Updated to fedora-glibc-20050106T1443
[glibc.git] / sysdeps / ia64 / fpu / s_expm1.S
blob41b9954ee88981794b4f787101e3e2daf4095a8a
1 .file "exp_m1.s"
4 // Copyright (c) 2000 - 2002, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 // History
41 //==============================================================
42 // 02/02/00 Initial Version
43 // 04/04/00 Unwind support added
44 // 08/15/00 Bundle added after call to __libm_error_support to properly
45 //          set [the previously overwritten] GR_Parameter_RESULT.
46 // 07/07/01 Improved speed of all paths
47 // 05/20/02 Cleaned up namespace and sf0 syntax
48 // 11/20/02 Improved speed, algorithm based on exp
50 // API
51 //==============================================================
52 // double expm1(double)
54 // Overview of operation
55 //==============================================================
56 // 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
58 // 2. |x| < 2^-60
59 //    Result = x, computed by x + x*x to handle appropriate flags and rounding
61 // 3. 2^-60 <= |x| < 2^-2
62 //    Result determined by 13th order Taylor series polynomial
63 //    expm1f(x) = x + Q2*x^2 + ... + Q13*x^13
65 // 4. x < -48.0
66 //    Here we know result is essentially -1 + eps, where eps only affects
67 //    rounded result.  Set I.
69 // 5. x >= 709.7827
70 //    Result overflows.  Set I, O, and call error support
72 // 6. 2^-2 <= x < 709.7827  or  -48.0 <= x < -2^-2  
73 //    This is the main path.  The algorithm is described below:
75 // Take the input x. w is "how many log2/128 in x?"
76 //  w = x * 128/log2
77 //  n = int(w)
78 //  x = n log2/128 + r + delta
80 //  n = 128M + index_1 + 2^4 index_2
81 //  x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
83 //  exp(x) = 2^M  2^(index_1/128)  2^(index_2/8) exp(r) exp(delta)
84 //       Construct 2^M
85 //       Get 2^(index_1/128) from table_1;
86 //       Get 2^(index_2/8)   from table_2;
87 //       Calculate exp(r) by series by 5th order polynomial
88 //          r = x - n (log2/128)_high
89 //          delta = - n (log2/128)_low
90 //       Calculate exp(delta) as 1 + delta
93 // Special values
94 //==============================================================
95 // expm1(+0)    = +0.0
96 // expm1(-0)    = -0.0
98 // expm1(+qnan) = +qnan
99 // expm1(-qnan) = -qnan
100 // expm1(+snan) = +qnan
101 // expm1(-snan) = -qnan
103 // expm1(-inf)  = -1.0
104 // expm1(+inf)  = +inf
106 // Overflow and Underflow
107 //=======================
108 // expm1(x) = largest double normal when
109 //     x = 709.7827 = 40862e42fefa39ef
111 // Underflow is handled as described in case 2 above.
114 // Registers used
115 //==============================================================
116 // Floating Point registers used:
117 // f8, input
118 // f9 -> f15,  f32 -> f75
120 // General registers used:
121 // r14 -> r40
123 // Predicate registers used:
124 // p6 -> p15
126 // Assembly macros
127 //==============================================================
129 rRshf                  = r14
130 rAD_TB1                = r15
131 rAD_T1                 = r15
132 rAD_TB2                = r16
133 rAD_T2                 = r16
134 rAD_Ln2_lo             = r17
135 rAD_P                  = r17
137 rN                     = r18
138 rIndex_1               = r19
139 rIndex_2_16            = r20
141 rM                     = r21
142 rBiased_M              = r21
143 rIndex_1_16            = r22
144 rSignexp_x             = r23
145 rExp_x                 = r24
146 rSig_inv_ln2           = r25
148 rAD_Q1                 = r26
149 rAD_Q2                 = r27
150 rTmp                   = r27
151 rExp_bias              = r28
152 rExp_mask              = r29
153 rRshf_2to56            = r30
155 rGt_ln                 = r31
156 rExp_2tom56            = r31
159 GR_SAVE_B0             = r33
160 GR_SAVE_PFS            = r34
161 GR_SAVE_GP             = r35
162 GR_SAVE_SP             = r36
164 GR_Parameter_X         = r37
165 GR_Parameter_Y         = r38
166 GR_Parameter_RESULT    = r39
167 GR_Parameter_TAG       = r40
170 FR_X                   = f10
171 FR_Y                   = f1
172 FR_RESULT              = f8
174 fRSHF_2TO56            = f6
175 fINV_LN2_2TO63         = f7
176 fW_2TO56_RSH           = f9
177 f2TOM56                = f11
178 fP5                    = f12
179 fP54                   = f50
180 fP5432                 = f50
181 fP4                    = f13
182 fP3                    = f14
183 fP32                   = f14
184 fP2                    = f15
186 fLn2_by_128_hi         = f33
187 fLn2_by_128_lo         = f34
189 fRSHF                  = f35
190 fNfloat                = f36
191 fW                     = f37
192 fR                     = f38
193 fF                     = f39
195 fRsq                   = f40
196 fRcube                 = f41
198 f2M                    = f42
199 fS1                    = f43
200 fT1                    = f44
202 fMIN_DBL_OFLOW_ARG     = f45
203 fMAX_DBL_MINUS_1_ARG   = f46
204 fMAX_DBL_NORM_ARG      = f47
205 fP_lo                  = f51
206 fP_hi                  = f52
207 fP                     = f53
208 fS                     = f54
210 fNormX                 = f56
212 fWre_urm_f8            = f57
214 fGt_pln                = f58
215 fTmp                   = f58
217 fS2                    = f59
218 fT2                    = f60
219 fSm1                   = f61
221 fXsq                   = f62
222 fX6                    = f63
223 fX4                    = f63
224 fQ7                    = f64
225 fQ76                   = f64
226 fQ7654                 = f64
227 fQ765432               = f64
228 fQ6                    = f65
229 fQ5                    = f66
230 fQ54                   = f66
231 fQ4                    = f67
232 fQ3                    = f68
233 fQ32                   = f68
234 fQ2                    = f69
235 fQD                    = f70
236 fQDC                   = f70
237 fQDCBA                 = f70
238 fQDCBA98               = f70
239 fQDCBA98765432         = f70
240 fQC                    = f71
241 fQB                    = f72
242 fQBA                   = f72
243 fQA                    = f73
244 fQ9                    = f74
245 fQ98                   = f74
246 fQ8                    = f75
248 // Data tables
249 //==============================================================
251 RODATA
252 .align 16
254 // ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
256 // double-extended 1/ln(2)
257 // 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
258 // 3fff b8aa 3b29 5c17 f0bc
259 // For speed the significand will be loaded directly with a movl and setf.sig
260 //   and the exponent will be bias+63 instead of bias+0.  Thus subsequent
261 //   computations need to scale appropriately.
262 // The constant 128/ln(2) is needed for the computation of w.  This is also
263 //   obtained by scaling the computations.
265 // Two shifting constants are loaded directly with movl and setf.d.
266 //   1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
267 //        This constant is added to x*1/ln2 to shift the integer part of
268 //        x*128/ln2 into the rightmost bits of the significand.
269 //        The result of this fma is fW_2TO56_RSH.
270 //   2. fRSHF       = 1.1000..00 * 2^(63)
271 //        This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
272 //        the integer part of w, n, as a floating-point number.
273 //        The result of this fms is fNfloat.
276 LOCAL_OBJECT_START(exp_Table_1)
277 data8 0x40862e42fefa39f0 // smallest dbl overflow arg
278 data8 0xc048000000000000 // approx largest arg for minus one result
279 data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result
280 data8 0x0                // pad
281 data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
282 data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
284 // Table 1 is 2^(index_1/128) where
285 // index_1 goes from 0 to 15
287 data8 0x8000000000000000 , 0x00003FFF
288 data8 0x80B1ED4FD999AB6C , 0x00003FFF
289 data8 0x8164D1F3BC030773 , 0x00003FFF
290 data8 0x8218AF4373FC25EC , 0x00003FFF
291 data8 0x82CD8698AC2BA1D7 , 0x00003FFF
292 data8 0x8383594EEFB6EE37 , 0x00003FFF
293 data8 0x843A28C3ACDE4046 , 0x00003FFF
294 data8 0x84F1F656379C1A29 , 0x00003FFF
295 data8 0x85AAC367CC487B15 , 0x00003FFF
296 data8 0x8664915B923FBA04 , 0x00003FFF
297 data8 0x871F61969E8D1010 , 0x00003FFF
298 data8 0x87DB357FF698D792 , 0x00003FFF
299 data8 0x88980E8092DA8527 , 0x00003FFF
300 data8 0x8955EE03618E5FDD , 0x00003FFF
301 data8 0x8A14D575496EFD9A , 0x00003FFF
302 data8 0x8AD4C6452C728924 , 0x00003FFF
303 LOCAL_OBJECT_END(exp_Table_1)
305 // Table 2 is 2^(index_1/8) where
306 // index_2 goes from 0 to 7
307 LOCAL_OBJECT_START(exp_Table_2)
308 data8 0x8000000000000000 , 0x00003FFF
309 data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
310 data8 0x9837F0518DB8A96F , 0x00003FFF
311 data8 0xA5FED6A9B15138EA , 0x00003FFF
312 data8 0xB504F333F9DE6484 , 0x00003FFF
313 data8 0xC5672A115506DADD , 0x00003FFF
314 data8 0xD744FCCAD69D6AF4 , 0x00003FFF
315 data8 0xEAC0C6E7DD24392F , 0x00003FFF
316 LOCAL_OBJECT_END(exp_Table_2)
319 LOCAL_OBJECT_START(exp_p_table)
320 data8 0x3f8111116da21757 //P5
321 data8 0x3fa55555d787761c //P4
322 data8 0x3fc5555555555414 //P3
323 data8 0x3fdffffffffffd6a //P2
324 LOCAL_OBJECT_END(exp_p_table)
326 LOCAL_OBJECT_START(exp_Q1_table)
327 data8 0x3de6124613a86d09 // QD = 1/13!
328 data8 0x3e21eed8eff8d898 // QC = 1/12!
329 data8 0x3ec71de3a556c734 // Q9 = 1/9!
330 data8 0x3efa01a01a01a01a // Q8 = 1/8!
331 data8 0x8888888888888889,0x3ff8 // Q5 = 1/5!
332 data8 0xaaaaaaaaaaaaaaab,0x3ffc // Q3 = 1/3!
333 data8 0x0,0x0            // Pad to avoid bank conflicts
334 LOCAL_OBJECT_END(exp_Q1_table)
336 LOCAL_OBJECT_START(exp_Q2_table)
337 data8 0x3e5ae64567f544e4 // QB = 1/11!
338 data8 0x3e927e4fb7789f5c // QA = 1/10!
339 data8 0x3f2a01a01a01a01a // Q7 = 1/7!
340 data8 0x3f56c16c16c16c17 // Q6 = 1/6!
341 data8 0xaaaaaaaaaaaaaaab,0x3ffa // Q4 = 1/4!
342 data8 0x8000000000000000,0x3ffe // Q2 = 1/2!
343 LOCAL_OBJECT_END(exp_Q2_table)
346 .section .text
347 GLOBAL_IEEE754_ENTRY(expm1)
349 { .mlx
350       getf.exp        rSignexp_x = f8  // Must recompute if x unorm
351       movl            rSig_inv_ln2 = 0xb8aa3b295c17f0bc  // signif of 1/ln2
353 { .mlx
354       addl            rAD_TB1    = @ltoff(exp_Table_1), gp
355       movl            rRshf_2to56 = 0x4768000000000000   // 1.10000 2^(63+56)
359 // We do this fnorm right at the beginning to normalize
360 // any input unnormals so that SWA is not taken.
361 { .mfi
362       ld8             rAD_TB1    = [rAD_TB1]
363       fclass.m        p6,p0 = f8,0x0b  // Test for x=unorm
364       mov             rExp_mask = 0x1ffff
366 { .mfi
367       mov             rExp_bias = 0xffff
368       fnorm.s1        fNormX   = f8
369       mov             rExp_2tom56 = 0xffff-56
373 // Form two constants we need
374 //  1/ln2 * 2^63  to compute  w = x * 1/ln2 * 128
375 //  1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
377 { .mfi
378       setf.sig        fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
379       fclass.m        p8,p0 = f8,0x07  // Test for x=0
380       nop.i           0
382 { .mlx
383       setf.d          fRSHF_2TO56 = rRshf_2to56 // Form 1.100 * 2^(63+56)
384       movl            rRshf = 0x43e8000000000000   // 1.10000 2^63 for rshift
388 { .mfi
389       setf.exp        f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
390       fclass.m        p9,p0 = f8,0x22  // Test for x=-inf
391       add             rAD_TB2 = 0x140, rAD_TB1 // Point to Table 2
393 { .mib
394       add             rAD_Q1 = 0x1e0, rAD_TB1 // Point to Q table for small path
395       add             rAD_Ln2_lo = 0x30, rAD_TB1 // Point to ln2_by_128_lo
396 (p6)  br.cond.spnt    EXPM1_UNORM // Branch if x unorm
400 EXPM1_COMMON:
401 { .mfi
402       ldfpd           fMIN_DBL_OFLOW_ARG, fMAX_DBL_MINUS_1_ARG = [rAD_TB1],16
403       fclass.m        p10,p0 = f8,0x1e1  // Test for x=+inf, NaN, NaT
404       add             rAD_Q2 = 0x50, rAD_Q1   // Point to Q table for small path
406 { .mfb
407       nop.m           0
408       nop.f           0
409 (p8)  br.ret.spnt     b0                        // Exit for x=0, return x
413 { .mfi
414       ldfd            fMAX_DBL_NORM_ARG = [rAD_TB1],16
415       nop.f           0
416       and             rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
418 { .mfb
419       setf.d          fRSHF = rRshf // Form right shift const 1.100 * 2^63
420 (p9)  fms.d.s0        f8 = f0,f0,f1            // quick exit for x=-inf
421 (p9)  br.ret.spnt     b0
425 { .mfi
426       ldfpd           fQD, fQC = [rAD_Q1], 16  // Load coeff for small path
427       nop.f           0
428       sub             rExp_x = rExp_x, rExp_bias // True exponent of x
430 { .mfb
431       ldfpd           fQB, fQA = [rAD_Q2], 16  // Load coeff for small path
432 (p10) fma.d.s0        f8 = f8, f1, f0          // For x=+inf, NaN, NaT
433 (p10) br.ret.spnt     b0                       // Exit for x=+inf, NaN, NaT
437 { .mfi
438       ldfpd           fQ9, fQ8 = [rAD_Q1], 16  // Load coeff for small path
439       fma.s1          fXsq = fNormX, fNormX, f0  // x*x for small path
440       cmp.gt          p7, p8 = -2, rExp_x      // Test |x| < 2^(-2)
442 { .mfi
443       ldfpd           fQ7, fQ6 = [rAD_Q2], 16  // Load coeff for small path
444       nop.f           0
445       nop.i           0
449 { .mfi
450       ldfe            fQ5 = [rAD_Q1], 16       // Load coeff for small path
451       nop.f           0
452       nop.i           0
454 { .mib
455       ldfe            fQ4 = [rAD_Q2], 16       // Load coeff for small path
456 (p7)  cmp.gt.unc      p6, p7 = -60, rExp_x     // Test |x| < 2^(-60)
457 (p7)  br.cond.spnt    EXPM1_SMALL              // Branch if 2^-60 <= |x| < 2^-2
461 // W = X * Inv_log2_by_128
462 // By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
463 // We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
465 { .mfi
466       ldfe            fLn2_by_128_hi  = [rAD_TB1],32
467       fma.s1          fW_2TO56_RSH  = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
468       nop.i           0
470 { .mfb
471       ldfe            fLn2_by_128_lo  = [rAD_Ln2_lo]
472 (p6)  fma.d.s0        f8 = f8, f8, f8 // If x < 2^-60, result=x+x*x
473 (p6)  br.ret.spnt     b0              // Exit if x < 2^-60
477 // Divide arguments into the following categories:
478 //  Certain minus one       p11 - -inf < x <= MAX_DBL_MINUS_1_ARG
479 //  Possible Overflow       p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
480 //  Certain Overflow        p15 - MIN_DBL_OFLOW_ARG <= x < +inf
482 // If the input is really a double arg, then there will never be "Possible
483 // Overflow" arguments.
486 // After that last load, rAD_TB1 points to the beginning of table 1
488 { .mfi
489       nop.m           0
490       fcmp.ge.s1      p15,p14 = fNormX,fMIN_DBL_OFLOW_ARG
491       nop.i           0
495 { .mfi
496       add             rAD_P = 0x80, rAD_TB2
497       fcmp.le.s1      p11,p0 = fNormX,fMAX_DBL_MINUS_1_ARG
498       nop.i           0
502 { .mfb
503       ldfpd           fP5, fP4  = [rAD_P] ,16
504 (p14) fcmp.gt.unc.s1  p14,p0 = fNormX,fMAX_DBL_NORM_ARG
505 (p15) br.cond.spnt    EXPM1_CERTAIN_OVERFLOW
509 // Nfloat = round_int(W)
510 // The signficand of fW_2TO56_RSH contains the rounded integer part of W,
511 // as a twos complement number in the lower bits (that is, it may be negative).
512 // That twos complement number (called N) is put into rN.
514 // Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
515 // before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
516 // Thus, fNfloat contains the floating point version of N
518 { .mfb
519       ldfpd           fP3, fP2  = [rAD_P]
520       fms.s1          fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
521 (p11) br.cond.spnt    EXPM1_CERTAIN_MINUS_ONE
525 { .mfi
526       getf.sig        rN = fW_2TO56_RSH
527       nop.f           0
528       nop.i           0
532 // rIndex_1 has index_1
533 // rIndex_2_16 has index_2 * 16
534 // rBiased_M has M
535 // rIndex_1_16 has index_1 * 16
537 // r = x - Nfloat * ln2_by_128_hi
538 // f = 1 - Nfloat * ln2_by_128_lo
539 { .mfi
540       and             rIndex_1 = 0x0f, rN
541       fnma.s1         fR   = fNfloat, fLn2_by_128_hi, fNormX
542       shr             rM = rN,  0x7
544 { .mfi
545       and             rIndex_2_16 = 0x70, rN
546       fnma.s1         fF   = fNfloat, fLn2_by_128_lo, f1
547       nop.i           0
551 // rAD_T1 has address of T1
552 // rAD_T2 has address if T2
554 { .mmi
555       add             rBiased_M = rExp_bias, rM
556       add             rAD_T2 = rAD_TB2, rIndex_2_16
557       shladd          rAD_T1 = rIndex_1, 4, rAD_TB1
561 // Create Scale = 2^M
562 // Load T1 and T2
563 { .mmi
564       setf.exp        f2M = rBiased_M
565       ldfe            fT2  = [rAD_T2]
566       nop.i           0
570 { .mfi
571       ldfe            fT1  = [rAD_T1]
572       fmpy.s0         fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
573       nop.i           0
577 { .mfi
578       nop.m           0
579       fma.s1          fP54 = fR, fP5, fP4
580       nop.i           0
582 { .mfi
583       nop.m           0
584       fma.s1          fP32 = fR, fP3, fP2
585       nop.i           0
589 { .mfi
590       nop.m           0
591       fma.s1          fRsq = fR, fR, f0
592       nop.i           0
596 { .mfi
597       nop.m           0
598       fma.s1          fP5432  = fRsq, fP54, fP32
599       nop.i           0
603 { .mfi
604       nop.m           0
605       fma.s1          fS2  = fF,fT2,f0
606       nop.i           0
608 { .mfi
609       nop.m           0
610       fma.s1          fS1  = f2M,fT1,f0
611       nop.i           0
615 { .mfi
616       nop.m           0
617       fma.s1          fP = fRsq, fP5432, fR
618       nop.i           0
622 { .mfi
623       nop.m           0
624       fms.s1          fSm1 = fS1,fS2,f1    // S - 1.0
625       nop.i           0
627 { .mfb
628       nop.m           0
629       fma.s1          fS   = fS1,fS2,f0
630 (p14) br.cond.spnt    EXPM1_POSSIBLE_OVERFLOW
634 { .mfb
635       nop.m           0
636       fma.d.s0        f8 = fS, fP, fSm1
637       br.ret.sptk     b0                // Normal path exit
641 // Here if 2^-60 <= |x| <2^-2
642 // Compute 13th order polynomial
643 EXPM1_SMALL:
644 { .mmf
645       ldfe            fQ3 = [rAD_Q1], 16
646       ldfe            fQ2 = [rAD_Q2], 16
647       fma.s1          fX4 = fXsq, fXsq, f0
651 { .mfi
652       nop.m           0
653       fma.s1          fQDC = fQD, fNormX, fQC
654       nop.i           0
656 { .mfi
657       nop.m           0
658       fma.s1          fQBA = fQB, fNormX, fQA
659       nop.i           0
663 { .mfi
664       nop.m           0
665       fma.s1          fQ98 = fQ9, fNormX, fQ8
666       nop.i           0
668 { .mfi
669       nop.m           0
670       fma.s1          fQ76= fQ7, fNormX, fQ6
671       nop.i           0
675 { .mfi
676       nop.m           0
677       fma.s1          fQ54 = fQ5, fNormX, fQ4
678       nop.i           0
682 { .mfi
683       nop.m           0
684       fma.s1          fX6 = fX4, fXsq, f0
685       nop.i           0
687 { .mfi
688       nop.m           0
689       fma.s1          fQ32= fQ3, fNormX, fQ2
690       nop.i           0
694 { .mfi
695       nop.m           0
696       fma.s1          fQDCBA = fQDC, fXsq, fQBA
697       nop.i           0
699 { .mfi
700       nop.m           0
701       fma.s1          fQ7654 = fQ76, fXsq, fQ54
702       nop.i           0
706 { .mfi
707       nop.m           0
708       fma.s1          fQDCBA98 = fQDCBA, fXsq, fQ98
709       nop.i           0
711 { .mfi
712       nop.m           0
713       fma.s1          fQ765432 = fQ7654, fXsq, fQ32
714       nop.i           0
718 { .mfi
719       nop.m           0
720       fma.s1          fQDCBA98765432 = fQDCBA98, fX6, fQ765432
721       nop.i           0
725 { .mfb
726       nop.m           0
727       fma.d.s0        f8 = fQDCBA98765432, fXsq, fNormX
728       br.ret.sptk     b0                   // Exit small branch
733 EXPM1_POSSIBLE_OVERFLOW:
735 // Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG
736 // This cannot happen if input is a double, only if input higher precision.
737 // Overflow is a possibility, not a certainty.
739 // Recompute result using status field 2 with user's rounding mode,
740 // and wre set.  If result is larger than largest double, then we have
741 // overflow
743 { .mfi
744       mov             rGt_ln  = 0x103ff // Exponent for largest dbl + 1 ulp
745       fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
746       nop.i           0
750 { .mfi
751       setf.exp        fGt_pln = rGt_ln  // Create largest double + 1 ulp
752       fma.d.s2        fWre_urm_f8 = fS, fP, fSm1  // Result with wre set
753       nop.i           0
757 { .mfi
758       nop.m           0
759       fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
760       nop.i           0
764 { .mfi
765       nop.m           0
766       fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
767       nop.i           0
771 { .mfb
772       nop.m           0
773       nop.f           0
774 (p6)  br.cond.spnt    EXPM1_CERTAIN_OVERFLOW // Branch if overflow
778 { .mfb
779       nop.m           0
780       fma.d.s0        f8 = fS, fP, fSm1
781       br.ret.sptk     b0                     // Exit if really no overflow
785 EXPM1_CERTAIN_OVERFLOW:
786 { .mmi
787       sub             rTmp = rExp_mask, r0, 1
789       setf.exp        fTmp = rTmp
790       nop.i           0
794 { .mfi
795       alloc           r32=ar.pfs,1,4,4,0
796       fmerge.s        FR_X = f8,f8
797       nop.i           0
799 { .mfb
800       mov             GR_Parameter_TAG = 41
801       fma.d.s0        FR_RESULT = fTmp, fTmp, f0    // Set I,O and +INF result
802       br.cond.sptk    __libm_error_region
806 // Here if x unorm
807 EXPM1_UNORM:
808 { .mfb
809       getf.exp        rSignexp_x = fNormX    // Must recompute if x unorm
810       fcmp.eq.s0      p6, p0 = f8, f0        // Set D flag
811       br.cond.sptk    EXPM1_COMMON
815 // here if result will be -1 and inexact, x <= -48.0
816 EXPM1_CERTAIN_MINUS_ONE:
817 { .mmi
818       mov             rTmp = 1
820       setf.exp        fTmp = rTmp
821       nop.i           0
825 { .mfb
826       nop.m           0
827       fms.d.s0        FR_RESULT = fTmp, fTmp, f1 // Set I, rounded -1+eps result
828       br.ret.sptk     b0
832 GLOBAL_IEEE754_END(expm1)
834 LOCAL_LIBM_ENTRY(__libm_error_region)
835 .prologue
836 { .mfi
837         add   GR_Parameter_Y=-32,sp             // Parameter 2 value
838         nop.f 0
839 .save   ar.pfs,GR_SAVE_PFS
840         mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
842 { .mfi
843 .fframe 64
844         add sp=-64,sp                           // Create new stack
845         nop.f 0
846         mov GR_SAVE_GP=gp                       // Save gp
848 { .mmi
849         stfd [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
850         add GR_Parameter_X = 16,sp              // Parameter 1 address
851 .save   b0, GR_SAVE_B0
852         mov GR_SAVE_B0=b0                       // Save b0
854 .body
855 { .mib
856         stfd [GR_Parameter_X] = FR_X            // STORE Parameter 1 on stack
857         add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
858         nop.b 0
860 { .mib
861         stfd [GR_Parameter_Y] = FR_RESULT       // STORE Parameter 3 on stack
862         add   GR_Parameter_Y = -16,GR_Parameter_Y
863         br.call.sptk b0=__libm_error_support#   // Call error handling function
865 { .mmi
866         add   GR_Parameter_RESULT = 48,sp
867         nop.m 0
868         nop.i 0
870 { .mmi
871         ldfd  f8 = [GR_Parameter_RESULT]       // Get return result off stack
872 .restore sp
873         add   sp = 64,sp                       // Restore stack pointer
874         mov   b0 = GR_SAVE_B0                  // Restore return address
876 { .mib
877         mov   gp = GR_SAVE_GP                  // Restore gp
878         mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
879         br.ret.sptk     b0                     // Return
882 LOCAL_LIBM_END(__libm_error_region)
883 .type   __libm_error_support#,@function
884 .global __libm_error_support#