Updated to fedora-glibc-20050106T1443
[glibc.git] / sysdeps / ia64 / fpu / s_asinh.S
bloba9ef4e1143e592483c8897a510b246e72460fe9e
1 .file "asinh.s"
4 // Copyright (c) 2000 - 2003, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 // ==============================================================
41 // History
42 // ==============================================================
43 // 04/02/01 Initial version
44 // 04/19/01 Improved speed of the paths #1,2,3,4,5
45 // 10/18/01 Improved accuracy
46 // 05/20/02 Cleaned up namespace and sf0 syntax
47 // 02/06/03 Reordered header: .section, .global, .proc, .align
48 // 05/21/03 Improved performance, fixed to handle unorms
50 // API
51 // ==============================================================
52 // double asinh(double)
54 // Overview of operation
55 // ==============================================================
57 // There are 7 paths:
58 // 1. x = 0.0
59 //    Return asinh(x) = 0.0
61 // 2. 0.0 <|x| < 2^(-3)
62 //    Return asinh(x) = POL13(x),
63 //         where POL13(x) = (x^2*C13 + ...)*x^2 + C5)*x^2 + C3)*x^3 + x
65 // 3. 2^(-3) <= |x| < 2^63
66 //    Return asinh(x) = sign(x)*(log(|x| + sqrt(x^2 + 1.0)))
67 //    To compute x + sqrt(x^2 + 1.0) modified Newton Raphson method is used
68 //      (3 iterations)
69 //    Algorithm description for log function see below.
71 // 4. 2^63 <= |x| < +INF
72 //    Return asinh(x) = sign(x)*log(2*|x|)
73 //    Algorithm description for log function see below.
75 // 5. x = INF
76 //    Return asinh(x) = INF
78 // 6. x = [S,Q]NaN
79 //    Return asinh(x) = QNaN
81 // 7. x = denormal
82 //    Return asinh(x) = x correctly rounded
84 //==============================================================
85 // Algorithm Description for log(x) function
86 // Below we are using the fact that inequality x - 1.0 > 2^(-6) is always
87 //   true for this asinh implementation
89 // Consider  x = 2^N 1.f1 f2 f3 f4...f63
90 // Log(x) = log(frcpa(x) x/frcpa(x))
91 //        = log(1/frcpa(x)) + log(frcpa(x) x)
92 //        = -log(frcpa(x)) + log(frcpa(x) x)
94 // frcpa(x)       = 2^-N frcpa((1.f1 f2 ... f63)
96 // -log(frcpa(x)) = -log(C)
97 //                = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
99 // -log(frcpa(x)) = -log(C)
100 //                = +Nlog2 - log(frcpa(1.f1 f2 ... f63))
102 // -log(frcpa(x)) = -log(C)
103 //                = +Nlog2 + log(frcpa(1.f1 f2 ... f63))
105 // Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
107 // Log(x) =  +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
108 // Log(x) =  +Nlog2 - log(/frcpa(1.f1 f2 ... f63))   + log(frcpa(x) x)
109 // Log(x) =  +Nlog2 + T                              + log(frcpa(x) x)
111 // Log(x) =  +Nlog2 + T                     + log(C x)
113 // Cx = 1 + r
115 // Log(x) =  +Nlog2 + T  + log(1+r)
116 // Log(x) =  +Nlog2 + T  + Series( r - r^2/2 + r^3/3 - r^4/4 ....)
118 // 1.f1 f2 ... f8 has 256 entries.
119 // They are 1 + k/2^8, k = 0 ... 255
120 // These 256 values are the table entries.
122 // Implementation
123 //==============================================================
124 // C = frcpa(x)
125 // r = C * x - 1
127 // Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4 + P4*r^5 + P5*r^6
129 // x = f * 2*n where f is 1.f_1f_2f_3....f_63
130 // Nfloat = float(n)  where n is the true unbiased exponent
131 // pre-index = f_1f_2....f_8
132 // index = pre_index * 16
133 // get the dxt table entry at index + offset = T
135 // result = (T + Nfloat * log(2)) + rseries
137 // The T table is calculated as follows
138 // Form x_k = 1 + k/2^8 where k goes from 0... 255
139 //      y_k = frcpa(x_k)
140 //      log(1/y_k)  in quad and round to double-extended
143 // Registers used
144 //==============================================================
145 // Floating Point registers used:
146 // f8, input
147 // f9 -> f15,  f32 -> f68
149 // General registers used:
150 // r14 -> r27
152 // Predicate registers used:
153 // p6 -> p14
155 // p6 to filter out case when x = [Q,S]NaN or INF or zero
156 // p7 to filter out case when x < 0.0
157 // p8 to select path #2
158 // p9 used in the frcpa from path #3
159 // p11 to filter out case when x >= 0
160 // p12 to filter out case when x = unorm
161 // p13 to select path #4
162 // Assembly macros
163 //==============================================================
164 log_GR_exp_17_ones    = r14
165 log_GR_signexp_f8     = r15
166 log_table_address2    = r16
167 log_GR_exp_16_ones    = r17
168 log_GR_exp_f8         = r18
169 log_GR_true_exp_f8    = r19
170 log_GR_significand_f8 = r20
171 log_GR_index          = r21
172 log_GR_comp2          = r22
173 asinh_GR_f8           = r23
174 asinh_GR_comp         = r24
175 asinh_GR_f8           = r25
176 log_table_address3    = r26
177 NR_table_address      = r27
179 //==============================================================
180 log_y            = f9
181 NR1              = f10
182 NR2              = f11
183 log_y_rs         = f12
184 log_y_rs_iter    = f13
185 log_y_rs_iter1   = f14
186 fNormX           = f15
187 asinh_w_sq       = f32
188 log_C13          = f33
189 log_C11          = f34
190 log_P3           = f35
191 log_P2           = f36
192 log_P1           = f37
193 log_P5           = f38
194 log_P4           = f39
195 log_C3           = f40
196 log_C5           = f41
197 log_C7           = f42
198 log2             = f43
199 asinh_f8         = f44
200 log_C            = f45
201 log_arg          = f46
202 log_C9           = f47
203 asinh_w_four     = f48
204 log_int_Nfloat   = f49
205 log_r            = f50
206 log_rsq          = f51
207 log_rp_p4        = f52
208 log_rp_p32       = f53
209 log_rcube        = f54
210 log_rp_p10       = f55
211 log_rp_p2        = f56
212 log_Nfloat       = f57
213 log_T            = f58
214 log_r2P_r        = f59
215 log_T_plus_Nlog2 = f60
216 asinh_w_3        = f61
217 asinh_w_5        = f62
218 asinh_w_cube     = f63
219 asinh_w_7        = f64
220 log_arg_early    = f65
221 asinh_w_9        = f66
222 asinh_w_13       = f67
223 asinh_w_seven    = f68
225 // Data tables
226 //==============================================================
228 RODATA
229 .align 16
231 LOCAL_OBJECT_START(log_table_1)
232 data8 0xBFC5555DA7212371 // P5
233 data8 0x3FC999A19EEF5826 // P4
234 data8 0xBFCFFFFFFFFEF009 // P3
235 data8 0x3FD555555554ECB2 // P2
236 data8 0xBFE0000000000000 // P1 = -0.5
237 data8 0x0000000000000000 // pad
238 data8 0xb17217f7d1cf79ac, 0x00003ffe  // log2
239 LOCAL_OBJECT_END(log_table_1)
241 LOCAL_OBJECT_START(log_table_2)
242 data8 0x3FE0000000000000 // 0.5
243 data8 0x4008000000000000 // 3.0
245 data8 0x8824BE4D74BC4F00, 0x00003FF9 // C13
246 data8 0xB725A2CD9556CC57, 0x0000BFF9 // C11
247 data8 0xF8E339127FBFF49D, 0x00003FF9 // C9
248 data8 0xB6DB6D7DCE17CB78, 0x0000BFFA // C7
249 data8 0x999999998802CCEF, 0x00003FFB // C5
250 data8 0xAAAAAAAAAAA8DC40, 0x0000BFFC // C3
251 LOCAL_OBJECT_END(log_table_2)
254 LOCAL_OBJECT_START(log_table_3)
255 data8 0x80200aaeac44ef38 , 0x00003ff6 //   log(1/frcpa(1+  0/2^-8))
257 data8 0xc09090a2c35aa070 , 0x00003ff7 //   log(1/frcpa(1+  1/2^-8))
258 data8 0xa0c94fcb41977c75 , 0x00003ff8 //   log(1/frcpa(1+  2/2^-8))
259 data8 0xe18b9c263af83301 , 0x00003ff8 //   log(1/frcpa(1+  3/2^-8))
260 data8 0x8d35c8d6399c30ea , 0x00003ff9 //   log(1/frcpa(1+  4/2^-8))
261 data8 0xadd4d2ecd601cbb8 , 0x00003ff9 //   log(1/frcpa(1+  5/2^-8))
263 data8 0xce95403a192f9f01 , 0x00003ff9 //   log(1/frcpa(1+  6/2^-8))
264 data8 0xeb59392cbcc01096 , 0x00003ff9 //   log(1/frcpa(1+  7/2^-8))
265 data8 0x862c7d0cefd54c5d , 0x00003ffa //   log(1/frcpa(1+  8/2^-8))
266 data8 0x94aa63c65e70d499 , 0x00003ffa //   log(1/frcpa(1+  9/2^-8))
267 data8 0xa54a696d4b62b382 , 0x00003ffa //   log(1/frcpa(1+ 10/2^-8))
269 data8 0xb3e4a796a5dac208 , 0x00003ffa //   log(1/frcpa(1+ 11/2^-8))
270 data8 0xc28c45b1878340a9 , 0x00003ffa //   log(1/frcpa(1+ 12/2^-8))
271 data8 0xd35c55f39d7a6235 , 0x00003ffa //   log(1/frcpa(1+ 13/2^-8))
272 data8 0xe220f037b954f1f5 , 0x00003ffa //   log(1/frcpa(1+ 14/2^-8))
273 data8 0xf0f3389b036834f3 , 0x00003ffa //   log(1/frcpa(1+ 15/2^-8))
275 data8 0xffd3488d5c980465 , 0x00003ffa //   log(1/frcpa(1+ 16/2^-8))
276 data8 0x87609ce2ed300490 , 0x00003ffb //   log(1/frcpa(1+ 17/2^-8))
277 data8 0x8ede9321e8c85927 , 0x00003ffb //   log(1/frcpa(1+ 18/2^-8))
278 data8 0x96639427f2f8e2f4 , 0x00003ffb //   log(1/frcpa(1+ 19/2^-8))
279 data8 0x9defad3e8f73217b , 0x00003ffb //   log(1/frcpa(1+ 20/2^-8))
281 data8 0xa582ebd50097029c , 0x00003ffb //   log(1/frcpa(1+ 21/2^-8))
282 data8 0xac06dbe75ab80fee , 0x00003ffb //   log(1/frcpa(1+ 22/2^-8))
283 data8 0xb3a78449b2d3ccca , 0x00003ffb //   log(1/frcpa(1+ 23/2^-8))
284 data8 0xbb4f79635ab46bb2 , 0x00003ffb //   log(1/frcpa(1+ 24/2^-8))
285 data8 0xc2fec93a83523f3f , 0x00003ffb //   log(1/frcpa(1+ 25/2^-8))
287 data8 0xc99af2eaca4c4571 , 0x00003ffb //   log(1/frcpa(1+ 26/2^-8))
288 data8 0xd1581106472fa653 , 0x00003ffb //   log(1/frcpa(1+ 27/2^-8))
289 data8 0xd8002560d4355f2e , 0x00003ffb //   log(1/frcpa(1+ 28/2^-8))
290 data8 0xdfcb43b4fe508632 , 0x00003ffb //   log(1/frcpa(1+ 29/2^-8))
291 data8 0xe67f6dff709d4119 , 0x00003ffb //   log(1/frcpa(1+ 30/2^-8))
293 data8 0xed393b1c22351280 , 0x00003ffb //   log(1/frcpa(1+ 31/2^-8))
294 data8 0xf5192bff087bcc35 , 0x00003ffb //   log(1/frcpa(1+ 32/2^-8))
295 data8 0xfbdf4ff6dfef2fa3 , 0x00003ffb //   log(1/frcpa(1+ 33/2^-8))
296 data8 0x81559a97f92f9cc7 , 0x00003ffc //   log(1/frcpa(1+ 34/2^-8))
297 data8 0x84be72bce90266e8 , 0x00003ffc //   log(1/frcpa(1+ 35/2^-8))
299 data8 0x88bc74113f23def2 , 0x00003ffc //   log(1/frcpa(1+ 36/2^-8))
300 data8 0x8c2ba3edf6799d11 , 0x00003ffc //   log(1/frcpa(1+ 37/2^-8))
301 data8 0x8f9dc92f92ea08b1 , 0x00003ffc //   log(1/frcpa(1+ 38/2^-8))
302 data8 0x9312e8f36efab5a7 , 0x00003ffc //   log(1/frcpa(1+ 39/2^-8))
303 data8 0x968b08643409ceb6 , 0x00003ffc //   log(1/frcpa(1+ 40/2^-8))
305 data8 0x9a062cba08a1708c , 0x00003ffc //   log(1/frcpa(1+ 41/2^-8))
306 data8 0x9d845b3abf95485c , 0x00003ffc //   log(1/frcpa(1+ 42/2^-8))
307 data8 0xa06fd841bc001bb4 , 0x00003ffc //   log(1/frcpa(1+ 43/2^-8))
308 data8 0xa3f3a74652fbe0db , 0x00003ffc //   log(1/frcpa(1+ 44/2^-8))
309 data8 0xa77a8fb2336f20f5 , 0x00003ffc //   log(1/frcpa(1+ 45/2^-8))
311 data8 0xab0497015d28b0a0 , 0x00003ffc //   log(1/frcpa(1+ 46/2^-8))
312 data8 0xae91c2be6ba6a615 , 0x00003ffc //   log(1/frcpa(1+ 47/2^-8))
313 data8 0xb189d1b99aebb20b , 0x00003ffc //   log(1/frcpa(1+ 48/2^-8))
314 data8 0xb51cced5de9c1b2c , 0x00003ffc //   log(1/frcpa(1+ 49/2^-8))
315 data8 0xb819bee9e720d42f , 0x00003ffc //   log(1/frcpa(1+ 50/2^-8))
317 data8 0xbbb2a0947b093a5d , 0x00003ffc //   log(1/frcpa(1+ 51/2^-8))
318 data8 0xbf4ec1505811684a , 0x00003ffc //   log(1/frcpa(1+ 52/2^-8))
319 data8 0xc2535bacfa8975ff , 0x00003ffc //   log(1/frcpa(1+ 53/2^-8))
320 data8 0xc55a3eafad187eb8 , 0x00003ffc //   log(1/frcpa(1+ 54/2^-8))
321 data8 0xc8ff2484b2c0da74 , 0x00003ffc //   log(1/frcpa(1+ 55/2^-8))
323 data8 0xcc0b1a008d53ab76 , 0x00003ffc //   log(1/frcpa(1+ 56/2^-8))
324 data8 0xcfb6203844b3209b , 0x00003ffc //   log(1/frcpa(1+ 57/2^-8))
325 data8 0xd2c73949a47a19f5 , 0x00003ffc //   log(1/frcpa(1+ 58/2^-8))
326 data8 0xd5daae18b49d6695 , 0x00003ffc //   log(1/frcpa(1+ 59/2^-8))
327 data8 0xd8f08248cf7e8019 , 0x00003ffc //   log(1/frcpa(1+ 60/2^-8))
329 data8 0xdca7749f1b3e540e , 0x00003ffc //   log(1/frcpa(1+ 61/2^-8))
330 data8 0xdfc28e033aaaf7c7 , 0x00003ffc //   log(1/frcpa(1+ 62/2^-8))
331 data8 0xe2e012a5f91d2f55 , 0x00003ffc //   log(1/frcpa(1+ 63/2^-8))
332 data8 0xe600064ed9e292a8 , 0x00003ffc //   log(1/frcpa(1+ 64/2^-8))
333 data8 0xe9226cce42b39f60 , 0x00003ffc //   log(1/frcpa(1+ 65/2^-8))
335 data8 0xec4749fd97a28360 , 0x00003ffc //   log(1/frcpa(1+ 66/2^-8))
336 data8 0xef6ea1bf57780495 , 0x00003ffc //   log(1/frcpa(1+ 67/2^-8))
337 data8 0xf29877ff38809091 , 0x00003ffc //   log(1/frcpa(1+ 68/2^-8))
338 data8 0xf5c4d0b245cb89be , 0x00003ffc //   log(1/frcpa(1+ 69/2^-8))
339 data8 0xf8f3afd6fcdef3aa , 0x00003ffc //   log(1/frcpa(1+ 70/2^-8))
341 data8 0xfc2519756be1abc7 , 0x00003ffc //   log(1/frcpa(1+ 71/2^-8))
342 data8 0xff59119f503e6832 , 0x00003ffc //   log(1/frcpa(1+ 72/2^-8))
343 data8 0x8147ce381ae0e146 , 0x00003ffd //   log(1/frcpa(1+ 73/2^-8))
344 data8 0x82e45f06cb1ad0f2 , 0x00003ffd //   log(1/frcpa(1+ 74/2^-8))
345 data8 0x842f5c7c573cbaa2 , 0x00003ffd //   log(1/frcpa(1+ 75/2^-8))
347 data8 0x85ce471968c8893a , 0x00003ffd //   log(1/frcpa(1+ 76/2^-8))
348 data8 0x876e8305bc04066d , 0x00003ffd //   log(1/frcpa(1+ 77/2^-8))
349 data8 0x891012678031fbb3 , 0x00003ffd //   log(1/frcpa(1+ 78/2^-8))
350 data8 0x8a5f1493d766a05f , 0x00003ffd //   log(1/frcpa(1+ 79/2^-8))
351 data8 0x8c030c778c56fa00 , 0x00003ffd //   log(1/frcpa(1+ 80/2^-8))
353 data8 0x8da85df17e31d9ae , 0x00003ffd //   log(1/frcpa(1+ 81/2^-8))
354 data8 0x8efa663e7921687e , 0x00003ffd //   log(1/frcpa(1+ 82/2^-8))
355 data8 0x90a22b6875c6a1f8 , 0x00003ffd //   log(1/frcpa(1+ 83/2^-8))
356 data8 0x91f62cc8f5d24837 , 0x00003ffd //   log(1/frcpa(1+ 84/2^-8))
357 data8 0x93a06cfc3857d980 , 0x00003ffd //   log(1/frcpa(1+ 85/2^-8))
359 data8 0x94f66d5e6fd01ced , 0x00003ffd //   log(1/frcpa(1+ 86/2^-8))
360 data8 0x96a330156e6772f2 , 0x00003ffd //   log(1/frcpa(1+ 87/2^-8))
361 data8 0x97fb3582754ea25b , 0x00003ffd //   log(1/frcpa(1+ 88/2^-8))
362 data8 0x99aa8259aad1bbf2 , 0x00003ffd //   log(1/frcpa(1+ 89/2^-8))
363 data8 0x9b0492f6227ae4a8 , 0x00003ffd //   log(1/frcpa(1+ 90/2^-8))
365 data8 0x9c5f8e199bf3a7a5 , 0x00003ffd //   log(1/frcpa(1+ 91/2^-8))
366 data8 0x9e1293b9998c1daa , 0x00003ffd //   log(1/frcpa(1+ 92/2^-8))
367 data8 0x9f6fa31e0b41f308 , 0x00003ffd //   log(1/frcpa(1+ 93/2^-8))
368 data8 0xa0cda11eaf46390e , 0x00003ffd //   log(1/frcpa(1+ 94/2^-8))
369 data8 0xa22c8f029cfa45aa , 0x00003ffd //   log(1/frcpa(1+ 95/2^-8))
371 data8 0xa3e48badb7856b34 , 0x00003ffd //   log(1/frcpa(1+ 96/2^-8))
372 data8 0xa5459a0aa95849f9 , 0x00003ffd //   log(1/frcpa(1+ 97/2^-8))
373 data8 0xa6a79c84480cfebd , 0x00003ffd //   log(1/frcpa(1+ 98/2^-8))
374 data8 0xa80a946d0fcb3eb2 , 0x00003ffd //   log(1/frcpa(1+ 99/2^-8))
375 data8 0xa96e831a3ea7b314 , 0x00003ffd //   log(1/frcpa(1+100/2^-8))
377 data8 0xaad369e3dc544e3b , 0x00003ffd //   log(1/frcpa(1+101/2^-8))
378 data8 0xac92e9588952c815 , 0x00003ffd //   log(1/frcpa(1+102/2^-8))
379 data8 0xadfa035aa1ed8fdc , 0x00003ffd //   log(1/frcpa(1+103/2^-8))
380 data8 0xaf6219eae1ad6e34 , 0x00003ffd //   log(1/frcpa(1+104/2^-8))
381 data8 0xb0cb2e6d8160f753 , 0x00003ffd //   log(1/frcpa(1+105/2^-8))
383 data8 0xb2354249ad950f72 , 0x00003ffd //   log(1/frcpa(1+106/2^-8))
384 data8 0xb3a056e98ef4a3b4 , 0x00003ffd //   log(1/frcpa(1+107/2^-8))
385 data8 0xb50c6dba52c6292a , 0x00003ffd //   log(1/frcpa(1+108/2^-8))
386 data8 0xb679882c33876165 , 0x00003ffd //   log(1/frcpa(1+109/2^-8))
387 data8 0xb78c07429785cedc , 0x00003ffd //   log(1/frcpa(1+110/2^-8))
389 data8 0xb8faeb8dc4a77d24 , 0x00003ffd //   log(1/frcpa(1+111/2^-8))
390 data8 0xba6ad77eb36ae0d6 , 0x00003ffd //   log(1/frcpa(1+112/2^-8))
391 data8 0xbbdbcc915e9bee50 , 0x00003ffd //   log(1/frcpa(1+113/2^-8))
392 data8 0xbd4dcc44f8cf12ef , 0x00003ffd //   log(1/frcpa(1+114/2^-8))
393 data8 0xbec0d81bf5b531fa , 0x00003ffd //   log(1/frcpa(1+115/2^-8))
395 data8 0xc034f19c139186f4 , 0x00003ffd //   log(1/frcpa(1+116/2^-8))
396 data8 0xc14cb69f7c5e55ab , 0x00003ffd //   log(1/frcpa(1+117/2^-8))
397 data8 0xc2c2abbb6e5fd56f , 0x00003ffd //   log(1/frcpa(1+118/2^-8))
398 data8 0xc439b2c193e6771e , 0x00003ffd //   log(1/frcpa(1+119/2^-8))
399 data8 0xc553acb9d5c67733 , 0x00003ffd //   log(1/frcpa(1+120/2^-8))
401 data8 0xc6cc96e441272441 , 0x00003ffd //   log(1/frcpa(1+121/2^-8))
402 data8 0xc8469753eca88c30 , 0x00003ffd //   log(1/frcpa(1+122/2^-8))
403 data8 0xc962cf3ce072b05c , 0x00003ffd //   log(1/frcpa(1+123/2^-8))
404 data8 0xcadeba8771f694aa , 0x00003ffd //   log(1/frcpa(1+124/2^-8))
405 data8 0xcc5bc08d1f72da94 , 0x00003ffd //   log(1/frcpa(1+125/2^-8))
407 data8 0xcd7a3f99ea035c29 , 0x00003ffd //   log(1/frcpa(1+126/2^-8))
408 data8 0xcef93860c8a53c35 , 0x00003ffd //   log(1/frcpa(1+127/2^-8))
409 data8 0xd0192f68a7ed23df , 0x00003ffd //   log(1/frcpa(1+128/2^-8))
410 data8 0xd19a201127d3c645 , 0x00003ffd //   log(1/frcpa(1+129/2^-8))
411 data8 0xd2bb92f4061c172c , 0x00003ffd //   log(1/frcpa(1+130/2^-8))
413 data8 0xd43e80b2ee8cc8fc , 0x00003ffd //   log(1/frcpa(1+131/2^-8))
414 data8 0xd56173601fc4ade4 , 0x00003ffd //   log(1/frcpa(1+132/2^-8))
415 data8 0xd6e6637efb54086f , 0x00003ffd //   log(1/frcpa(1+133/2^-8))
416 data8 0xd80ad9f58f3c8193 , 0x00003ffd //   log(1/frcpa(1+134/2^-8))
417 data8 0xd991d1d31aca41f8 , 0x00003ffd //   log(1/frcpa(1+135/2^-8))
419 data8 0xdab7d02231484a93 , 0x00003ffd //   log(1/frcpa(1+136/2^-8))
420 data8 0xdc40d532cde49a54 , 0x00003ffd //   log(1/frcpa(1+137/2^-8))
421 data8 0xdd685f79ed8b265e , 0x00003ffd //   log(1/frcpa(1+138/2^-8))
422 data8 0xde9094bbc0e17b1d , 0x00003ffd //   log(1/frcpa(1+139/2^-8))
423 data8 0xe01c91b78440c425 , 0x00003ffd //   log(1/frcpa(1+140/2^-8))
425 data8 0xe14658f26997e729 , 0x00003ffd //   log(1/frcpa(1+141/2^-8))
426 data8 0xe270cdc2391e0d23 , 0x00003ffd //   log(1/frcpa(1+142/2^-8))
427 data8 0xe3ffce3a2aa64922 , 0x00003ffd //   log(1/frcpa(1+143/2^-8))
428 data8 0xe52bdb274ed82887 , 0x00003ffd //   log(1/frcpa(1+144/2^-8))
429 data8 0xe6589852e75d7df6 , 0x00003ffd //   log(1/frcpa(1+145/2^-8))
431 data8 0xe786068c79937a7d , 0x00003ffd //   log(1/frcpa(1+146/2^-8))
432 data8 0xe91903adad100911 , 0x00003ffd //   log(1/frcpa(1+147/2^-8))
433 data8 0xea481236f7d35bb0 , 0x00003ffd //   log(1/frcpa(1+148/2^-8))
434 data8 0xeb77d48c692e6b14 , 0x00003ffd //   log(1/frcpa(1+149/2^-8))
435 data8 0xeca84b83d7297b87 , 0x00003ffd //   log(1/frcpa(1+150/2^-8))
437 data8 0xedd977f4962aa158 , 0x00003ffd //   log(1/frcpa(1+151/2^-8))
438 data8 0xef7179a22f257754 , 0x00003ffd //   log(1/frcpa(1+152/2^-8))
439 data8 0xf0a450d139366ca7 , 0x00003ffd //   log(1/frcpa(1+153/2^-8))
440 data8 0xf1d7e0524ff9ffdb , 0x00003ffd //   log(1/frcpa(1+154/2^-8))
441 data8 0xf30c29036a8b6cae , 0x00003ffd //   log(1/frcpa(1+155/2^-8))
443 data8 0xf4412bc411ea8d92 , 0x00003ffd //   log(1/frcpa(1+156/2^-8))
444 data8 0xf576e97564c8619d , 0x00003ffd //   log(1/frcpa(1+157/2^-8))
445 data8 0xf6ad62fa1b5f172f , 0x00003ffd //   log(1/frcpa(1+158/2^-8))
446 data8 0xf7e499368b55c542 , 0x00003ffd //   log(1/frcpa(1+159/2^-8))
447 data8 0xf91c8d10abaffe22 , 0x00003ffd //   log(1/frcpa(1+160/2^-8))
449 data8 0xfa553f7018c966f3 , 0x00003ffd //   log(1/frcpa(1+161/2^-8))
450 data8 0xfb8eb13e185d802c , 0x00003ffd //   log(1/frcpa(1+162/2^-8))
451 data8 0xfcc8e3659d9bcbed , 0x00003ffd //   log(1/frcpa(1+163/2^-8))
452 data8 0xfe03d6d34d487fd2 , 0x00003ffd //   log(1/frcpa(1+164/2^-8))
453 data8 0xff3f8c7581e9f0ae , 0x00003ffd //   log(1/frcpa(1+165/2^-8))
455 data8 0x803e029e280173ae , 0x00003ffe //   log(1/frcpa(1+166/2^-8))
456 data8 0x80dca10cc52d0757 , 0x00003ffe //   log(1/frcpa(1+167/2^-8))
457 data8 0x817ba200632755a1 , 0x00003ffe //   log(1/frcpa(1+168/2^-8))
458 data8 0x821b05f3b01d6774 , 0x00003ffe //   log(1/frcpa(1+169/2^-8))
459 data8 0x82bacd623ff19d06 , 0x00003ffe //   log(1/frcpa(1+170/2^-8))
461 data8 0x835af8c88e7a8f47 , 0x00003ffe //   log(1/frcpa(1+171/2^-8))
462 data8 0x83c5f8299e2b4091 , 0x00003ffe //   log(1/frcpa(1+172/2^-8))
463 data8 0x8466cb43f3d87300 , 0x00003ffe //   log(1/frcpa(1+173/2^-8))
464 data8 0x850803a67c80ca4b , 0x00003ffe //   log(1/frcpa(1+174/2^-8))
465 data8 0x85a9a1d11a23b461 , 0x00003ffe //   log(1/frcpa(1+175/2^-8))
467 data8 0x864ba644a18e6e05 , 0x00003ffe //   log(1/frcpa(1+176/2^-8))
468 data8 0x86ee1182dcc432f7 , 0x00003ffe //   log(1/frcpa(1+177/2^-8))
469 data8 0x875a925d7e48c316 , 0x00003ffe //   log(1/frcpa(1+178/2^-8))
470 data8 0x87fdaa109d23aef7 , 0x00003ffe //   log(1/frcpa(1+179/2^-8))
471 data8 0x88a129ed4becfaf2 , 0x00003ffe //   log(1/frcpa(1+180/2^-8))
473 data8 0x89451278ecd7f9cf , 0x00003ffe //   log(1/frcpa(1+181/2^-8))
474 data8 0x89b29295f8432617 , 0x00003ffe //   log(1/frcpa(1+182/2^-8))
475 data8 0x8a572ac5a5496882 , 0x00003ffe //   log(1/frcpa(1+183/2^-8))
476 data8 0x8afc2d0ce3b2dadf , 0x00003ffe //   log(1/frcpa(1+184/2^-8))
477 data8 0x8b6a69c608cfd3af , 0x00003ffe //   log(1/frcpa(1+185/2^-8))
479 data8 0x8c101e106e899a83 , 0x00003ffe //   log(1/frcpa(1+186/2^-8))
480 data8 0x8cb63de258f9d626 , 0x00003ffe //   log(1/frcpa(1+187/2^-8))
481 data8 0x8d2539c5bd19e2b1 , 0x00003ffe //   log(1/frcpa(1+188/2^-8))
482 data8 0x8dcc0e064b29e6f1 , 0x00003ffe //   log(1/frcpa(1+189/2^-8))
483 data8 0x8e734f45d88357ae , 0x00003ffe //   log(1/frcpa(1+190/2^-8))
485 data8 0x8ee30cef034a20db , 0x00003ffe //   log(1/frcpa(1+191/2^-8))
486 data8 0x8f8b0515686d1d06 , 0x00003ffe //   log(1/frcpa(1+192/2^-8))
487 data8 0x90336bba039bf32f , 0x00003ffe //   log(1/frcpa(1+193/2^-8))
488 data8 0x90a3edd23d1c9d58 , 0x00003ffe //   log(1/frcpa(1+194/2^-8))
489 data8 0x914d0de2f5d61b32 , 0x00003ffe //   log(1/frcpa(1+195/2^-8))
491 data8 0x91be0c20d28173b5 , 0x00003ffe //   log(1/frcpa(1+196/2^-8))
492 data8 0x9267e737c06cd34a , 0x00003ffe //   log(1/frcpa(1+197/2^-8))
493 data8 0x92d962ae6abb1237 , 0x00003ffe //   log(1/frcpa(1+198/2^-8))
494 data8 0x9383fa6afbe2074c , 0x00003ffe //   log(1/frcpa(1+199/2^-8))
495 data8 0x942f0421651c1c4e , 0x00003ffe //   log(1/frcpa(1+200/2^-8))
497 data8 0x94a14a3845bb985e , 0x00003ffe //   log(1/frcpa(1+201/2^-8))
498 data8 0x954d133857f861e7 , 0x00003ffe //   log(1/frcpa(1+202/2^-8))
499 data8 0x95bfd96468e604c4 , 0x00003ffe //   log(1/frcpa(1+203/2^-8))
500 data8 0x9632d31cafafa858 , 0x00003ffe //   log(1/frcpa(1+204/2^-8))
501 data8 0x96dfaabd86fa1647 , 0x00003ffe //   log(1/frcpa(1+205/2^-8))
503 data8 0x9753261fcbb2a594 , 0x00003ffe //   log(1/frcpa(1+206/2^-8))
504 data8 0x9800c11b426b996d , 0x00003ffe //   log(1/frcpa(1+207/2^-8))
505 data8 0x9874bf4d45ae663c , 0x00003ffe //   log(1/frcpa(1+208/2^-8))
506 data8 0x99231f5ee9a74f79 , 0x00003ffe //   log(1/frcpa(1+209/2^-8))
507 data8 0x9997a18a56bcad28 , 0x00003ffe //   log(1/frcpa(1+210/2^-8))
509 data8 0x9a46c873a3267e79 , 0x00003ffe //   log(1/frcpa(1+211/2^-8))
510 data8 0x9abbcfc621eb6cb6 , 0x00003ffe //   log(1/frcpa(1+212/2^-8))
511 data8 0x9b310cb0d354c990 , 0x00003ffe //   log(1/frcpa(1+213/2^-8))
512 data8 0x9be14cf9e1b3515c , 0x00003ffe //   log(1/frcpa(1+214/2^-8))
513 data8 0x9c5710b8cbb73a43 , 0x00003ffe //   log(1/frcpa(1+215/2^-8))
515 data8 0x9ccd0abd301f399c , 0x00003ffe //   log(1/frcpa(1+216/2^-8))
516 data8 0x9d7e67f3bdce8888 , 0x00003ffe //   log(1/frcpa(1+217/2^-8))
517 data8 0x9df4ea81a99daa01 , 0x00003ffe //   log(1/frcpa(1+218/2^-8))
518 data8 0x9e6ba405a54514ba , 0x00003ffe //   log(1/frcpa(1+219/2^-8))
519 data8 0x9f1e21c8c7bb62b3 , 0x00003ffe //   log(1/frcpa(1+220/2^-8))
521 data8 0x9f956593f6b6355c , 0x00003ffe //   log(1/frcpa(1+221/2^-8))
522 data8 0xa00ce1092e5498c3 , 0x00003ffe //   log(1/frcpa(1+222/2^-8))
523 data8 0xa0c08309c4b912c1 , 0x00003ffe //   log(1/frcpa(1+223/2^-8))
524 data8 0xa1388a8c6faa2afa , 0x00003ffe //   log(1/frcpa(1+224/2^-8))
525 data8 0xa1b0ca7095b5f985 , 0x00003ffe //   log(1/frcpa(1+225/2^-8))
527 data8 0xa22942eb47534a00 , 0x00003ffe //   log(1/frcpa(1+226/2^-8))
528 data8 0xa2de62326449d0a3 , 0x00003ffe //   log(1/frcpa(1+227/2^-8))
529 data8 0xa357690f88bfe345 , 0x00003ffe //   log(1/frcpa(1+228/2^-8))
530 data8 0xa3d0a93f45169a4b , 0x00003ffe //   log(1/frcpa(1+229/2^-8))
531 data8 0xa44a22f7ffe65f30 , 0x00003ffe //   log(1/frcpa(1+230/2^-8))
533 data8 0xa500c5e5b4c1aa36 , 0x00003ffe //   log(1/frcpa(1+231/2^-8))
534 data8 0xa57ad064eb2ebbc2 , 0x00003ffe //   log(1/frcpa(1+232/2^-8))
535 data8 0xa5f5152dedf4384e , 0x00003ffe //   log(1/frcpa(1+233/2^-8))
536 data8 0xa66f9478856233ec , 0x00003ffe //   log(1/frcpa(1+234/2^-8))
537 data8 0xa6ea4e7cca02c32e , 0x00003ffe //   log(1/frcpa(1+235/2^-8))
539 data8 0xa765437325341ccf , 0x00003ffe //   log(1/frcpa(1+236/2^-8))
540 data8 0xa81e21e6c75b4020 , 0x00003ffe //   log(1/frcpa(1+237/2^-8))
541 data8 0xa899ab333fe2b9ca , 0x00003ffe //   log(1/frcpa(1+238/2^-8))
542 data8 0xa9157039c51ebe71 , 0x00003ffe //   log(1/frcpa(1+239/2^-8))
543 data8 0xa991713433c2b999 , 0x00003ffe //   log(1/frcpa(1+240/2^-8))
545 data8 0xaa0dae5cbcc048b3 , 0x00003ffe //   log(1/frcpa(1+241/2^-8))
546 data8 0xaa8a27ede5eb13ad , 0x00003ffe //   log(1/frcpa(1+242/2^-8))
547 data8 0xab06de228a9e3499 , 0x00003ffe //   log(1/frcpa(1+243/2^-8))
548 data8 0xab83d135dc633301 , 0x00003ffe //   log(1/frcpa(1+244/2^-8))
549 data8 0xac3fb076adc7fe7a , 0x00003ffe //   log(1/frcpa(1+245/2^-8))
551 data8 0xacbd3cbbe47988f1 , 0x00003ffe //   log(1/frcpa(1+246/2^-8))
552 data8 0xad3b06b1a5dc57c3 , 0x00003ffe //   log(1/frcpa(1+247/2^-8))
553 data8 0xadb90e94af887717 , 0x00003ffe //   log(1/frcpa(1+248/2^-8))
554 data8 0xae3754a218f7c816 , 0x00003ffe //   log(1/frcpa(1+249/2^-8))
555 data8 0xaeb5d9175437afa2 , 0x00003ffe //   log(1/frcpa(1+250/2^-8))
557 data8 0xaf349c322e9c7cee , 0x00003ffe //   log(1/frcpa(1+251/2^-8))
558 data8 0xafb39e30d1768d1c , 0x00003ffe //   log(1/frcpa(1+252/2^-8))
559 data8 0xb032df51c2c93116 , 0x00003ffe //   log(1/frcpa(1+253/2^-8))
560 data8 0xb0b25fd3e6035ad9 , 0x00003ffe //   log(1/frcpa(1+254/2^-8))
561 data8 0xb1321ff67cba178c , 0x00003ffe //   log(1/frcpa(1+255/2^-8))
562 LOCAL_OBJECT_END(log_table_3)
565 .section .text
566 GLOBAL_LIBM_ENTRY(asinh)
568 { .mfi
569       getf.exp   asinh_GR_f8 = f8        // Must recompute later if x unorm
570       fclass.m   p12,p0 = f8, 0x0b       // Test x unorm
571       mov        log_GR_exp_17_ones = 0x1ffff
573 { .mfi
574       addl       NR_table_address = @ltoff(log_table_1), gp
575       fma.s1     log_y = f8, f8, f1      // y = x^2 + 1
576       mov        asinh_GR_comp = 0xfffc
580 { .mfi
581       mov        log_GR_exp_16_ones = 0xffff //BIAS
582       fclass.m   p6,p0 = f8, 0xe7        // Test for x = NaN and inf and zero
583       mov        log_GR_comp2 = 0x1003e
585 { .mfi
586       ld8        NR_table_address = [NR_table_address]
587       fma.s1     asinh_w_sq = f8,f8,f0   // x^2
588       nop.i      0
592 { .mfi
593       nop.m      0
594       fcmp.lt.s1 p7,p11 = f8,f0          // if x<0
595       nop.i      0
597 { .mfb
598       nop.m      0
599       fnorm.s1   fNormX = f8             // Normalize x
600 (p12) br.cond.spnt ASINH_UNORM           // Branch if x=unorm
604 ASINH_COMMON:
605 // Return here if x=unorm and not denorm
606 { .mfi
607       //to get second table address
608       adds       log_table_address2 = 0x40, NR_table_address
609       fma.s1     log_arg = f8,f1,f8
610       nop.i      0
612 { .mfb
613       nop.m      0
614 (p6)  fma.d.s0   f8 = f8,f1,f8           // quietize nan result if x=nan
615 (p6)  br.ret.spnt b0                     // Exit for x=nan and inf and zero
619 { .mfi
620       ldfpd      NR1,NR2 = [log_table_address2],16
621       frsqrta.s1 log_y_rs,p0 = log_y     // z=1/sqrt(y)
622       nop.i      0
626 { .mfi
627       ldfe       log_C13 = [log_table_address2],16
628       nop.f      0
629       and        asinh_GR_f8 = asinh_GR_f8,log_GR_exp_17_ones
633 { .mib
634       ldfe       log_C11 = [log_table_address2],16
635       cmp.le     p13,p0 = log_GR_comp2,asinh_GR_f8
636 (p13) br.cond.spnt LOG_COMMON1           // Branch if path 4, |x| >= 2^63
640 { .mfi
641       nop.m      0
642       fma.s1     log_y_rs_iter = log_y_rs,log_y,f0  // y*z
643       nop.i      0
647 .pred.rel "mutex",p7,p11
648 { .mfi
649       nop.m      0
650 (p11) mov        asinh_f8 = fNormX
651       nop.i      0
653 { .mfb
654       cmp.gt     p8,p0 = asinh_GR_comp,asinh_GR_f8
655 (p7)  fnma.s1    asinh_f8 = fNormX,f1,f0
656 (p8)  br.cond.spnt ASINH_NEAR_ZERO       // Branch if path 2, 0 < |x| < 2^-3
660 // Here if main path, 2^-3 <= |x| < 2^63
661 ///////////////////////////////// The first iteration /////////////////////////
662 { .mfi
663       ldfpd      log_P5,log_P4 = [NR_table_address],16
664       fnma.s1    log_y_rs_iter = log_y_rs_iter,log_y_rs,NR2     // 3-(y*z)*z
665       nop.i      0
667 { .mfi
668       nop.m      0
669       fma.s1     log_y_rs_iter1 = log_y_rs,NR1,f0               // 0.5*z
670       nop.i      0
674 { .mfi
675       ldfpd      log_P3,log_P2 = [NR_table_address],16
676       // (0.5*z)*(3-(y*z)*z)
677       fma.s1     log_y_rs_iter = log_y_rs_iter1,log_y_rs_iter,f0
678       nop.i      0
682 /////////////////////////// The second iteration /////////////////////////////
683 { .mfi
684       ldfd       log_P1 = [NR_table_address],16
685       fma.s1     log_y_rs = log_y_rs_iter,log_y,f0
686       nop.i      0
690 { .mfi
691       nop.m      0
692       fnma.s1    log_y_rs = log_y_rs,log_y_rs_iter,NR2
693       nop.i      0
695 { .mfi
696       nop.m      0
697       fma.s1     log_y_rs_iter1 = log_y_rs_iter,NR1,f0
698       nop.i      0
702 { .mfi
703       ldfe       log2 = [NR_table_address],16
704       // (0.5*z)*(3-(y*z)*z)
705       fma.s1     log_y_rs_iter = log_y_rs_iter1,log_y_rs,f0
706       nop.i      0
708 { .mfi
709       nop.m      0
710       // (0.5*z)*(3-(y*z)*z)
711       fma.s1     log_arg_early = log_y_rs_iter1,log_y_rs,f0
712       nop.i      0
716 ////////////////////////////////// The third iteration ////////////////////////
717 { .mfi
718       nop.m      0
719       fma.s1     log_y_rs = log_y_rs_iter,log_y,f0
720       nop.i      0
722 { .mfi
723       nop.m      0
724       fma.s1     log_y_rs_iter1 = log_y_rs_iter,NR1,f0
725       nop.i      0
729 { .mfi
730       nop.m      0
731       fma.s1     log_arg_early = log_arg_early,log_y,asinh_f8
732       nop.i      0
736 { .mfi
737       nop.m      0
738       fnma.s1    log_y_rs = log_y_rs,log_y_rs_iter,NR2
739       nop.i      0
741 { .mfi
742       nop.m      0
743       fma.s1     log_y_rs_iter1 = log_y_rs_iter1,log_y,f0
744       nop.i      0
748 { .mfi
749       nop.m      0
750       frcpa.s1   log_C,p0 = f1,log_arg_early
751       nop.i      0
755 { .mfi
756       getf.exp   log_GR_signexp_f8 = log_arg_early
757       nop.f      0
758       nop.i      0
762 { .mfi
763       getf.sig   log_GR_significand_f8 = log_arg_early
764       // (0.5*z)*(3-(y*z)*z)*y + |x|
765       fma.s1     log_arg = log_y_rs_iter1,log_y_rs,asinh_f8
766       //to get third table address
767       adds       log_table_address3 = 0x70, NR_table_address
771 ///////////////////////////////// The end NR iterations /////////////////////
772 { .mfi
773       nop.m      0
774       nop.f      0
775       //significant bit destruction
776       and        log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
780 { .mfi
781       //BIAS subtraction
782       sub        log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
783 (p7)  fnma.s1    log2 = log2,f1,f0
784       nop.i      0
788 { .mfi
789       setf.sig   log_int_Nfloat = log_GR_true_exp_f8
790       fms.s1     log_r = log_C,log_arg,f1  // C = frcpa(x); r = C * x - 1
791       extr.u     log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
795 { .mmi
796       //pre-index*16 + index
797       shladd     log_table_address3 = log_GR_index,4,log_table_address3
799       ldfe       log_T = [log_table_address3]
800       nop.i      0
804 { .mfi
805       nop.m      0
806       fma.s1     log_rsq = log_r, log_r, f0          //r^2
807       nop.i      0
809 { .mfi
810       nop.m      0
811       fma.s1     log_rp_p4 = log_P5, log_r, log_P4   //P5*r + P4
812       nop.i      0
816 { .mfi
817       nop.m      0
818       fma.s1     log_rp_p32 = log_P3, log_r, log_P2  //P3*r + P2
819       nop.i      0
823 { .mfi
824       nop.m      0
825       //convert N to the floating-point format
826       fcvt.xf    log_Nfloat = log_int_Nfloat
827       nop.i      0
831 { .mfi
832       nop.m      0
833       fma.s1     log_rcube = log_rsq, log_r, f0      //r^3
834       nop.i      0
836 { .mfi
837       nop.m      0
838       fma.s1     log_rp_p10 = log_rsq, log_P1, log_r //P1*r^2 + r
839       nop.i      0
843 { .mfi
844       nop.m      0
845       //(P5*r + P4)*r^2 + P3*r + P2
846       fma.s1     log_rp_p2 = log_rp_p4, log_rsq, log_rp_p32
847       nop.i      0
851 .pred.rel "mutex",p7,p11
852 { .mfi
853       nop.m      0
854 (p11) fma.s1     log_T_plus_Nlog2 = log_Nfloat,log2,log_T  //N*log2 + T if x>0
855       nop.i      0
857 { .mfi
858       nop.m      0
859 (p7)  fms.s1     log_T_plus_Nlog2 = log_Nfloat,log2,log_T  //N*log2 - T if x<0
860       nop.i      0
864 { .mfi
865       nop.m      0
866       //((P5*r + P4)*r^2 + P3*r + P2)*w^3 + P1*r^2 + r
867       fma.s1     log_r2P_r = log_rp_p2, log_rcube, log_rp_p10
868       nop.i      0
872 { .mfi
873       nop.m      0
874       //  N*log2 + T + ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
875 (p11) fadd.d.s0  f8 = log_T_plus_Nlog2,log_r2P_r
876       nop.i      0
878 { .mfb
879       nop.m      0
880       // -N*log2 - T - ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
881 (p7)  fsub.d.s0  f8 = log_T_plus_Nlog2,log_r2P_r
882       br.ret.sptk b0           // Exit main path, path 3: 2^-3 <= |x| < 2^63
886 // Here if path 4, |x| >= 2^63
887 LOG_COMMON1:
888 { .mfi
889       ldfpd      log_P5,log_P4 = [NR_table_address],16
890       nop.f      0
891       nop.i      0
895 { .mfi
896       ldfpd      log_P3,log_P2 = [NR_table_address],16
897       frcpa.s1   log_C,p0 = f1,log_arg
898       nop.i      0
902 { .mmi
903       getf.exp   log_GR_signexp_f8 = log_arg
904       ldfd       log_P1 = [NR_table_address],16
905       nop.i      0
909 { .mmi
910       getf.sig   log_GR_significand_f8 = log_arg
911       ldfe       log2 = [NR_table_address],16
912       nop.i      0
916 { .mfi
917       adds       log_table_address3 = 0x70, NR_table_address
918       nop.f      0
919       //significant bit destruction
920       and        log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
924 { .mmf
925       nop.m      0
926       //BIAS subtraction
927       sub        log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
928       fms.s1     log_r = log_C,log_arg,f1  //C = frcpa(x); r = C * x - 1
932 { .mfi
933       setf.sig   log_int_Nfloat = log_GR_true_exp_f8
934       nop.f      0
935       extr.u     log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
939 { .mmi
940       //pre-index*16 + index
941       shladd     log_table_address3 = log_GR_index,4,log_table_address3
943       ldfe       log_T = [log_table_address3]
944       nop.i      0
949 { .mfi
950       nop.m      0
951       fma.s1     log_rsq = log_r, log_r, f0          //r^2
952       nop.i      0
954 { .mfi
955       nop.m      0
956       fma.s1     log_rp_p4 = log_P5, log_r, log_P4   //P5*r + P4
957       nop.i      0
961 { .mfi
962       nop.m      0
963       fma.s1     log_rp_p32 = log_P3, log_r, log_P2  //P3*r + P2
964       nop.i      0
966 { .mfi
967       nop.m      0
968 (p7)  fnma.s1    log2 = log2,f1,f0
969       nop.i      0
973 { .mfi
974       nop.m      0
975       fma.s1     log_rcube = log_rsq, log_r, f0      //r^3
976       nop.i      0
978 { .mfi
979       nop.m      0
980       fma.s1     log_rp_p10 = log_rsq, log_P1, log_r //P1*r^2 + r
981       nop.i      0
985 { .mfi
986       nop.m      0
987       //convert N to the floating-point format
988       fcvt.xf    log_Nfloat = log_int_Nfloat
989       nop.i      0
991 { .mfi
992       nop.m      0
993       //(P5*r + P4)*r^2 + P3*r + P2
994       fma.s1     log_rp_p2 = log_rp_p4, log_rsq, log_rp_p32
995       nop.i      0
999 { .mfi
1000       nop.m      0
1001 (p7)  fnma.s1    log_T = log_T,f1,f0
1002       nop.i      0
1006 { .mfi
1007       nop.m      0
1008       fma.s1     log_T_plus_Nlog2 = log_Nfloat,log2,log_T    //N*log2 + T
1009       nop.i      0
1011 { .mfi
1012       nop.m      0
1013       //((P5*r + P4)*r^2 + P3*r + P2)*w^3 + P1*r^2 + r
1014       fma.s1     log_r2P_r = log_rp_p2, log_rcube, log_rp_p10
1015       nop.i      0
1019 .pred.rel "mutex",p7,p11
1020 { .mfi
1021       nop.m      0
1022       //  N*log2 + T + ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
1023 (p11) fadd.d.s0  f8 = log_T_plus_Nlog2,log_r2P_r
1024       nop.i      0
1026 { .mfb
1027       nop.m      0
1028       // -N*log2 - T - ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
1029 (p7)  fsub.d.s0  f8 = log_T_plus_Nlog2,log_r2P_r
1030       br.ret.sptk b0              // Exit path 4, |x| >= 2^63
1034 // Here is path 2, 0 < |x| < 2^-3
1035 ASINH_NEAR_ZERO:
1036 { .mfi
1037       ldfe       log_C9 = [log_table_address2],16
1038       fma.s1     asinh_w_cube = asinh_w_sq,fNormX,f0
1039       nop.i      0
1043 { .mfi
1044       ldfe       log_C7 = [log_table_address2],16
1045       fma.s1     asinh_w_four = asinh_w_sq,asinh_w_sq,f0
1046       nop.i      0
1050 { .mfi
1051       ldfe       log_C5 = [log_table_address2],16
1052       nop.f      0
1053       nop.i      0
1057 { .mfi
1058       ldfe       log_C3 = [log_table_address2],16
1059       nop.f      0
1060       nop.i      0
1064 { .mfi
1065       nop.m      0
1066       fma.s1     asinh_w_13 = log_C13,asinh_w_sq,log_C11
1067       nop.i      0
1069 { .mfi
1070       nop.m      0
1071       fma.s1     asinh_w_9 = log_C9,asinh_w_sq,log_C7
1072       nop.i      0
1076 { .mfi
1077       nop.m      0
1078       fma.s1     asinh_w_3 = log_C5,asinh_w_sq,log_C3
1079       nop.i      0
1081 { .mfi
1082       nop.m      0
1083       fma.s1     asinh_w_seven = asinh_w_four,asinh_w_cube,f0
1084       nop.i      0
1088 { .mfi
1089       nop.m      0
1090       fma.s1     asinh_w_7 = asinh_w_13,asinh_w_four,asinh_w_9
1091       nop.i      0
1093 { .mfi
1094       nop.m      0
1095       fma.s1     asinh_w_5 = asinh_w_3,asinh_w_cube,fNormX
1096       nop.i      0
1100 { .mfb
1101       nop.m      0
1102       fma.d.s0   f8 = asinh_w_7,asinh_w_seven,asinh_w_5
1103       br.ret.sptk b0                   // Exit path 2 (0.0 <|x| < 2^(-3))
1107 ASINH_UNORM:
1108 // Here if x=unorm
1109 { .mfi
1110       getf.exp   asinh_GR_f8 = fNormX  // Recompute if x unorm
1111       fclass.m   p0,p13 = fNormX, 0x0b // Test x denorm
1112       nop.i      0
1116 { .mfb
1117       nop.m      0
1118       fcmp.eq.s0 p14,p0 = f8, f0       // Dummy to set denormal flag
1119 (p13) br.cond.sptk ASINH_COMMON        // Continue if x unorm and not denorm
1123 .pred.rel "mutex",p7,p11
1124 { .mfi
1125       nop.m      0
1126 (p7)  fma.d.s0   f8 = f8,f8,f8         // Result x+x^2 if x=-denorm
1127       nop.i      0
1129 { .mfb
1130       nop.m      0
1131 (p11) fnma.d.s0  f8 = f8,f8,f8         // Result x-x^2 if x=+denorm
1132       br.ret.spnt b0                   // Exit if denorm
1136 GLOBAL_LIBM_END(asinh)