called subsequently since it updates the array to
1704 guarantee random numbers.  The array should have been initialized before
1705 initial use to obtain reproducible results.
1706 @end deftypefun
1708 @deftypefun {long int} lrand48 (void)
1709 @standards{SVID, stdlib.h}
1710 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1711 The @code{lrand48} function returns an integer value in the range of
1712 @code{0} to @code{2^31} (exclusive).  Even if the size of the @code{long
1713 int} type can take more than 32 bits, no higher numbers are returned.
1714 The random bits are determined by the global state of the random number
1715 generator in the C library.
1716 @end deftypefun
1718 @deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3])
1719 @standards{SVID, stdlib.h}
1720 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1721 This function is similar to the @code{lrand48} function in that it
1722 returns a number in the range of @code{0} to @code{2^31} (exclusive) but
1723 the state of the random number generator used to produce the random bits
1724 is determined by the array provided as the parameter to the function.
1726 The numbers in the array are updated afterwards so that subsequent calls
1727 to this function yield different results (as is expected of a random
1728 number generator).  The array should have been initialized before the
1729 first call to obtain reproducible results.
1730 @end deftypefun
1732 @deftypefun {long int} mrand48 (void)
1733 @standards{SVID, stdlib.h}
1734 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1735 The @code{mrand48} function is similar to @code{lrand48}.  The only
1736 difference is that the numbers returned are in the range @code{-2^31} to
1737 @code{2^31} (exclusive).
1738 @end deftypefun
1740 @deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3])
1741 @standards{SVID, stdlib.h}
1742 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1743 The @code{jrand48} function is similar to @code{nrand48}.  The only
1744 difference is that the numbers returned are in the range @code{-2^31} to
1745 @code{2^31} (exclusive).  For the @code{xsubi} parameter the same
1746 requirements are necessary.
1747 @end deftypefun
1749 The internal state of the random number generator can be initialized in
1750 several ways.  The methods differ in the completeness of the
1751 information provided.
1753 @deftypefun void srand48 (long int @var{seedval})
1754 @standards{SVID, stdlib.h}
1755 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1756 The @code{srand48} function sets the most significant 32 bits of the
1757 internal state of the random number generator to the least
1758 significant 32 bits of the @var{seedval} parameter.  The lower 16 bits
1759 are initialized to the value @code{0x330E}.  Even if the @code{long
1760 int} type contains more than 32 bits only the lower 32 bits are used.
1762 Owing to this limitation, initialization of the state of this
1763 function is not very useful.  But it makes it easy to use a construct
1764 like @code{srand48 (time (0))}.
1766 A side-effect of this function is that the values @code{a} and @code{c}
1767 from the internal state, which are used in the congruential formula,
1768 are reset to the default values given above.  This is of importance once
1769 the user has called the @code{lcong48} function (see below).
1770 @end deftypefun
1772 @deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3])
1773 @standards{SVID, stdlib.h}
1774 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1775 The @code{seed48} function initializes all 48 bits of the state of the
1776 internal random number generator from the contents of the parameter
1777 @var{seed16v}.  Here the lower 16 bits of the first element of
1778 @var{seed16v} initialize the least significant 16 bits of the internal
1779 state, the lower 16 bits of @code{@var{seed16v}[1]} initialize the mid-order
1780 16 bits of the state and the 16 lower bits of @code{@var{seed16v}[2]}
1781 initialize the most significant 16 bits of the state.
1783 Unlike @code{srand48} this function lets the user initialize all 48 bits
1784 of the state.
1786 The value returned by @code{seed48} is a pointer to an array containing
1787 the values of the internal state before the change.  This might be
1788 useful to restart the random number generator at a certain state.
1789 Otherwise the value can simply be ignored.
1791 As for @code{srand48}, the values @code{a} and @code{c} from the
1792 congruential formula are reset to the default values.
1793 @end deftypefun
1795 There is one more function to initialize the random number generator
1796 which enables you to specify even more information by allowing you to
1797 change the parameters in the congruential formula.
1799 @deftypefun void lcong48 (unsigned short int @var{param}[7])
1800 @standards{SVID, stdlib.h}
1801 @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
1802 The @code{lcong48} function allows the user to change the complete state
1803 of the random number generator.  Unlike @code{srand48} and
1804 @code{seed48}, this function also changes the constants in the
1805 congruential formula.
1807 From the seven elements in the array @var{param} the least significant
1808 16 bits of the entries @code{@var{param}[0]} to @code{@var{param}[2]}
1809 determine the initial state, the least significant 16 bits of
1810 @code{@var{param}[3]} to @code{@var{param}[5]} determine the 48 bit
1811 constant @code{a} and @code{@var{param}[6]} determines the 16-bit value
1812 @code{c}.
1813 @end deftypefun
1815 All the above functions have in common that they use the global
1816 parameters for the congruential formula.  In multi-threaded programs it
1817 might sometimes be useful to have different parameters in different
1818 threads.  For this reason all the above functions have a counterpart
1819 which works on a description of the random number generator in the
1820 user-supplied buffer instead of the global state.
1822 Please note that it is no problem if several threads use the global
1823 state if all threads use the functions which take a pointer to an array
1824 containing the state.  The random numbers are computed following the
1825 same loop but if the state in the array is different all threads will
1826 obtain an individual random number generator.
1828 The user-supplied buffer must be of type @code{struct drand48_data}.
1829 This type should be regarded as opaque and not manipulated directly.
1831 @deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result})
1832 @standards{GNU, stdlib.h}
1833 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1834 This function is equivalent to the @code{drand48} function with the
1835 difference that it does not modify the global random number generator
1836 parameters but instead the parameters in the buffer supplied through the
1837 pointer @var{buffer}.  The random number is returned in the variable
1838 pointed to by @var{result}.
1840 The return value of the function indicates whether the call succeeded.
1841 If the value is less than @code{0} an error occurred and @code{errno} is
1842 set to indicate the problem.
1844 This function is a GNU extension and should not be used in portable
1845 programs.
1846 @end deftypefun
1848 @deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result})
1849 @standards{GNU, stdlib.h}
1850 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1851 The @code{erand48_r} function works like @code{erand48}, but in addition
1852 it takes an argument @var{buffer} which describes the random number
1853 generator.  The state of the random number generator is taken from the
1854 @code{xsubi} array, the parameters for the congruential formula from the
1855 global random number generator data.  The random number is returned in
1856 the variable pointed to by @var{result}.
1858 The return value is non-negative if the call succeeded.
1860 This function is a GNU extension and should not be used in portable
1861 programs.
1862 @end deftypefun
1864 @deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
1865 @standards{GNU, stdlib.h}
1866 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1867 This function is similar to @code{lrand48}, but in addition it takes a
1868 pointer to a buffer describing the state of the random number generator
1869 just like @code{drand48}.
1871 If the return value of the function is non-negative the variable pointed
1872 to by @var{result} contains the result.  Otherwise an error occurred.
1874 This function is a GNU extension and should not be used in portable
1875 programs.
1876 @end deftypefun
1878 @deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
1879 @standards{GNU, stdlib.h}
1880 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1881 The @code{nrand48_r} function works like @code{nrand48} in that it
1882 produces a random number in the range @code{0} to @code{2^31}.  But instead
1883 of using the global parameters for the congruential formula it uses the
1884 information from the buffer pointed to by @var{buffer}.  The state is
1885 described by the values in @var{xsubi}.
1887 If the return value is non-negative the variable pointed to by
1888 @var{result} contains the result.
1890 This function is a GNU extension and should not be used in portable
1891 programs.
1892 @end deftypefun
1894 @deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
1895 @standards{GNU, stdlib.h}
1896 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1897 This function is similar to @code{mrand48} but like the other reentrant
1898 functions it uses the random number generator described by the value in
1899 the buffer pointed to by @var{buffer}.
1901 If the return value is non-negative the variable pointed to by
1902 @var{result} contains the result.
1904 This function is a GNU extension and should not be used in portable
1905 programs.
1906 @end deftypefun
1908 @deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
1909 @standards{GNU, stdlib.h}
1910 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1911 The @code{jrand48_r} function is similar to @code{jrand48}.  Like the
1912 other reentrant functions of this function family it uses the
1913 congruential formula parameters from the buffer pointed to by
1914 @var{buffer}.
1916 If the return value is non-negative the variable pointed to by
1917 @var{result} contains the result.
1919 This function is a GNU extension and should not be used in portable
1920 programs.
1921 @end deftypefun
1923 Before any of the above functions are used the buffer of type
1924 @code{struct drand48_data} should be initialized.  The easiest way to do
1925 this is to fill the whole buffer with null bytes, e.g. by
1927 @smallexample
1928 memset (buffer, '\0', sizeof (struct drand48_data));
1929 @end smallexample
1931 @noindent
1932 Using any of the reentrant functions of this family now will
1933 automatically initialize the random number generator to the default
1934 values for the state and the parameters of the congruential formula.
1936 The other possibility is to use any of the functions which explicitly
1937 initialize the buffer.  Though it might be obvious how to initialize the
1938 buffer from looking at the parameter to the function, it is highly
1939 recommended to use these functions since the result might not always be
1940 what you expect.
1942 @deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer})
1943 @standards{GNU, stdlib.h}
1944 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1945 The description of the random number generator represented by the
1946 information in @var{buffer} is initialized similarly to what the function
1947 @code{srand48} does.  The state is initialized from the parameter
1948 @var{seedval} and the parameters for the congruential formula are
1949 initialized to their default values.
1951 If the return value is non-negative the function call succeeded.
1953 This function is a GNU extension and should not be used in portable
1954 programs.
1955 @end deftypefun
1957 @deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer})
1958 @standards{GNU, stdlib.h}
1959 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1960 This function is similar to @code{srand48_r} but like @code{seed48} it
1961 initializes all 48 bits of the state from the parameter @var{seed16v}.
1963 If the return value is non-negative the function call succeeded.  It
1964 does not return a pointer to the previous state of the random number
1965 generator like the @code{seed48} function does.  If the user wants to
1966 preserve the state for a later re-run s/he can copy the whole buffer
1967 pointed to by @var{buffer}.
1969 This function is a GNU extension and should not be used in portable
1970 programs.
1971 @end deftypefun
1973 @deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer})
1974 @standards{GNU, stdlib.h}
1975 @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
1976 This function initializes all aspects of the random number generator
1977 described in @var{buffer} with the data in @var{param}.  Here it is
1978 especially true that the function does more than just copying the
1979 contents of @var{param} and @var{buffer}.  More work is required and
1980 therefore it is important to use this function rather than initializing
1981 the random number generator directly.
1983 If the return value is non-negative the function call succeeded.
1985 This function is a GNU extension and should not be used in portable
1986 programs.
1987 @end deftypefun
1989 @node High Quality Random
1990 @subsection High Quality Random Number Functions
1992 This section describes the random number functions provided as a GNU
1993 extension, based on OpenBSD interfaces.
1995 @Theglibc{} uses kernel entropy obtained either through @code{getrandom}
1996 or by reading @file{/dev/urandom} to seed.
1998 These functions provide higher random quality than ISO, BSD, and SVID
1999 functions, and may be used in cryptographic contexts.
2001 The prototypes for these functions are in @file{stdlib.h}.
2002 @pindex stdlib.h
2004 @deftypefun uint32_t arc4random (void)
2005 @standards{BSD, stdlib.h}
2006 @safety{@mtsafe{}@asunsafe{@asucorrupt{}}@acsafe{}}
2007 This function returns a single 32-bit value in the range of @code{0} to
2008 @code{2^32−1} (inclusive), which is twice the range of @code{rand} and
2009 @code{random}.
2010 @end deftypefun
2012 @deftypefun void arc4random_buf (void *@var{buffer}, size_t @var{length})
2013 @standards{BSD, stdlib.h}
2014 @safety{@mtsafe{}@asunsafe{@asucorrupt{}}@acsafe{}}
2015 This function fills the region @var{buffer} of length @var{length} bytes
2016 with random data.
2017 @end deftypefun
2019 @deftypefun uint32_t arc4random_uniform (uint32_t @var{upper_bound})
2020 @standards{BSD, stdlib.h}
2021 @safety{@mtsafe{}@asunsafe{@asucorrupt{}}@acsafe{}}
2022 This function returns a single 32-bit value, uniformly distributed but
2023 less than the @var{upper_bound}.  It avoids the @w{modulo bias} when the
2024 upper bound is not a power of two.
2025 @end deftypefun
2027 @node FP Function Optimizations
2028 @section Is Fast Code or Small Code preferred?
2029 @cindex Optimization
2031 If an application uses many floating point functions it is often the case
2032 that the cost of the function calls themselves is not negligible.
2033 Modern processors can often execute the operations themselves
2034 very fast, but the function call disrupts the instruction pipeline.
2036 For this reason @theglibc{} provides optimizations for many of the
2037 frequently-used math functions.  When GNU CC is used and the user
2038 activates the optimizer, several new inline functions and macros are
2039 defined.  These new functions and macros have the same names as the
2040 library functions and so are used instead of the latter.  In the case of
2041 inline functions the compiler will decide whether it is reasonable to
2042 use them, and this decision is usually correct.
2044 This means that no calls to the library functions may be necessary, and
2045 can increase the speed of generated code significantly.  The drawback is
2046 that code size will increase, and the increase is not always negligible.
2048 There are two kinds of inline functions: those that give the same result
2049 as the library functions and others that might not set @code{errno} and
2050 might have a reduced precision and/or argument range in comparison with
2051 the library functions.  The latter inline functions are only available
2052 if the flag @code{-ffast-math} is given to GNU CC.
2054 Not all hardware implements the entire @w{IEEE 754} standard, and even
2055 if it does there may be a substantial performance penalty for using some
2056 of its features.  For example, enabling traps on some processors forces
2057 the FPU to run un-pipelined, which can more than double calculation time.
2058 @c ***Add explanation of -lieee, -mieee.