i386: Regenerate libm-test-ulps for for gcc 7 on i686
[glibc.git] / nptl / descr.h
blobda9c567a6f70b2e9d224c4d4f8718ffaab94c64f
1 /* Copyright (C) 2002-2018 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
19 #ifndef _DESCR_H
20 #define _DESCR_H 1
22 #include <limits.h>
23 #include <sched.h>
24 #include <setjmp.h>
25 #include <stdbool.h>
26 #include <sys/types.h>
27 #include <hp-timing.h>
28 #include <list_t.h>
29 #include <lowlevellock.h>
30 #include <pthreaddef.h>
31 #include <dl-sysdep.h>
32 #include "../nptl_db/thread_db.h"
33 #include <tls.h>
34 #include <unwind.h>
35 #include <bits/types/res_state.h>
36 #include <kernel-features.h>
38 #ifndef TCB_ALIGNMENT
39 # define TCB_ALIGNMENT sizeof (double)
40 #endif
43 /* We keep thread specific data in a special data structure, a two-level
44 array. The top-level array contains pointers to dynamically allocated
45 arrays of a certain number of data pointers. So we can implement a
46 sparse array. Each dynamic second-level array has
47 PTHREAD_KEY_2NDLEVEL_SIZE
48 entries. This value shouldn't be too large. */
49 #define PTHREAD_KEY_2NDLEVEL_SIZE 32
51 /* We need to address PTHREAD_KEYS_MAX key with PTHREAD_KEY_2NDLEVEL_SIZE
52 keys in each subarray. */
53 #define PTHREAD_KEY_1STLEVEL_SIZE \
54 ((PTHREAD_KEYS_MAX + PTHREAD_KEY_2NDLEVEL_SIZE - 1) \
55 / PTHREAD_KEY_2NDLEVEL_SIZE)
60 /* Internal version of the buffer to store cancellation handler
61 information. */
62 struct pthread_unwind_buf
64 struct
66 __jmp_buf jmp_buf;
67 int mask_was_saved;
68 #ifdef NEED_SAVED_MASK_IN_CANCEL_JMP_BUF
69 __sigset_t saved_mask;
70 #endif
71 } cancel_jmp_buf[1];
73 union
75 /* This is the placeholder of the public version. */
76 void *pad[4];
78 struct
80 /* Pointer to the previous cleanup buffer. */
81 struct pthread_unwind_buf *prev;
83 /* Backward compatibility: state of the old-style cleanup
84 handler at the time of the previous new-style cleanup handler
85 installment. */
86 struct _pthread_cleanup_buffer *cleanup;
88 /* Cancellation type before the push call. */
89 int canceltype;
90 } data;
91 } priv;
95 /* Opcodes and data types for communication with the signal handler to
96 change user/group IDs. */
97 struct xid_command
99 int syscall_no;
100 long int id[3];
101 volatile int cntr;
102 volatile int error; /* -1: no call yet, 0: success seen, >0: error seen. */
106 /* Data structure used by the kernel to find robust futexes. */
107 struct robust_list_head
109 void *list;
110 long int futex_offset;
111 void *list_op_pending;
115 /* Data strcture used to handle thread priority protection. */
116 struct priority_protection_data
118 int priomax;
119 unsigned int priomap[];
123 /* Thread descriptor data structure. */
124 struct pthread
126 union
128 #if !TLS_DTV_AT_TP
129 /* This overlaps the TCB as used for TLS without threads (see tls.h). */
130 tcbhead_t header;
131 #else
132 struct
134 /* multiple_threads is enabled either when the process has spawned at
135 least one thread or when a single-threaded process cancels itself.
136 This enables additional code to introduce locking before doing some
137 compare_and_exchange operations and also enable cancellation points.
138 The concepts of multiple threads and cancellation points ideally
139 should be separate, since it is not necessary for multiple threads to
140 have been created for cancellation points to be enabled, as is the
141 case is when single-threaded process cancels itself.
143 Since enabling multiple_threads enables additional code in
144 cancellation points and compare_and_exchange operations, there is a
145 potential for an unneeded performance hit when it is enabled in a
146 single-threaded, self-canceling process. This is OK though, since a
147 single-threaded process will enable async cancellation only when it
148 looks to cancel itself and is hence going to end anyway. */
149 int multiple_threads;
150 int gscope_flag;
151 # ifndef __ASSUME_PRIVATE_FUTEX
152 int private_futex;
153 # endif
154 } header;
155 #endif
157 /* This extra padding has no special purpose, and this structure layout
158 is private and subject to change without affecting the official ABI.
159 We just have it here in case it might be convenient for some
160 implementation-specific instrumentation hack or suchlike. */
161 void *__padding[24];
164 /* This descriptor's link on the `stack_used' or `__stack_user' list. */
165 list_t list;
167 /* Thread ID - which is also a 'is this thread descriptor (and
168 therefore stack) used' flag. */
169 pid_t tid;
171 /* Ununsed. */
172 pid_t pid_ununsed;
174 /* List of robust mutexes the thread is holding. */
175 #if __PTHREAD_MUTEX_HAVE_PREV
176 void *robust_prev;
177 struct robust_list_head robust_head;
179 /* The list above is strange. It is basically a double linked list
180 but the pointer to the next/previous element of the list points
181 in the middle of the object, the __next element. Whenever
182 casting to __pthread_list_t we need to adjust the pointer
183 first.
184 These operations are effectively concurrent code in that the thread
185 can get killed at any point in time and the kernel takes over. Thus,
186 the __next elements are a kind of concurrent list and we need to
187 enforce using compiler barriers that the individual operations happen
188 in such a way that the kernel always sees a consistent list. The
189 backward links (ie, the __prev elements) are not used by the kernel.
190 FIXME We should use relaxed MO atomic operations here and signal fences
191 because this kind of concurrency is similar to synchronizing with a
192 signal handler. */
193 # define QUEUE_PTR_ADJUST (offsetof (__pthread_list_t, __next))
195 # define ENQUEUE_MUTEX_BOTH(mutex, val) \
196 do { \
197 __pthread_list_t *next = (__pthread_list_t *) \
198 ((((uintptr_t) THREAD_GETMEM (THREAD_SELF, robust_head.list)) & ~1ul) \
199 - QUEUE_PTR_ADJUST); \
200 next->__prev = (void *) &mutex->__data.__list.__next; \
201 mutex->__data.__list.__next = THREAD_GETMEM (THREAD_SELF, \
202 robust_head.list); \
203 mutex->__data.__list.__prev = (void *) &THREAD_SELF->robust_head; \
204 /* Ensure that the new list entry is ready before we insert it. */ \
205 __asm ("" ::: "memory"); \
206 THREAD_SETMEM (THREAD_SELF, robust_head.list, \
207 (void *) (((uintptr_t) &mutex->__data.__list.__next) \
208 | val)); \
209 } while (0)
210 # define DEQUEUE_MUTEX(mutex) \
211 do { \
212 __pthread_list_t *next = (__pthread_list_t *) \
213 ((char *) (((uintptr_t) mutex->__data.__list.__next) & ~1ul) \
214 - QUEUE_PTR_ADJUST); \
215 next->__prev = mutex->__data.__list.__prev; \
216 __pthread_list_t *prev = (__pthread_list_t *) \
217 ((char *) (((uintptr_t) mutex->__data.__list.__prev) & ~1ul) \
218 - QUEUE_PTR_ADJUST); \
219 prev->__next = mutex->__data.__list.__next; \
220 /* Ensure that we remove the entry from the list before we change the \
221 __next pointer of the entry, which is read by the kernel. */ \
222 __asm ("" ::: "memory"); \
223 mutex->__data.__list.__prev = NULL; \
224 mutex->__data.__list.__next = NULL; \
225 } while (0)
226 #else
227 union
229 __pthread_slist_t robust_list;
230 struct robust_list_head robust_head;
233 # define ENQUEUE_MUTEX_BOTH(mutex, val) \
234 do { \
235 mutex->__data.__list.__next \
236 = THREAD_GETMEM (THREAD_SELF, robust_list.__next); \
237 /* Ensure that the new list entry is ready before we insert it. */ \
238 __asm ("" ::: "memory"); \
239 THREAD_SETMEM (THREAD_SELF, robust_list.__next, \
240 (void *) (((uintptr_t) &mutex->__data.__list) | val)); \
241 } while (0)
242 # define DEQUEUE_MUTEX(mutex) \
243 do { \
244 __pthread_slist_t *runp = (__pthread_slist_t *) \
245 (((uintptr_t) THREAD_GETMEM (THREAD_SELF, robust_list.__next)) & ~1ul); \
246 if (runp == &mutex->__data.__list) \
247 THREAD_SETMEM (THREAD_SELF, robust_list.__next, runp->__next); \
248 else \
250 __pthread_slist_t *next = (__pthread_slist_t *) \
251 (((uintptr_t) runp->__next) & ~1ul); \
252 while (next != &mutex->__data.__list) \
254 runp = next; \
255 next = (__pthread_slist_t *) (((uintptr_t) runp->__next) & ~1ul); \
258 runp->__next = next->__next; \
259 /* Ensure that we remove the entry from the list before we change the \
260 __next pointer of the entry, which is read by the kernel. */ \
261 __asm ("" ::: "memory"); \
262 mutex->__data.__list.__next = NULL; \
264 } while (0)
265 #endif
266 #define ENQUEUE_MUTEX(mutex) ENQUEUE_MUTEX_BOTH (mutex, 0)
267 #define ENQUEUE_MUTEX_PI(mutex) ENQUEUE_MUTEX_BOTH (mutex, 1)
269 /* List of cleanup buffers. */
270 struct _pthread_cleanup_buffer *cleanup;
272 /* Unwind information. */
273 struct pthread_unwind_buf *cleanup_jmp_buf;
274 #define HAVE_CLEANUP_JMP_BUF
276 /* Flags determining processing of cancellation. */
277 int cancelhandling;
278 /* Bit set if cancellation is disabled. */
279 #define CANCELSTATE_BIT 0
280 #define CANCELSTATE_BITMASK (0x01 << CANCELSTATE_BIT)
281 /* Bit set if asynchronous cancellation mode is selected. */
282 #define CANCELTYPE_BIT 1
283 #define CANCELTYPE_BITMASK (0x01 << CANCELTYPE_BIT)
284 /* Bit set if canceling has been initiated. */
285 #define CANCELING_BIT 2
286 #define CANCELING_BITMASK (0x01 << CANCELING_BIT)
287 /* Bit set if canceled. */
288 #define CANCELED_BIT 3
289 #define CANCELED_BITMASK (0x01 << CANCELED_BIT)
290 /* Bit set if thread is exiting. */
291 #define EXITING_BIT 4
292 #define EXITING_BITMASK (0x01 << EXITING_BIT)
293 /* Bit set if thread terminated and TCB is freed. */
294 #define TERMINATED_BIT 5
295 #define TERMINATED_BITMASK (0x01 << TERMINATED_BIT)
296 /* Bit set if thread is supposed to change XID. */
297 #define SETXID_BIT 6
298 #define SETXID_BITMASK (0x01 << SETXID_BIT)
299 /* Mask for the rest. Helps the compiler to optimize. */
300 #define CANCEL_RESTMASK 0xffffff80
302 #define CANCEL_ENABLED_AND_CANCELED(value) \
303 (((value) & (CANCELSTATE_BITMASK | CANCELED_BITMASK | EXITING_BITMASK \
304 | CANCEL_RESTMASK | TERMINATED_BITMASK)) == CANCELED_BITMASK)
305 #define CANCEL_ENABLED_AND_CANCELED_AND_ASYNCHRONOUS(value) \
306 (((value) & (CANCELSTATE_BITMASK | CANCELTYPE_BITMASK | CANCELED_BITMASK \
307 | EXITING_BITMASK | CANCEL_RESTMASK | TERMINATED_BITMASK)) \
308 == (CANCELTYPE_BITMASK | CANCELED_BITMASK))
310 /* Flags. Including those copied from the thread attribute. */
311 int flags;
313 /* We allocate one block of references here. This should be enough
314 to avoid allocating any memory dynamically for most applications. */
315 struct pthread_key_data
317 /* Sequence number. We use uintptr_t to not require padding on
318 32- and 64-bit machines. On 64-bit machines it helps to avoid
319 wrapping, too. */
320 uintptr_t seq;
322 /* Data pointer. */
323 void *data;
324 } specific_1stblock[PTHREAD_KEY_2NDLEVEL_SIZE];
326 /* Two-level array for the thread-specific data. */
327 struct pthread_key_data *specific[PTHREAD_KEY_1STLEVEL_SIZE];
329 /* Flag which is set when specific data is set. */
330 bool specific_used;
332 /* True if events must be reported. */
333 bool report_events;
335 /* True if the user provided the stack. */
336 bool user_stack;
338 /* True if thread must stop at startup time. */
339 bool stopped_start;
341 /* The parent's cancel handling at the time of the pthread_create
342 call. This might be needed to undo the effects of a cancellation. */
343 int parent_cancelhandling;
345 /* Lock to synchronize access to the descriptor. */
346 int lock;
348 /* Lock for synchronizing setxid calls. */
349 unsigned int setxid_futex;
351 #if HP_TIMING_AVAIL
352 /* Offset of the CPU clock at start thread start time. */
353 hp_timing_t cpuclock_offset;
354 #endif
356 /* If the thread waits to join another one the ID of the latter is
357 stored here.
359 In case a thread is detached this field contains a pointer of the
360 TCB if the thread itself. This is something which cannot happen
361 in normal operation. */
362 struct pthread *joinid;
363 /* Check whether a thread is detached. */
364 #define IS_DETACHED(pd) ((pd)->joinid == (pd))
366 /* The result of the thread function. */
367 void *result;
369 /* Scheduling parameters for the new thread. */
370 struct sched_param schedparam;
371 int schedpolicy;
373 /* Start position of the code to be executed and the argument passed
374 to the function. */
375 void *(*start_routine) (void *);
376 void *arg;
378 /* Debug state. */
379 td_eventbuf_t eventbuf;
380 /* Next descriptor with a pending event. */
381 struct pthread *nextevent;
383 /* Machine-specific unwind info. */
384 struct _Unwind_Exception exc;
386 /* If nonzero pointer to area allocated for the stack and its
387 size. */
388 void *stackblock;
389 size_t stackblock_size;
390 /* Size of the included guard area. */
391 size_t guardsize;
392 /* This is what the user specified and what we will report. */
393 size_t reported_guardsize;
395 /* Thread Priority Protection data. */
396 struct priority_protection_data *tpp;
398 /* Resolver state. */
399 struct __res_state res;
401 /* This member must be last. */
402 char end_padding[];
404 #define PTHREAD_STRUCT_END_PADDING \
405 (sizeof (struct pthread) - offsetof (struct pthread, end_padding))
406 } __attribute ((aligned (TCB_ALIGNMENT)));
409 #endif /* descr.h */