[BZ #2510, BZ #2830, BZ #3137, BZ #3313, BZ #3426, BZ #3465, BZ #3480, BZ #3483,...
[glibc.git] / soft-fp / op-4.h
blob34f5098e8c21b624c5b2afca0004535395001868
1 /* Software floating-point emulation.
2 Basic four-word fraction declaration and manipulation.
3 Copyright (C) 1997,1998,1999,2006 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Richard Henderson (rth@cygnus.com),
6 Jakub Jelinek (jj@ultra.linux.cz),
7 David S. Miller (davem@redhat.com) and
8 Peter Maydell (pmaydell@chiark.greenend.org.uk).
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
15 In addition to the permissions in the GNU Lesser General Public
16 License, the Free Software Foundation gives you unlimited
17 permission to link the compiled version of this file into
18 combinations with other programs, and to distribute those
19 combinations without any restriction coming from the use of this
20 file. (The Lesser General Public License restrictions do apply in
21 other respects; for example, they cover modification of the file,
22 and distribution when not linked into a combine executable.)
24 The GNU C Library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with the GNU C Library; if not, write to the Free
31 Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
32 MA 02110-1301, USA. */
34 #define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4]
35 #define _FP_FRAC_COPY_4(D,S) \
36 (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \
37 D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
38 #define _FP_FRAC_SET_4(X,I) __FP_FRAC_SET_4(X, I)
39 #define _FP_FRAC_HIGH_4(X) (X##_f[3])
40 #define _FP_FRAC_LOW_4(X) (X##_f[0])
41 #define _FP_FRAC_WORD_4(X,w) (X##_f[w])
43 #define _FP_FRAC_SLL_4(X,N) \
44 do { \
45 _FP_I_TYPE _up, _down, _skip, _i; \
46 _skip = (N) / _FP_W_TYPE_SIZE; \
47 _up = (N) % _FP_W_TYPE_SIZE; \
48 _down = _FP_W_TYPE_SIZE - _up; \
49 if (!_up) \
50 for (_i = 3; _i >= _skip; --_i) \
51 X##_f[_i] = X##_f[_i-_skip]; \
52 else \
53 { \
54 for (_i = 3; _i > _skip; --_i) \
55 X##_f[_i] = X##_f[_i-_skip] << _up \
56 | X##_f[_i-_skip-1] >> _down; \
57 X##_f[_i--] = X##_f[0] << _up; \
58 } \
59 for (; _i >= 0; --_i) \
60 X##_f[_i] = 0; \
61 } while (0)
63 /* This one was broken too */
64 #define _FP_FRAC_SRL_4(X,N) \
65 do { \
66 _FP_I_TYPE _up, _down, _skip, _i; \
67 _skip = (N) / _FP_W_TYPE_SIZE; \
68 _down = (N) % _FP_W_TYPE_SIZE; \
69 _up = _FP_W_TYPE_SIZE - _down; \
70 if (!_down) \
71 for (_i = 0; _i <= 3-_skip; ++_i) \
72 X##_f[_i] = X##_f[_i+_skip]; \
73 else \
74 { \
75 for (_i = 0; _i < 3-_skip; ++_i) \
76 X##_f[_i] = X##_f[_i+_skip] >> _down \
77 | X##_f[_i+_skip+1] << _up; \
78 X##_f[_i++] = X##_f[3] >> _down; \
79 } \
80 for (; _i < 4; ++_i) \
81 X##_f[_i] = 0; \
82 } while (0)
85 /* Right shift with sticky-lsb.
86 * What this actually means is that we do a standard right-shift,
87 * but that if any of the bits that fall off the right hand side
88 * were one then we always set the LSbit.
90 #define _FP_FRAC_SRST_4(X,S,N,size) \
91 do { \
92 _FP_I_TYPE _up, _down, _skip, _i; \
93 _FP_W_TYPE _s; \
94 _skip = (N) / _FP_W_TYPE_SIZE; \
95 _down = (N) % _FP_W_TYPE_SIZE; \
96 _up = _FP_W_TYPE_SIZE - _down; \
97 for (_s = _i = 0; _i < _skip; ++_i) \
98 _s |= X##_f[_i]; \
99 if (!_down) \
100 for (_i = 0; _i <= 3-_skip; ++_i) \
101 X##_f[_i] = X##_f[_i+_skip]; \
102 else \
104 _s |= X##_f[_i] << _up; \
105 for (_i = 0; _i < 3-_skip; ++_i) \
106 X##_f[_i] = X##_f[_i+_skip] >> _down \
107 | X##_f[_i+_skip+1] << _up; \
108 X##_f[_i++] = X##_f[3] >> _down; \
110 for (; _i < 4; ++_i) \
111 X##_f[_i] = 0; \
112 S = (_s != 0); \
113 } while (0)
115 #define _FP_FRAC_SRS_4(X,N,size) \
116 do { \
117 int _sticky; \
118 _FP_FRAC_SRST_4(X, _sticky, N, size); \
119 X##_f[0] |= _sticky; \
120 } while (0)
122 #define _FP_FRAC_ADD_4(R,X,Y) \
123 __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
124 X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
125 Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
127 #define _FP_FRAC_SUB_4(R,X,Y) \
128 __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
129 X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
130 Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
132 #define _FP_FRAC_DEC_4(X,Y) \
133 __FP_FRAC_DEC_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
134 Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
136 #define _FP_FRAC_ADDI_4(X,I) \
137 __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
139 #define _FP_ZEROFRAC_4 0,0,0,0
140 #define _FP_MINFRAC_4 0,0,0,1
141 #define _FP_MAXFRAC_4 (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0)
143 #define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
144 #define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE)X##_f[3] < 0)
145 #define _FP_FRAC_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs)
146 #define _FP_FRAC_CLEAR_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs)
148 #define _FP_FRAC_EQ_4(X,Y) \
149 (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \
150 && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
152 #define _FP_FRAC_GT_4(X,Y) \
153 (X##_f[3] > Y##_f[3] || \
154 (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \
155 (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \
156 (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0]) \
157 )) \
158 )) \
161 #define _FP_FRAC_GE_4(X,Y) \
162 (X##_f[3] > Y##_f[3] || \
163 (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \
164 (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \
165 (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0]) \
166 )) \
167 )) \
171 #define _FP_FRAC_CLZ_4(R,X) \
172 do { \
173 if (X##_f[3]) \
175 __FP_CLZ(R,X##_f[3]); \
177 else if (X##_f[2]) \
179 __FP_CLZ(R,X##_f[2]); \
180 R += _FP_W_TYPE_SIZE; \
182 else if (X##_f[1]) \
184 __FP_CLZ(R,X##_f[1]); \
185 R += _FP_W_TYPE_SIZE*2; \
187 else \
189 __FP_CLZ(R,X##_f[0]); \
190 R += _FP_W_TYPE_SIZE*3; \
192 } while(0)
195 #define _FP_UNPACK_RAW_4(fs, X, val) \
196 do { \
197 union _FP_UNION_##fs _flo; _flo.flt = (val); \
198 X##_f[0] = _flo.bits.frac0; \
199 X##_f[1] = _flo.bits.frac1; \
200 X##_f[2] = _flo.bits.frac2; \
201 X##_f[3] = _flo.bits.frac3; \
202 X##_e = _flo.bits.exp; \
203 X##_s = _flo.bits.sign; \
204 } while (0)
206 #define _FP_UNPACK_RAW_4_P(fs, X, val) \
207 do { \
208 union _FP_UNION_##fs *_flo = \
209 (union _FP_UNION_##fs *)(val); \
211 X##_f[0] = _flo->bits.frac0; \
212 X##_f[1] = _flo->bits.frac1; \
213 X##_f[2] = _flo->bits.frac2; \
214 X##_f[3] = _flo->bits.frac3; \
215 X##_e = _flo->bits.exp; \
216 X##_s = _flo->bits.sign; \
217 } while (0)
219 #define _FP_PACK_RAW_4(fs, val, X) \
220 do { \
221 union _FP_UNION_##fs _flo; \
222 _flo.bits.frac0 = X##_f[0]; \
223 _flo.bits.frac1 = X##_f[1]; \
224 _flo.bits.frac2 = X##_f[2]; \
225 _flo.bits.frac3 = X##_f[3]; \
226 _flo.bits.exp = X##_e; \
227 _flo.bits.sign = X##_s; \
228 (val) = _flo.flt; \
229 } while (0)
231 #define _FP_PACK_RAW_4_P(fs, val, X) \
232 do { \
233 union _FP_UNION_##fs *_flo = \
234 (union _FP_UNION_##fs *)(val); \
236 _flo->bits.frac0 = X##_f[0]; \
237 _flo->bits.frac1 = X##_f[1]; \
238 _flo->bits.frac2 = X##_f[2]; \
239 _flo->bits.frac3 = X##_f[3]; \
240 _flo->bits.exp = X##_e; \
241 _flo->bits.sign = X##_s; \
242 } while (0)
245 * Multiplication algorithms:
248 /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
250 #define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit) \
251 do { \
252 _FP_FRAC_DECL_8(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \
253 _FP_FRAC_DECL_2(_d); _FP_FRAC_DECL_2(_e); _FP_FRAC_DECL_2(_f); \
255 doit(_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0), X##_f[0], Y##_f[0]); \
256 doit(_b_f1, _b_f0, X##_f[0], Y##_f[1]); \
257 doit(_c_f1, _c_f0, X##_f[1], Y##_f[0]); \
258 doit(_d_f1, _d_f0, X##_f[1], Y##_f[1]); \
259 doit(_e_f1, _e_f0, X##_f[0], Y##_f[2]); \
260 doit(_f_f1, _f_f0, X##_f[2], Y##_f[0]); \
261 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \
262 _FP_FRAC_WORD_8(_z,1), 0,_b_f1,_b_f0, \
263 0,0,_FP_FRAC_WORD_8(_z,1)); \
264 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \
265 _FP_FRAC_WORD_8(_z,1), 0,_c_f1,_c_f0, \
266 _FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \
267 _FP_FRAC_WORD_8(_z,1)); \
268 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
269 _FP_FRAC_WORD_8(_z,2), 0,_d_f1,_d_f0, \
270 0,_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2)); \
271 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
272 _FP_FRAC_WORD_8(_z,2), 0,_e_f1,_e_f0, \
273 _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
274 _FP_FRAC_WORD_8(_z,2)); \
275 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
276 _FP_FRAC_WORD_8(_z,2), 0,_f_f1,_f_f0, \
277 _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
278 _FP_FRAC_WORD_8(_z,2)); \
279 doit(_b_f1, _b_f0, X##_f[0], Y##_f[3]); \
280 doit(_c_f1, _c_f0, X##_f[3], Y##_f[0]); \
281 doit(_d_f1, _d_f0, X##_f[1], Y##_f[2]); \
282 doit(_e_f1, _e_f0, X##_f[2], Y##_f[1]); \
283 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
284 _FP_FRAC_WORD_8(_z,3), 0,_b_f1,_b_f0, \
285 0,_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3)); \
286 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
287 _FP_FRAC_WORD_8(_z,3), 0,_c_f1,_c_f0, \
288 _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
289 _FP_FRAC_WORD_8(_z,3)); \
290 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
291 _FP_FRAC_WORD_8(_z,3), 0,_d_f1,_d_f0, \
292 _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
293 _FP_FRAC_WORD_8(_z,3)); \
294 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
295 _FP_FRAC_WORD_8(_z,3), 0,_e_f1,_e_f0, \
296 _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
297 _FP_FRAC_WORD_8(_z,3)); \
298 doit(_b_f1, _b_f0, X##_f[2], Y##_f[2]); \
299 doit(_c_f1, _c_f0, X##_f[1], Y##_f[3]); \
300 doit(_d_f1, _d_f0, X##_f[3], Y##_f[1]); \
301 doit(_e_f1, _e_f0, X##_f[2], Y##_f[3]); \
302 doit(_f_f1, _f_f0, X##_f[3], Y##_f[2]); \
303 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
304 _FP_FRAC_WORD_8(_z,4), 0,_b_f1,_b_f0, \
305 0,_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4)); \
306 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
307 _FP_FRAC_WORD_8(_z,4), 0,_c_f1,_c_f0, \
308 _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
309 _FP_FRAC_WORD_8(_z,4)); \
310 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
311 _FP_FRAC_WORD_8(_z,4), 0,_d_f1,_d_f0, \
312 _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
313 _FP_FRAC_WORD_8(_z,4)); \
314 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
315 _FP_FRAC_WORD_8(_z,5), 0,_e_f1,_e_f0, \
316 0,_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5)); \
317 __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
318 _FP_FRAC_WORD_8(_z,5), 0,_f_f1,_f_f0, \
319 _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
320 _FP_FRAC_WORD_8(_z,5)); \
321 doit(_b_f1, _b_f0, X##_f[3], Y##_f[3]); \
322 __FP_FRAC_ADD_2(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
323 _b_f1,_b_f0, \
324 _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6)); \
326 /* Normalize since we know where the msb of the multiplicands \
327 were (bit B), we know that the msb of the of the product is \
328 at either 2B or 2B-1. */ \
329 _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \
330 __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \
331 _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \
332 } while (0)
334 #define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y) \
335 do { \
336 _FP_FRAC_DECL_8(_z); \
338 mpn_mul_n(_z_f, _x_f, _y_f, 4); \
340 /* Normalize since we know where the msb of the multiplicands \
341 were (bit B), we know that the msb of the of the product is \
342 at either 2B or 2B-1. */ \
343 _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \
344 __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \
345 _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \
346 } while (0)
349 * Helper utility for _FP_DIV_MEAT_4_udiv:
350 * pppp = m * nnn
352 #define umul_ppppmnnn(p3,p2,p1,p0,m,n2,n1,n0) \
353 do { \
354 UWtype _t; \
355 umul_ppmm(p1,p0,m,n0); \
356 umul_ppmm(p2,_t,m,n1); \
357 __FP_FRAC_ADDI_2(p2,p1,_t); \
358 umul_ppmm(p3,_t,m,n2); \
359 __FP_FRAC_ADDI_2(p3,p2,_t); \
360 } while (0)
363 * Division algorithms:
366 #define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \
367 do { \
368 int _i; \
369 _FP_FRAC_DECL_4(_n); _FP_FRAC_DECL_4(_m); \
370 _FP_FRAC_SET_4(_n, _FP_ZEROFRAC_4); \
371 if (_FP_FRAC_GT_4(X, Y)) \
373 _n_f[3] = X##_f[0] << (_FP_W_TYPE_SIZE - 1); \
374 _FP_FRAC_SRL_4(X, 1); \
376 else \
377 R##_e--; \
379 /* Normalize, i.e. make the most significant bit of the \
380 denominator set. */ \
381 _FP_FRAC_SLL_4(Y, _FP_WFRACXBITS_##fs); \
383 for (_i = 3; ; _i--) \
385 if (X##_f[3] == Y##_f[3]) \
387 /* This is a special case, not an optimization \
388 (X##_f[3]/Y##_f[3] would not fit into UWtype). \
389 As X## is guaranteed to be < Y, R##_f[_i] can be either \
390 (UWtype)-1 or (UWtype)-2. */ \
391 R##_f[_i] = -1; \
392 if (!_i) \
393 break; \
394 __FP_FRAC_SUB_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
395 Y##_f[2], Y##_f[1], Y##_f[0], 0, \
396 X##_f[2], X##_f[1], X##_f[0], _n_f[_i]); \
397 _FP_FRAC_SUB_4(X, Y, X); \
398 if (X##_f[3] > Y##_f[3]) \
400 R##_f[_i] = -2; \
401 _FP_FRAC_ADD_4(X, Y, X); \
404 else \
406 udiv_qrnnd(R##_f[_i], X##_f[3], X##_f[3], X##_f[2], Y##_f[3]); \
407 umul_ppppmnnn(_m_f[3], _m_f[2], _m_f[1], _m_f[0], \
408 R##_f[_i], Y##_f[2], Y##_f[1], Y##_f[0]); \
409 X##_f[2] = X##_f[1]; \
410 X##_f[1] = X##_f[0]; \
411 X##_f[0] = _n_f[_i]; \
412 if (_FP_FRAC_GT_4(_m, X)) \
414 R##_f[_i]--; \
415 _FP_FRAC_ADD_4(X, Y, X); \
416 if (_FP_FRAC_GE_4(X, Y) && _FP_FRAC_GT_4(_m, X)) \
418 R##_f[_i]--; \
419 _FP_FRAC_ADD_4(X, Y, X); \
422 _FP_FRAC_DEC_4(X, _m); \
423 if (!_i) \
425 if (!_FP_FRAC_EQ_4(X, _m)) \
426 R##_f[0] |= _FP_WORK_STICKY; \
427 break; \
431 } while (0)
435 * Square root algorithms:
436 * We have just one right now, maybe Newton approximation
437 * should be added for those machines where division is fast.
440 #define _FP_SQRT_MEAT_4(R, S, T, X, q) \
441 do { \
442 while (q) \
444 T##_f[3] = S##_f[3] + q; \
445 if (T##_f[3] <= X##_f[3]) \
447 S##_f[3] = T##_f[3] + q; \
448 X##_f[3] -= T##_f[3]; \
449 R##_f[3] += q; \
451 _FP_FRAC_SLL_4(X, 1); \
452 q >>= 1; \
454 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
455 while (q) \
457 T##_f[2] = S##_f[2] + q; \
458 T##_f[3] = S##_f[3]; \
459 if (T##_f[3] < X##_f[3] || \
460 (T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2])) \
462 S##_f[2] = T##_f[2] + q; \
463 S##_f[3] += (T##_f[2] > S##_f[2]); \
464 __FP_FRAC_DEC_2(X##_f[3], X##_f[2], \
465 T##_f[3], T##_f[2]); \
466 R##_f[2] += q; \
468 _FP_FRAC_SLL_4(X, 1); \
469 q >>= 1; \
471 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
472 while (q) \
474 T##_f[1] = S##_f[1] + q; \
475 T##_f[2] = S##_f[2]; \
476 T##_f[3] = S##_f[3]; \
477 if (T##_f[3] < X##_f[3] || \
478 (T##_f[3] == X##_f[3] && (T##_f[2] < X##_f[2] || \
479 (T##_f[2] == X##_f[2] && T##_f[1] <= X##_f[1])))) \
481 S##_f[1] = T##_f[1] + q; \
482 S##_f[2] += (T##_f[1] > S##_f[1]); \
483 S##_f[3] += (T##_f[2] > S##_f[2]); \
484 __FP_FRAC_DEC_3(X##_f[3], X##_f[2], X##_f[1], \
485 T##_f[3], T##_f[2], T##_f[1]); \
486 R##_f[1] += q; \
488 _FP_FRAC_SLL_4(X, 1); \
489 q >>= 1; \
491 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
492 while (q != _FP_WORK_ROUND) \
494 T##_f[0] = S##_f[0] + q; \
495 T##_f[1] = S##_f[1]; \
496 T##_f[2] = S##_f[2]; \
497 T##_f[3] = S##_f[3]; \
498 if (_FP_FRAC_GE_4(X,T)) \
500 S##_f[0] = T##_f[0] + q; \
501 S##_f[1] += (T##_f[0] > S##_f[0]); \
502 S##_f[2] += (T##_f[1] > S##_f[1]); \
503 S##_f[3] += (T##_f[2] > S##_f[2]); \
504 _FP_FRAC_DEC_4(X, T); \
505 R##_f[0] += q; \
507 _FP_FRAC_SLL_4(X, 1); \
508 q >>= 1; \
510 if (!_FP_FRAC_ZEROP_4(X)) \
512 if (_FP_FRAC_GT_4(X,S)) \
513 R##_f[0] |= _FP_WORK_ROUND; \
514 R##_f[0] |= _FP_WORK_STICKY; \
516 } while (0)
520 * Internals
523 #define __FP_FRAC_SET_4(X,I3,I2,I1,I0) \
524 (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
526 #ifndef __FP_FRAC_ADD_3
527 #define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
528 do { \
529 _FP_W_TYPE _c1, _c2; \
530 r0 = x0 + y0; \
531 _c1 = r0 < x0; \
532 r1 = x1 + y1; \
533 _c2 = r1 < x1; \
534 r1 += _c1; \
535 _c2 |= r1 < _c1; \
536 r2 = x2 + y2 + _c2; \
537 } while (0)
538 #endif
540 #ifndef __FP_FRAC_ADD_4
541 #define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
542 do { \
543 _FP_W_TYPE _c1, _c2, _c3; \
544 r0 = x0 + y0; \
545 _c1 = r0 < x0; \
546 r1 = x1 + y1; \
547 _c2 = r1 < x1; \
548 r1 += _c1; \
549 _c2 |= r1 < _c1; \
550 r2 = x2 + y2; \
551 _c3 = r2 < x2; \
552 r2 += _c2; \
553 _c3 |= r2 < _c2; \
554 r3 = x3 + y3 + _c3; \
555 } while (0)
556 #endif
558 #ifndef __FP_FRAC_SUB_3
559 #define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
560 do { \
561 _FP_W_TYPE _c1, _c2; \
562 r0 = x0 - y0; \
563 _c1 = r0 > x0; \
564 r1 = x1 - y1; \
565 _c2 = r1 > x1; \
566 r1 -= _c1; \
567 _c2 |= r1 > _c1; \
568 r2 = x2 - y2 - _c2; \
569 } while (0)
570 #endif
572 #ifndef __FP_FRAC_SUB_4
573 #define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
574 do { \
575 _FP_W_TYPE _c1, _c2, _c3; \
576 r0 = x0 - y0; \
577 _c1 = r0 > x0; \
578 r1 = x1 - y1; \
579 _c2 = r1 > x1; \
580 r1 -= _c1; \
581 _c2 |= r1 > _c1; \
582 r2 = x2 - y2; \
583 _c3 = r2 > x2; \
584 r2 -= _c2; \
585 _c3 |= r2 > _c2; \
586 r3 = x3 - y3 - _c3; \
587 } while (0)
588 #endif
590 #ifndef __FP_FRAC_DEC_3
591 #define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) \
592 do { \
593 UWtype _t0, _t1, _t2; \
594 _t0 = x0, _t1 = x1, _t2 = x2; \
595 __FP_FRAC_SUB_3 (x2, x1, x0, _t2, _t1, _t0, y2, y1, y0); \
596 } while (0)
597 #endif
599 #ifndef __FP_FRAC_DEC_4
600 #define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) \
601 do { \
602 UWtype _t0, _t1, _t2, _t3; \
603 _t0 = x0, _t1 = x1, _t2 = x2, _t3 = x3; \
604 __FP_FRAC_SUB_4 (x3,x2,x1,x0,_t3,_t2,_t1,_t0, y3,y2,y1,y0); \
605 } while (0)
606 #endif
608 #ifndef __FP_FRAC_ADDI_4
609 #define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \
610 do { \
611 UWtype _t; \
612 _t = ((x0 += i) < i); \
613 x1 += _t; _t = (x1 < _t); \
614 x2 += _t; _t = (x2 < _t); \
615 x3 += _t; \
616 } while (0)
617 #endif
619 /* Convert FP values between word sizes. This appears to be more
620 * complicated than I'd have expected it to be, so these might be
621 * wrong... These macros are in any case somewhat bogus because they
622 * use information about what various FRAC_n variables look like
623 * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
624 * the ones in op-2.h and op-1.h.
626 #define _FP_FRAC_COPY_1_4(D, S) (D##_f = S##_f[0])
628 #define _FP_FRAC_COPY_2_4(D, S) \
629 do { \
630 D##_f0 = S##_f[0]; \
631 D##_f1 = S##_f[1]; \
632 } while (0)
634 /* Assembly/disassembly for converting to/from integral types.
635 * No shifting or overflow handled here.
637 /* Put the FP value X into r, which is an integer of size rsize. */
638 #define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \
639 do { \
640 if (rsize <= _FP_W_TYPE_SIZE) \
641 r = X##_f[0]; \
642 else if (rsize <= 2*_FP_W_TYPE_SIZE) \
644 r = X##_f[1]; \
645 r <<= _FP_W_TYPE_SIZE; \
646 r += X##_f[0]; \
648 else \
650 /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \
651 /* and int == 4words as a single case. */ \
652 r = X##_f[3]; \
653 r <<= _FP_W_TYPE_SIZE; \
654 r += X##_f[2]; \
655 r <<= _FP_W_TYPE_SIZE; \
656 r += X##_f[1]; \
657 r <<= _FP_W_TYPE_SIZE; \
658 r += X##_f[0]; \
660 } while (0)
662 /* "No disassemble Number Five!" */
663 /* move an integer of size rsize into X's fractional part. We rely on
664 * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
665 * having to mask the values we store into it.
667 #define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \
668 do { \
669 X##_f[0] = r; \
670 X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \
671 X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \
672 X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \
673 } while (0);
675 #define _FP_FRAC_COPY_4_1(D, S) \
676 do { \
677 D##_f[0] = S##_f; \
678 D##_f[1] = D##_f[2] = D##_f[3] = 0; \
679 } while (0)
681 #define _FP_FRAC_COPY_4_2(D, S) \
682 do { \
683 D##_f[0] = S##_f0; \
684 D##_f[1] = S##_f1; \
685 D##_f[2] = D##_f[3] = 0; \
686 } while (0)