2 * Copyright (c) 1987, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * @(#)trig.h 8.1 (Berkeley) 6/4/93
38 vc(thresh
, 2.6117239648121182150E-1 ,b863
,3f85
,6ea0
,6b02
, -1, .85B8636B026EA0
)
39 vc(PIo4
, 7.8539816339744830676E-1 ,0fda
,4049,68c2
,a221
, 0, .C90FDAA22168C2
)
40 vc(PIo2
, 1.5707963267948966135E0
,0fda
,40c9
,68c2
,a221
, 1, .C90FDAA22168C2
)
41 vc(PI3o4
, 2.3561944901923449203E0
,cbe3
,4116,0e92
,f999
, 2, .96CBE3F9990E92
)
42 vc(PI
, 3.1415926535897932270E0
,0fda
,4149,68c2
,a221
, 2, .C90FDAA22168C2
)
43 vc(PI2
, 6.2831853071795864540E0
,0fda
,41c9
,68c2
,a221
, 3, .C90FDAA22168C2
)
45 ic(thresh
, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4
)
46 ic(PIo4
, 7.8539816339744827900E-1 , -1, 1.921FB54442D18
)
47 ic(PIo2
, 1.5707963267948965580E0
, 0, 1.921FB54442D18
)
48 ic(PI3o4
, 2.3561944901923448370E0
, 1, 1.2D97C7F3321D2
)
49 ic(PI
, 3.1415926535897931160E0
, 1, 1.921FB54442D18
)
50 ic(PI2
, 6.2831853071795862320E0
, 2, 1.921FB54442D18
)
53 #define thresh vccast(thresh)
54 #define PIo4 vccast(PIo4)
55 #define PIo2 vccast(PIo2)
56 #define PI3o4 vccast(PI3o4)
58 #define PI2 vccast(PI2)
62 static long fmaxx
[] = { 0xffffffff, 0x7fefffff};
63 #define fmax (*(double*)fmaxx)
71 small
= 1E-10, /* 1+small**2 == 1; better values for small:
72 * small = 1.5E-9 for VAX D
73 * = 1.2E-8 for IEEE Double
74 * = 2.8E-10 for IEEE Extended
76 big
= 1E20
; /* big := 1/(small**2) */
78 /* sin__S(x*x) ... re-implemented as a macro
79 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
80 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
81 * CODED IN C BY K.C. NG, 1/21/85;
82 * REVISED BY K.C. NG on 8/13/85.
85 * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
87 * value of pi in machine precision:
90 * pi = 3.141592653589793 23846264338327 .....
91 * 53 bits PI = 3.141592653589793 115997963 ..... ,
92 * 56 bits PI = 3.141592653589793 227020265 ..... ,
95 * pi = 3.243F6A8885A308D313198A2E....
96 * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
97 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
100 * 1. Let z=x*x. Create a polynomial approximation to
101 * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5).
103 * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
105 * The coefficient S's are obtained by a special Remez algorithm.
108 * In the absence of rounding error, the approximation has absolute error
109 * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
112 * The hexadecimal values are the intended ones for the following constants.
113 * The decimal values may be used, provided that the compiler will convert
114 * from decimal to binary accurately enough to produce the hexadecimal values
119 vc(S0
, -1.6666666666666646660E-1 ,aaaa
,bf2a
,aa71
,aaaa
, -2, -.AAAAAAAAAAAA71
)
120 vc(S1
, 8.3333333333297230413E-3 ,8888,3d08
,477f
,8888, -6, .8888888888477F
)
121 vc(S2
, -1.9841269838362403710E-4 ,0d00
,ba50
,1057,cf8a
, -12, -.D00D00CF8A1057
)
122 vc(S3
, 2.7557318019967078930E-6 ,ef1c
,3738,bedc
,a326
, -18, .B8EF1CA326BEDC
)
123 vc(S4
, -2.5051841873876551398E-8 ,3195,b3d7
,e1d3
,374c
, -25, -.D73195374CE1D3
)
124 vc(S5
, 1.6028995389845827653E-10 ,3d9c
,3030,cccc
,6d26
, -32, .B03D9C6D26CCCC
)
125 vc(S6
, -6.2723499671769283121E-13 ,8d0b
,ac30
,ea82
,7561, -40, -.B08D0B7561EA82
)
127 ic(S0
, -1.6666666666666463126E-1 , -3, -1.555555555550C
)
128 ic(S1
, 8.3333333332992771264E-3 , -7, 1.111111110C461
)
129 ic(S2
, -1.9841269816180999116E-4 , -13, -1.A01A019746345
)
130 ic(S3
, 2.7557309793219876880E-6 , -19, 1.71DE3209CDCD9
)
131 ic(S4
, -2.5050225177523807003E-8 , -26, -1.AE5C0E319A4EF
)
132 ic(S5
, 1.5868926979889205164E-10 , -33, 1.5CF61DF672B13
)
135 #define S0 vccast(S0)
136 #define S1 vccast(S1)
137 #define S2 vccast(S2)
138 #define S3 vccast(S3)
139 #define S4 vccast(S4)
140 #define S5 vccast(S5)
141 #define S6 vccast(S6)
144 #if defined(vax)||defined(tahoe)
145 # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
146 #else /* defined(vax)||defined(tahoe) */
147 # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
148 #endif /* defined(vax)||defined(tahoe) */
150 /* cos__C(x*x) ... re-implemented as a macro
151 * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
152 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
153 * CODED IN C BY K.C. NG, 1/21/85;
154 * REVISED BY K.C. NG on 8/13/85.
157 * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI,
159 * PI is the rounded value of pi in machine precision :
162 * pi = 3.141592653589793 23846264338327 .....
163 * 53 bits PI = 3.141592653589793 115997963 ..... ,
164 * 56 bits PI = 3.141592653589793 227020265 ..... ,
167 * pi = 3.243F6A8885A308D313198A2E....
168 * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
169 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
173 * 1. Let z=x*x. Create a polynomial approximation to
174 * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5)
176 * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5)
178 * The coefficient C's are obtained by a special Remez algorithm.
181 * In the absence of rounding error, the approximation has absolute error
182 * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
186 * The hexadecimal values are the intended ones for the following constants.
187 * The decimal values may be used, provided that the compiler will convert
188 * from decimal to binary accurately enough to produce the hexadecimal values
192 vc(C0
, 4.1666666666666504759E-2 ,aaaa
,3e2a
,a9f0
,aaaa
, -4, .AAAAAAAAAAA9F0
)
193 vc(C1
, -1.3888888888865302059E-3 ,0b60,bbb6
,0cca
,b60a
, -9, -.B60B60B60A0CCA
)
194 vc(C2
, 2.4801587285601038265E-5 ,0d00
,38d0
,098f
,cdcd
, -15, .D00D00CDCD098F
)
195 vc(C3
, -2.7557313470902390219E-7 ,f27b
,b593
,e805
,b593
, -21, -.93F27BB593E805
)
196 vc(C4
, 2.0875623401082232009E-9 ,74c8
,320f
,3ff0
,fa1e
, -28, .8F74C8FA1E3FF0
)
197 vc(C5
, -1.1355178117642986178E-11 ,c32d
,ae47
,5a63
,0a5c
, -36, -.C7C32D0A5C5A63
)
199 ic(C0
, 4.1666666666666504759E-2 , -5, 1.555555555553E
)
200 ic(C1
, -1.3888888888865301516E-3 , -10, -1.6C16C16C14199
)
201 ic(C2
, 2.4801587269650015769E-5 , -16, 1.A01A01971CAEB
)
202 ic(C3
, -2.7557304623183959811E-7 , -22, -1.27E4F1314AD1A
)
203 ic(C4
, 2.0873958177697780076E-9 , -29, 1.1EE3B60DDDC8C
)
204 ic(C5
, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E
)
207 #define C0 vccast(C0)
208 #define C1 vccast(C1)
209 #define C2 vccast(C2)
210 #define C3 vccast(C3)
211 #define C4 vccast(C4)
212 #define C5 vccast(C5)
215 #define cos__C(z) (z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))