Updated to fedora-glibc-20050106T1443
[glibc.git] / sysdeps / ia64 / fpu / libm_lgamma.S
blob5c13fc3febf780fa28dfb3cbea0532f288ed6551
1 .file "libm_lgamma.s"
4 // Copyright (c) 2002 - 2003, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2002 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
26 // LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
29 // EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code,and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http://www.intel.com/software/products/opensource/libraries/num.htm.
40 //*********************************************************************
42 // History:
43 // 01/10/02  Initial version
44 // 01/25/02  Corrected error tag numbers
45 // 02/04/02  Added support of SIGN(GAMMA(x)) calculation
46 // 05/20/02  Cleaned up namespace and sf0 syntax
47 // 09/15/02  Fixed bug on the branch lgamma_negrecursion
48 // 10/21/02  Now it returns SIGN(GAMMA(x))=-1 for negative zero
49 // 02/10/03  Reordered header: .section, .global, .proc, .align
51 //*********************************************************************
53 //*********************************************************************
55 // Function: __libm_lgamma(double x, int* signgam, int szsigngam)
56 // computes the principle value of the logarithm of the GAMMA function
57 // of x. Signum of GAMMA(x) is stored to memory starting at the address
58 // specified by the signgam.
60 //*********************************************************************
62 // Resources Used:
64 //    Floating-Point Registers: f6-f15
65 //                              f32-f122
67 //    General Purpose Registers:
68 //      r8-r11
69 //      r14-r31
70 //      r32-r36
71 //      r37-r40 (Used to pass arguments to error handling routine)
73 //    Predicate Registers:      p6-p15
75 //*********************************************************************
77 // IEEE Special Conditions:
79 //    __libm_lgamma(+inf) = +inf
80 //    __libm_lgamma(-inf) = QNaN
81 //    __libm_lgamma(+/-0) = +inf
82 //    __libm_lgamma(x<0, x - integer) = +inf
83 //    __libm_lgamma(SNaN) = QNaN
84 //    __libm_lgamma(QNaN) = QNaN
86 //*********************************************************************
88 // Overview
90 // The method consists of three cases.
92 // If      512 <= x < OVERFLOW_BOUNDARY   use case lgamma_pstirling;
93 // else if 1 < x < 512                    use case lgamma_regular;
94 // else if -17 < x < 1                    use case lgamma_negrecursion;
95 // else if -512 <  x < -17                use case lgamma_negpoly;
96 // else if x < -512                       use case lgamma_negstirling;
97 // else if x is close to negative
98 //         roots of ln(GAMMA(x))          use case lgamma_negroots;
101 // Case 512 <= x < OVERFLOW_BOUNDARY
102 // ---------------------------------
103 //   Here we use algorithm based on the Stirling formula:
104 //   ln(GAMMA(x)) = ln(sqrt(2*Pi)) + (x-0.5)ln(x) - x + (W2 + W4/x^2)/x
106 // Case 1 < x < 512
107 // ----------------
108 //   To calculate GAMMA(x) on this interval we use polynomial approximation
109 //   on following intervals [0.875; 1.25), [1.25; 1.75), [1.75, 2.25),
110 //   [2.25; 4), [2^i; 2^(i+1)), i=2..8
112 //   Following variants of approximation and argument reduction are used:
113 //    1. [0.875; 1.25)
114 //       ln(GAMMA(x)) ~ (x-1.0)*P17(x-1.0)
116 //    2. [1.25; 1.75)
117 //       ln(GAMMA(x)) ~ (x-LocalMinimun)*P17(x-LocalMinimun)
119 //    3. [1.75, 2.25)
120 //       ln(GAMMA(x)) ~ (x-2.0)*P17(x-2.0)
122 //    4. [2.25; 4)
123 //       ln(GAMMA(x)) ~ P22(x)
125 //    5. [2^i; 2^(i+1)), i=2..8
126 //       ln(GAMMA(x)) ~ P22((x-2^i)/2^i)
128 // Case -17 < x < 1
129 // ----------------
130 //   Here we use the recursive formula:
131 //   ln(GAMMA(x)) = ln(GAMMA(x+1)) - ln(x)
133 //   Using this formula we reduce argument to base interval [1.0; 2.0]
135 // Case -512 <  x < -17
136 // --------------------
137 //   Here we use the formula:
138 //   ln(GAMMA(-x)) = ln(Pi/(x*GAMMA(x)*sin(Pi*x))) =
139 //   = -ln(x) - ln((GAMMA(x)) - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
140 //   where r = x - rounded_to_nearest(x), i.e |r| <= 0.5 and
141 //   ln(sin(Pi*r)/(Pi*r)) is approximated by 14-degree polynomial of r^2
144 // Case x < -512
145 // -------------
146 //   Here we use algorithm based on the Stirling formula:
147 //   ln(GAMMA(-x)) = -ln(sqrt(2*Pi)) + (-x-0.5)ln(x) + x - (W2 + W4/x^2)/x -
148 //   - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
149 //   where r = x - rounded_to_nearest(x).
151 // Neighbourhoods of negative roots
152 // --------------------------------
153 //   Here we use polynomial approximation
154 //   ln(GAMMA(x-x0)) = ln(GAMMA(x0)) + (x-x0)*P14(x-x0),
155 //   where x0 is a root of ln(GAMMA(x)) rounded to nearest double
156 //   precision number.
159 //*********************************************************************
161 FR_X                   = f10
162 FR_Y                   = f1 // __libm_lgamma is single argument function
163 FR_RESULT              = f8
165 FR_B11                 = f6
166 FR_B10                 = f7
168 FR_int_N               = f9
169 FR_N                   = f10
170 FR_P5                  = f11
171 FR_P4                  = f12
172 FR_P3                  = f13
173 FR_P2                  = f14
174 FR_NormX               = f15
176 FR_Ln2                 = f32
177 FR_C01                 = f33
178 FR_A17                 = f33
179 FR_C00                 = f34
180 FR_Xp2                 = f34
181 FR_A00                 = f34
182 FR_A16                 = f34
183 FR_C11                 = f35
184 FR_A15                 = f35
185 FR_C10                 = f36
186 FR_Xp3                 = f36
187 FR_A14                 = f36
188 FR_B1                  = f36
189 FR_C21                 = f37
190 FR_A13                 = f37
191 FR_PR01                = f37
192 FR_C20                 = f38
193 FR_Xp6                 = f38
194 FR_A12                 = f38
195 FR_C31                 = f39
196 FR_Xp7                 = f39
197 FR_B0                  = f39
198 FR_A11                 = f39
199 FR_C30                 = f40
200 FR_Xp8                 = f40
201 FR_A10                 = f40
202 FR_PR00                = f40
203 FR_C41                 = f41
204 FR_Xp9                 = f41
205 FR_A9                  = f41
206 FR_PR11                = f41
207 FR_C40                 = f42
208 FR_A8                  = f42
209 FR_C51                 = f43
210 FR_Xp11                = f43
211 FR_A7                  = f43
212 FR_C50                 = f44
213 FR_C                   = f44
214 FR_Xp12                = f44
215 FR_A6                  = f44
216 FR_Xm2                 = f45
217 FR_Xp13                = f45
218 FR_A5                  = f45
219 FR_PR10                = f45
220 FR_C61                 = f46
221 FR_Xp14                = f46
222 FR_A4                  = f46
223 FR_PR21                = f46
224 FR_C60                 = f47
225 FR_Xp15                = f47
226 FR_A3                  = f47
227 FR_PR20                = f47
228 FR_C71                 = f48
229 FR_Xp16                = f48
230 FR_A2                  = f48
231 FR_PR31                = f48
232 FR_C70                 = f49
233 FR_Xp17                = f49
234 FR_A1                  = f49
235 FR_PR30                = f49
236 FR_C81                 = f50
237 FR_B17                 = f50
238 FR_A0                  = f50
239 FR_C80                 = f51
240 FR_B16                 = f51
241 FR_C91                 = f52
242 FR_B15                 = f52
243 FR_C90                 = f53
244 FR_B14                 = f53
245 FR_CA1                 = f54
246 FR_B13                 = f54
247 FR_CA0                 = f55
248 FR_B12                 = f55
249 FR_CN                  = f56
250 FR_Qlo                 = f56
251 FR_PRN                 = f56
252 FR_B7                  = f57
253 FR_B6                  = f58
254 FR_Qhi                 = f59
255 FR_x                   = f60
256 FR_x2                  = f61
257 FR_TpNxLn2             = f62
258 FR_W2                  = f63
259 FR_x4                  = f64
260 FR_r4                  = f64
261 FR_x8                  = f65
262 FR_r8                  = f65
263 FR_r05                 = f66
264 FR_Xm05                = f66
265 FR_B5                  = f66
266 FR_LnSqrt2Pi           = f67
267 FR_B4                  = f67
268 FR_InvX                = f68
269 FR_B3                  = f68
270 FR_InvX2               = f69
271 FR_B2                  = f69
272 FR_W4                  = f70
273 FR_OvfBound            = f71
274 FR_05                  = f72
275 FR_LocalMin            = f73
276 FR_tmp                 = f73
277 FR_LnX                 = f74
278 FR_Xf                  = f75
279 FR_InvXf               = f76
280 FR_rf                  = f77
281 FR_rf2                 = f78
282 FR_P54f                = f79
283 FR_P32f                = f80
284 FR_rf3                 = f81
285 FR_P10f                = f82
286 FR_TpNxLn2f            = f83
287 FR_Nf                  = f84
288 FR_LnXf                = f85
289 FR_int_Nf              = f86
290 FR_Tf                  = f87
291 FR_Xf2                 = f88
292 FR_Xp10                = f89
293 FR_w3                  = f90
294 FR_S28                 = f90
295 FR_w2                  = f91
296 FR_S26                 = f91
297 FR_w6                  = f92
298 FR_S24                 = f92
299 FR_w4                  = f93
300 FR_S22                 = f93
301 FR_w                   = f94
302 FR_S20                 = f94
303 FR_Q8                  = f95
304 FR_S18                 = f95
305 FR_Q7                  = f96
306 FR_S16                 = f96
307 FR_Q4                  = f97
308 FR_S14                 = f97
309 FR_Q3                  = f98
310 FR_S12                 = f98
311 FR_Q6                  = f99
312 FR_S10                 = f99
313 FR_Q5                  = f100
314 FR_S8                  = f100
315 FR_Q2                  = f101
316 FR_S6                  = f101
317 FR_Root                = f101
318 FR_S4                  = f102
319 FR_Q1                  = f102
320 FR_S2                  = f103
321 FR_Xp1                 = f104
322 FR_Xf4                 = f105
323 FR_Xf8                 = f106
324 FR_Xfr                 = f107
325 FR_Xf6                 = f108
326 FR_Ntrunc              = f109
327 FR_B9                  = f110
328 FR_2                   = f110
329 FR_B8                  = f111
330 FR_3                   = f111
331 FR_5                   = f112
332 FR_Xp4                 = f113
333 FR_Xp5                 = f114
334 FR_P54                 = f115
335 FR_P32                 = f116
336 FR_P10                 = f117
337 FR_r                   = f118
338 FR_r2                  = f119
339 FR_r3                  = f120
340 FR_T                   = f121
341 FR_int_Ntrunc          = f122
343 //===================================
345 GR_TAG                 = r8
346 GR_ExpMask             = r8
347 GR_ExpBias             = r9
348 GR_ad_Roots            = r9
349 GR_Expf                = r10
350 GR_Arg                 = r10
351 GR_SignExp             = r11
352 GR_ArgXfr              = r11
354 GR_Exp                 = r14
355 GR_Arg125              = r14
356 GR_RootInd             = r14
357 GR_ArgAsIs             = r15
358 GR_Arg175              = r15
359 GR_Sig                 = r16
360 GR_Ind                 = r17
361 GR_ad_Dx               = r17
362 GR_ad_1                = r18
363 GR_SignExp_w           = r19
364 GR_2_25                = r19
365 GR_Arg025              = r19
366 GR_Arg15               = r19
367 GR_Arg17               = r19
368 GR_Exp_w               = r19//21
369 GR_ad_2                = r20
370 GR_2xDx                = r21
371 GR_SignOfGamma         = r21
372 GR_fff9                = r22
373 GR_Offs                = r22
374 GR_ad_Co7              = r23
375 GR_Arg075              = r23
376 GR_Arg0875             = r23
377 GR_ad_T                = r24
378 GR_ad_Root             = r24
379 GR_Ind                 = r24
380 GR_ad_Co               = r25
381 GR_ad_Ce               = r26
382 GR_ad_Ce7              = r27
383 GR_Arg05               = r27
384 GR_Offs7               = r28
385 GR_ArgXfrAsIs          = r28
386 GR_ExpOf2              = r29
387 GR_ad_LnT              = r29
388 GR_Dx                  = r29
389 GR_ExpOf256            = r30
390 GR_0x30033             = r30
391 GR_Root                = r30
392 GR_PseudoRoot          = r30
393 GR_ad_Data             = r31
394 GR_ad_SignGam          = r31
397 GR_SAVE_B0             = r33
398 GR_SAVE_PFS            = r34
399 GR_SAVE_GP             = r35
400 GR_SAVE_SP             = r36
402 GR_Parameter_X         = r37
403 GR_Parameter_Y         = r38
404 GR_Parameter_RESULT    = r39
405 GR_Parameter_TAG       = r40
409 // Data tables
410 //==============================================================
412 RODATA
413 .align 16
414 LOCAL_OBJECT_START(lgamma_data)
415 // polynomial approximation of ln(GAMMA(x)), 2.25 <= x < 512
416 // [2.25; 4)
417 data8 0xF888E8D7892718A2,0xC001 // C01
418 data8 0xF62F273BA12A4639,0x3FFD // C11
419 data8 0xA93AC50A37EC8D38,0xBFFC // C21
420 data8 0xB4CC43D2C161E057,0xBFFF // C31
421 data8 0xC6AC672F0C1392C7,0xC000 // C41
422 data8 0xA292B9AE3276942E,0xC001 // C51
423 data8 0xE554E4CCCA6C7B7B,0xC001 // C61
424 data8 0x92F0F55FBC87F860,0xC002 // C71
425 data8 0xAF60D0112843F6C1,0xC002 // C81
426 data8 0xC5956500FA3D92E7,0xC002 // C91
427 data8 0xD3B22CCBD8587750,0xC002 // CA1
428 data8 0xD888B6CF34159B54,0x4001 // C00
429 data8 0xBCB79C8329FD9F44,0x3FFE // C10
430 data8 0xCB8896FAD69C455D,0x4000 // C20
431 data8 0xE510A424639EBF5E,0x4001 // C30
432 data8 0xC65ED41B097486B3,0x4002 // C40
433 // [4; 8)
434 data8 0x9F1F3C822D03080E,0xC001 // C01
435 data8 0x941CACFA9C0FA8A6,0xC001 // C11
436 data8 0xFE34336391D99CB7,0xC000 // C21
437 data8 0xC40BAEAA165F81A1,0xC000 // C31
438 data8 0xFE3AE166E9B4DE8F,0xBFFF // C41
439 data8 0xD744F91AF7DAF873,0xBFFE // C51
440 data8 0x87871851E9C32D02,0x3FFD // C61
441 data8 0x9C93C03C502E808F,0x3FFF // C71
442 data8 0xF78BED07501D6A8E,0x3FFF // C81
443 data8 0x92FE41BA8BEADF70,0x4000 // C91
444 data8 0xA021878E1903A2C6,0x3FFF // CA1
445 data8 0xC85EFAC379FAFEE2,0x4001 // C00
446 data8 0xC10D7AAB7CEC7FF2,0x4001 // C10
447 data8 0xB3537BDF603E454C,0x4001 // C20
448 data8 0xA0D44E3D5BBE44C4,0x4001 // C30
449 data8 0x8B9C229B6241E7B3,0x4001 // C40
450 // [8; 16)
451 data8 0xD16AB33AEC220DF6,0x3FFF // C01
452 data8 0x987483646E150BCD,0x4000 // C11
453 data8 0x80C10A24C863999B,0x4000 // C21
454 data8 0xA39A8EB6F8AACE75,0x3FFF // C31
455 data8 0x93E04A1379BEC764,0x3FFD // C41
456 data8 0xD9F59C4BD3A69BD1,0xBFFE // C51
457 data8 0x82094EC891179B1A,0xC000 // C61
458 data8 0xC90CFE3A24F70659,0xC000 // C71
459 data8 0x827984EA7C155184,0xC001 // C81
460 data8 0x981BFDF79D1E0D80,0xC001 // C91
461 data8 0xA37209A8B97D230D,0xC001 // CA1
462 data8 0xAA1989737D6BA66D,0x3FFE // C00
463 data8 0xDBC013A351630AF8,0x3FFF // C10
464 data8 0x8B8D47698299389D,0x4000 // C20
465 data8 0xACCDD1315DE06EB0,0x4000 // C30
466 data8 0xD3414A5AC81BBB2D,0x4000 // C40
467 // [16; 32)
468 data8 0xECB2B0BE75C5F995,0x3FFF // C01
469 data8 0x9DD28BD6DBC96500,0x4000 // C11
470 data8 0x8521431B99C6244F,0x4000 // C21
471 data8 0xA95F92612B8413C3,0x3FFF // C31
472 data8 0x9C76E643B22D9544,0x3FFD // C41
473 data8 0xDD90EA99417C8038,0xBFFE // C51
474 data8 0x84EA6B6D32E5F906,0xC000 // C61
475 data8 0xCDBFE499E05AA622,0xC000 // C71
476 data8 0x8594A7DE35427100,0xC001 // C81
477 data8 0x9BC1CB2C10DC702F,0xC001 // C91
478 data8 0xA7602268762666B0,0xC001 // CA1
479 data8 0xDA082BCC6BDB8F7B,0x3FFE // C00
480 data8 0xEEBFE1C99322B85E,0x3FFF // C10
481 data8 0x96FED4C785361946,0x4000 // C20
482 data8 0xB9E3A7207C16B2FE,0x4000 // C30
483 data8 0xE1E8170CED48E2C7,0x4000 // C40
484 // [32; 64)
485 data8 0xFD481EB9AEDD53E7,0x3FFF // C01
486 data8 0xA216FB66AC8C53E1,0x4000 // C11
487 data8 0x885FF935787553BA,0x4000 // C21
488 data8 0xAD471CD89A313327,0x3FFF // C31
489 data8 0x9FF13FBA139D21E0,0x3FFD // C41
490 data8 0xE25E1663A6EE0266,0xBFFE // C51
491 data8 0x87BE51DD5D262FA2,0xC000 // C61
492 data8 0xD211A9D4CCE55696,0xC000 // C71
493 data8 0x885BEFC29FDED3C9,0xC001 // C81
494 data8 0x9EFA48E6367A67F6,0xC001 // C91
495 data8 0xAAD3978FC0791297,0xC001 // CA1
496 data8 0xF96D210DF37A0AEA,0x3FFE // C00
497 data8 0xFE11DC6783917C82,0x3FFF // C10
498 data8 0x9FFCD928291B7DDE,0x4000 // C20
499 data8 0xC4518F4A80E09AE1,0x4000 // C30
500 data8 0xEDDFE9E0FD297C63,0x4000 // C40
501 // [64; 128)
502 data8 0x840E2E62609B0AD3,0x4000 // C01
503 data8 0xA5275A0DD0D3DDF8,0x4000 // C11
504 data8 0x8AADC6ABFC441731,0x4000 // C21
505 data8 0xB041C6696BE90E50,0x3FFF // C31
506 data8 0xA4A8C9153F4B037E,0x3FFD // C41
507 data8 0xE3C6A461A7B86736,0xBFFE // C51
508 data8 0x89047681C6DE7673,0xC000 // C61
509 data8 0xD42DF77A480092DF,0xC000 // C71
510 data8 0x89C25D17F086FB20,0xC001 // C81
511 data8 0xA09F907D02E34EC7,0xC001 // C91
512 data8 0xAC998A9CB79805B7,0xC001 // CA1
513 data8 0x875CC9B69AE964CC,0x3FFF // C00
514 data8 0x847836BA85DD4C12,0x4000 // C10
515 data8 0xA5F3CB2B32E74936,0x4000 // C20
516 data8 0xCAE2197C96CB5A0F,0x4000 // C30
517 data8 0xF50F7EB60DE5CD09,0x4000 // C40
518 // [128; 256)
519 data8 0x87D9065DD1876926,0x4000 // C01
520 data8 0xA781C28FDAD7CC25,0x4000 // C11
521 data8 0x8C6A4FCE35A7EC8D,0x4000 // C21
522 data8 0xB27BA081728354F9,0x3FFF // C31
523 data8 0xA82FEA7124B0EB2B,0x3FFD // C41
524 data8 0xE4C996E42ECBF77A,0xBFFE // C51
525 data8 0x89F1A92C84FA538F,0xC000 // C61
526 data8 0xD5B6CFF7DB7F6070,0xC000 // C71
527 data8 0x8AC6B561FAE38B66,0xC001 // C81
528 data8 0xA1D1505C438D8F46,0xC001 // C91
529 data8 0xADE2DC1C924FEC81,0xC001 // CA1
530 data8 0x8EF6CC62A7E0EB5A,0x3FFF // C00
531 data8 0x88A2FFC0ABCB00C0,0x4000 // C10
532 data8 0xAA6EA8FCB75B065B,0x4000 // C20
533 data8 0xCFC4B82B3D5C9363,0x4000 // C30
534 data8 0xFA60FD85DE861771,0x4000 // C40
535 // [256; 512)
536 data8 0x8AAA7CE4ED5C1EFD,0x4000 // C01
537 data8 0xA9679234FB56F1E1,0x4000 // C11
538 data8 0x8DCE02287789D841,0x4000 // C21
539 data8 0xB44328EF30A8DE7E,0x3FFF // C31
540 data8 0xAB0DC564BFA1AB12,0x3FFD // C41
541 data8 0xE5882B16FCF2D3CB,0xBFFE // C51
542 data8 0x8AA7F48993006A86,0xC000 // C61
543 data8 0xD6E63752D192750D,0xC000 // C71
544 data8 0x8B90080B17853295,0xC001 // C81
545 data8 0xA2BDD4253128D1AB,0xC001 // C91
546 data8 0xAEE1A042F96B8121,0xC001 // CA1
547 data8 0x94A9C37A42E43BA7,0x3FFF // C00
548 data8 0x8BFA54E703878F5A,0x4000 // C10
549 data8 0xADFA426DDF14647B,0x4000 // C20
550 data8 0xD39C7F7B3958EAF0,0x4000 // C30
551 data8 0xFE8C3987853C01E3,0x4000 // C40
553 // [2.25; 4)
554 data8 0x943AF77763601441,0x4003 // C50
555 data8 0xC8A93F9ECB06E891,0x4003 // C60
556 data8 0xFC2E5A4AD33DE19D,0x4003 // C70
557 data8 0x9526B75B38670119,0x4004 // C80
558 data8 0xA7675879D68B587E,0x4004 // C90
559 data8 0xB31DFA672D7FB8C0,0x4004 // CA0
560 data8 0x83A27775D86F9A81,0xBFD7 // CN
561 // [4; 8)
562 data8 0xEB8049BA5E79ADA3,0x4000 // C50
563 data8 0xC20C95EA99037228,0x4000 // C60
564 data8 0x9D4A8C864053CEB8,0x4000 // C70
565 data8 0xFC7716544AB0C5C9,0x3FFF // C80
566 data8 0xC7EB985259EABA5F,0x3FFF // C90
567 data8 0xC042FB3B4C95096D,0x3FFD // CA0
568 data8 0xCC2A7F930856177B,0x3FEE // CN
569 // [8; 16)
570 data8 0xFE1903679D078C7A,0x4000 // C50
571 data8 0x957C221AB90171F1,0x4001 // C60
572 data8 0xAB2C53B2A78F4031,0x4001 // C70
573 data8 0xBE080AE6063AE387,0x4001 // C80
574 data8 0xCC019A0311605CB9,0x4001 // C90
575 data8 0xD3739D85A12C8ADF,0x4001 // CA0
576 data8 0x81FA4D2B7BD7A82D,0x3FEF // CN
577 // [16; 32)
578 data8 0x871F69E2DD221F02,0x4001 // C50
579 data8 0x9E3EF2D477442A9C,0x4001 // C60
580 data8 0xB48733582B3C82C5,0x4001 // C70
581 data8 0xC7DB9B3C25854A2A,0x4001 // C80
582 data8 0xD628B87975BE898F,0x4001 // C90
583 data8 0xDDC569C321FF119C,0x4001 // CA0
584 data8 0xB27B65560DF7ADA7,0x3FEF // CN
585 // [32; 64)
586 data8 0x8DE4127349719B22,0x4001 // C50
587 data8 0xA5C30A7760F5FBB2,0x4001 // C60
588 data8 0xBCB4096055AA2A4E,0x4001 // C70
589 data8 0xD08F5F2FB4E7B899,0x4001 // C80
590 data8 0xDF39ED39DC91F9CF,0x4001 // C90
591 data8 0xE7063E45322F072E,0x4001 // CA0
592 data8 0x85A9E11DDDDE67C8,0x3FF0 // CN
593 // [64; 128)
594 data8 0x91CA191EB80E8893,0x4001 // C50
595 data8 0xA9F1D5A55397334A,0x4001 // C60
596 data8 0xC1222710295094E3,0x4001 // C70
597 data8 0xD52FFABBA6CBE5C6,0x4001 // C80
598 data8 0xE3FD9D5282052E1D,0x4001 // C90
599 data8 0xEBDBE47BB662F3EF,0x4001 // CA0
600 data8 0xEF889F489D88FD31,0x3FF0 // CN
601 // [128; 256)
602 data8 0x94AA029C2286F8D2,0x4001 // C50
603 data8 0xAD0549E55A72389F,0x4001 // C60
604 data8 0xC4628899DAF94BA4,0x4001 // C70
605 data8 0xD89432A4161C72CB,0x4001 // C80
606 data8 0xE77ABA75E9C38F3A,0x4001 // C90
607 data8 0xEF65BFFFF71347FF,0x4001 // CA0
608 data8 0xE2627460064D918D,0x3FF1 // CN
609 // [256; 512)
610 data8 0x96E9890D722C2FC1,0x4001 // C50
611 data8 0xAF6C2236F6A1CEC4,0x4001 // C60
612 data8 0xC6EBB8C9F987D20D,0x4001 // C70
613 data8 0xDB38CEFD5EF328CC,0x4001 // C80
614 data8 0xEA3265DC66C9A0B4,0x4001 // C90
615 data8 0xF2272D6B368C70B1,0x4001 // CA0
616 data8 0xDBFF93ECEBCEF1F3,0x3FF2 // CN
618 data8 0x3FDD8B618D5AF8FE // point of local minimum on [1;2]
619 data8 0x3FE0000000000000 // 0.5
620 data8 0xBFC5555DA7212371 // P5
621 data8 0x3FC999A19EEF5826 // P4
622 data8 0xb17217f7d1cf79ac,0x3ffe // ln(2)
623 data8 0xEB3F8E4325F5A535,0x3FFE // ln(sqrt(4*arcsin(1)))
625 data8 0xBFCFFFFFFFFEF009 // P3
626 data8 0x3FD555555554ECB2 // P2
627 data8 0xBF66C16C16C16C17 // W4=B4/12=-1/360
628 data8 0x7F5754D9278B51A8 // overflow boundary (first inf result)
629 data8 0xAAAAAAAAAAAAAAAB,0x3FFB // W2=B2/2=1/12
631 data8 0x3FBC756AC654273B // Q8
632 data8 0xBFC001A42489AB4D // Q7  ; 
633 data8 0x3FC99999999A169B // Q4
634 data8 0xBFD00000000019AC // Q3
635 data8 0x3FC2492479AA0DF8 // Q6
636 data8 0xBFC5555544986F52 // Q5
637 data8 0x3FD5555555555555 // Q2
638 data8 0xBFE0000000000000 // Q1, P1 = -0.5
640 data8 0x80200aaeac44ef38,0x3ff6 // ln(1/frcpa(1+  0/2^-8))
641 data8 0xc09090a2c35aa070,0x3ff7 // ln(1/frcpa(1+  1/2^-8))
642 data8 0xa0c94fcb41977c75,0x3ff8 // ln(1/frcpa(1+  2/2^-8))
643 data8 0xe18b9c263af83301,0x3ff8 // ln(1/frcpa(1+  3/2^-8))
644 data8 0x8d35c8d6399c30ea,0x3ff9 // ln(1/frcpa(1+  4/2^-8))
645 data8 0xadd4d2ecd601cbb8,0x3ff9 // ln(1/frcpa(1+  5/2^-8))
646 data8 0xce95403a192f9f01,0x3ff9 // ln(1/frcpa(1+  6/2^-8))
647 data8 0xeb59392cbcc01096,0x3ff9 // ln(1/frcpa(1+  7/2^-8))
648 data8 0x862c7d0cefd54c5d,0x3ffa // ln(1/frcpa(1+  8/2^-8))
649 data8 0x94aa63c65e70d499,0x3ffa // ln(1/frcpa(1+  9/2^-8))
650 data8 0xa54a696d4b62b382,0x3ffa // ln(1/frcpa(1+ 10/2^-8))
651 data8 0xb3e4a796a5dac208,0x3ffa // ln(1/frcpa(1+ 11/2^-8))
652 data8 0xc28c45b1878340a9,0x3ffa // ln(1/frcpa(1+ 12/2^-8))
653 data8 0xd35c55f39d7a6235,0x3ffa // ln(1/frcpa(1+ 13/2^-8))
654 data8 0xe220f037b954f1f5,0x3ffa // ln(1/frcpa(1+ 14/2^-8))
655 data8 0xf0f3389b036834f3,0x3ffa // ln(1/frcpa(1+ 15/2^-8))
656 data8 0xffd3488d5c980465,0x3ffa // ln(1/frcpa(1+ 16/2^-8))
657 data8 0x87609ce2ed300490,0x3ffb // ln(1/frcpa(1+ 17/2^-8))
658 data8 0x8ede9321e8c85927,0x3ffb // ln(1/frcpa(1+ 18/2^-8))
659 data8 0x96639427f2f8e2f4,0x3ffb // ln(1/frcpa(1+ 19/2^-8))
660 data8 0x9defad3e8f73217b,0x3ffb // ln(1/frcpa(1+ 20/2^-8))
661 data8 0xa582ebd50097029c,0x3ffb // ln(1/frcpa(1+ 21/2^-8))
662 data8 0xac06dbe75ab80fee,0x3ffb // ln(1/frcpa(1+ 22/2^-8))
663 data8 0xb3a78449b2d3ccca,0x3ffb // ln(1/frcpa(1+ 23/2^-8))
664 data8 0xbb4f79635ab46bb2,0x3ffb // ln(1/frcpa(1+ 24/2^-8))
665 data8 0xc2fec93a83523f3f,0x3ffb // ln(1/frcpa(1+ 25/2^-8))
666 data8 0xc99af2eaca4c4571,0x3ffb // ln(1/frcpa(1+ 26/2^-8))
667 data8 0xd1581106472fa653,0x3ffb // ln(1/frcpa(1+ 27/2^-8))
668 data8 0xd8002560d4355f2e,0x3ffb // ln(1/frcpa(1+ 28/2^-8))
669 data8 0xdfcb43b4fe508632,0x3ffb // ln(1/frcpa(1+ 29/2^-8))
670 data8 0xe67f6dff709d4119,0x3ffb // ln(1/frcpa(1+ 30/2^-8))
671 data8 0xed393b1c22351280,0x3ffb // ln(1/frcpa(1+ 31/2^-8))
672 data8 0xf5192bff087bcc35,0x3ffb // ln(1/frcpa(1+ 32/2^-8))
673 data8 0xfbdf4ff6dfef2fa3,0x3ffb // ln(1/frcpa(1+ 33/2^-8))
674 data8 0x81559a97f92f9cc7,0x3ffc // ln(1/frcpa(1+ 34/2^-8))
675 data8 0x84be72bce90266e8,0x3ffc // ln(1/frcpa(1+ 35/2^-8))
676 data8 0x88bc74113f23def2,0x3ffc // ln(1/frcpa(1+ 36/2^-8))
677 data8 0x8c2ba3edf6799d11,0x3ffc // ln(1/frcpa(1+ 37/2^-8))
678 data8 0x8f9dc92f92ea08b1,0x3ffc // ln(1/frcpa(1+ 38/2^-8))
679 data8 0x9312e8f36efab5a7,0x3ffc // ln(1/frcpa(1+ 39/2^-8))
680 data8 0x968b08643409ceb6,0x3ffc // ln(1/frcpa(1+ 40/2^-8))
681 data8 0x9a062cba08a1708c,0x3ffc // ln(1/frcpa(1+ 41/2^-8))
682 data8 0x9d845b3abf95485c,0x3ffc // ln(1/frcpa(1+ 42/2^-8))
683 data8 0xa06fd841bc001bb4,0x3ffc // ln(1/frcpa(1+ 43/2^-8))
684 data8 0xa3f3a74652fbe0db,0x3ffc // ln(1/frcpa(1+ 44/2^-8))
685 data8 0xa77a8fb2336f20f5,0x3ffc // ln(1/frcpa(1+ 45/2^-8))
686 data8 0xab0497015d28b0a0,0x3ffc // ln(1/frcpa(1+ 46/2^-8))
687 data8 0xae91c2be6ba6a615,0x3ffc // ln(1/frcpa(1+ 47/2^-8))
688 data8 0xb189d1b99aebb20b,0x3ffc // ln(1/frcpa(1+ 48/2^-8))
689 data8 0xb51cced5de9c1b2c,0x3ffc // ln(1/frcpa(1+ 49/2^-8))
690 data8 0xb819bee9e720d42f,0x3ffc // ln(1/frcpa(1+ 50/2^-8))
691 data8 0xbbb2a0947b093a5d,0x3ffc // ln(1/frcpa(1+ 51/2^-8))
692 data8 0xbf4ec1505811684a,0x3ffc // ln(1/frcpa(1+ 52/2^-8))
693 data8 0xc2535bacfa8975ff,0x3ffc // ln(1/frcpa(1+ 53/2^-8))
694 data8 0xc55a3eafad187eb8,0x3ffc // ln(1/frcpa(1+ 54/2^-8))
695 data8 0xc8ff2484b2c0da74,0x3ffc // ln(1/frcpa(1+ 55/2^-8))
696 data8 0xcc0b1a008d53ab76,0x3ffc // ln(1/frcpa(1+ 56/2^-8))
697 data8 0xcfb6203844b3209b,0x3ffc // ln(1/frcpa(1+ 57/2^-8))
698 data8 0xd2c73949a47a19f5,0x3ffc // ln(1/frcpa(1+ 58/2^-8))
699 data8 0xd5daae18b49d6695,0x3ffc // ln(1/frcpa(1+ 59/2^-8))
700 data8 0xd8f08248cf7e8019,0x3ffc // ln(1/frcpa(1+ 60/2^-8))
701 data8 0xdca7749f1b3e540e,0x3ffc // ln(1/frcpa(1+ 61/2^-8))
702 data8 0xdfc28e033aaaf7c7,0x3ffc // ln(1/frcpa(1+ 62/2^-8))
703 data8 0xe2e012a5f91d2f55,0x3ffc // ln(1/frcpa(1+ 63/2^-8))
704 data8 0xe600064ed9e292a8,0x3ffc // ln(1/frcpa(1+ 64/2^-8))
705 data8 0xe9226cce42b39f60,0x3ffc // ln(1/frcpa(1+ 65/2^-8))
706 data8 0xec4749fd97a28360,0x3ffc // ln(1/frcpa(1+ 66/2^-8))
707 data8 0xef6ea1bf57780495,0x3ffc // ln(1/frcpa(1+ 67/2^-8))
708 data8 0xf29877ff38809091,0x3ffc // ln(1/frcpa(1+ 68/2^-8))
709 data8 0xf5c4d0b245cb89be,0x3ffc // ln(1/frcpa(1+ 69/2^-8))
710 data8 0xf8f3afd6fcdef3aa,0x3ffc // ln(1/frcpa(1+ 70/2^-8))
711 data8 0xfc2519756be1abc7,0x3ffc // ln(1/frcpa(1+ 71/2^-8))
712 data8 0xff59119f503e6832,0x3ffc // ln(1/frcpa(1+ 72/2^-8))
713 data8 0x8147ce381ae0e146,0x3ffd // ln(1/frcpa(1+ 73/2^-8))
714 data8 0x82e45f06cb1ad0f2,0x3ffd // ln(1/frcpa(1+ 74/2^-8))
715 data8 0x842f5c7c573cbaa2,0x3ffd // ln(1/frcpa(1+ 75/2^-8))
716 data8 0x85ce471968c8893a,0x3ffd // ln(1/frcpa(1+ 76/2^-8))
717 data8 0x876e8305bc04066d,0x3ffd // ln(1/frcpa(1+ 77/2^-8))
718 data8 0x891012678031fbb3,0x3ffd // ln(1/frcpa(1+ 78/2^-8))
719 data8 0x8a5f1493d766a05f,0x3ffd // ln(1/frcpa(1+ 79/2^-8))
720 data8 0x8c030c778c56fa00,0x3ffd // ln(1/frcpa(1+ 80/2^-8))
721 data8 0x8da85df17e31d9ae,0x3ffd // ln(1/frcpa(1+ 81/2^-8))
722 data8 0x8efa663e7921687e,0x3ffd // ln(1/frcpa(1+ 82/2^-8))
723 data8 0x90a22b6875c6a1f8,0x3ffd // ln(1/frcpa(1+ 83/2^-8))
724 data8 0x91f62cc8f5d24837,0x3ffd // ln(1/frcpa(1+ 84/2^-8))
725 data8 0x93a06cfc3857d980,0x3ffd // ln(1/frcpa(1+ 85/2^-8))
726 data8 0x94f66d5e6fd01ced,0x3ffd // ln(1/frcpa(1+ 86/2^-8))
727 data8 0x96a330156e6772f2,0x3ffd // ln(1/frcpa(1+ 87/2^-8))
728 data8 0x97fb3582754ea25b,0x3ffd // ln(1/frcpa(1+ 88/2^-8))
729 data8 0x99aa8259aad1bbf2,0x3ffd // ln(1/frcpa(1+ 89/2^-8))
730 data8 0x9b0492f6227ae4a8,0x3ffd // ln(1/frcpa(1+ 90/2^-8))
731 data8 0x9c5f8e199bf3a7a5,0x3ffd // ln(1/frcpa(1+ 91/2^-8))
732 data8 0x9e1293b9998c1daa,0x3ffd // ln(1/frcpa(1+ 92/2^-8))
733 data8 0x9f6fa31e0b41f308,0x3ffd // ln(1/frcpa(1+ 93/2^-8))
734 data8 0xa0cda11eaf46390e,0x3ffd // ln(1/frcpa(1+ 94/2^-8))
735 data8 0xa22c8f029cfa45aa,0x3ffd // ln(1/frcpa(1+ 95/2^-8))
736 data8 0xa3e48badb7856b34,0x3ffd // ln(1/frcpa(1+ 96/2^-8))
737 data8 0xa5459a0aa95849f9,0x3ffd // ln(1/frcpa(1+ 97/2^-8))
738 data8 0xa6a79c84480cfebd,0x3ffd // ln(1/frcpa(1+ 98/2^-8))
739 data8 0xa80a946d0fcb3eb2,0x3ffd // ln(1/frcpa(1+ 99/2^-8))
740 data8 0xa96e831a3ea7b314,0x3ffd // ln(1/frcpa(1+100/2^-8))
741 data8 0xaad369e3dc544e3b,0x3ffd // ln(1/frcpa(1+101/2^-8))
742 data8 0xac92e9588952c815,0x3ffd // ln(1/frcpa(1+102/2^-8))
743 data8 0xadfa035aa1ed8fdc,0x3ffd // ln(1/frcpa(1+103/2^-8))
744 data8 0xaf6219eae1ad6e34,0x3ffd // ln(1/frcpa(1+104/2^-8))
745 data8 0xb0cb2e6d8160f753,0x3ffd // ln(1/frcpa(1+105/2^-8))
746 data8 0xb2354249ad950f72,0x3ffd // ln(1/frcpa(1+106/2^-8))
747 data8 0xb3a056e98ef4a3b4,0x3ffd // ln(1/frcpa(1+107/2^-8))
748 data8 0xb50c6dba52c6292a,0x3ffd // ln(1/frcpa(1+108/2^-8))
749 data8 0xb679882c33876165,0x3ffd // ln(1/frcpa(1+109/2^-8))
750 data8 0xb78c07429785cedc,0x3ffd // ln(1/frcpa(1+110/2^-8))
751 data8 0xb8faeb8dc4a77d24,0x3ffd // ln(1/frcpa(1+111/2^-8))
752 data8 0xba6ad77eb36ae0d6,0x3ffd // ln(1/frcpa(1+112/2^-8))
753 data8 0xbbdbcc915e9bee50,0x3ffd // ln(1/frcpa(1+113/2^-8))
754 data8 0xbd4dcc44f8cf12ef,0x3ffd // ln(1/frcpa(1+114/2^-8))
755 data8 0xbec0d81bf5b531fa,0x3ffd // ln(1/frcpa(1+115/2^-8))
756 data8 0xc034f19c139186f4,0x3ffd // ln(1/frcpa(1+116/2^-8))
757 data8 0xc14cb69f7c5e55ab,0x3ffd // ln(1/frcpa(1+117/2^-8))
758 data8 0xc2c2abbb6e5fd56f,0x3ffd // ln(1/frcpa(1+118/2^-8))
759 data8 0xc439b2c193e6771e,0x3ffd // ln(1/frcpa(1+119/2^-8))
760 data8 0xc553acb9d5c67733,0x3ffd // ln(1/frcpa(1+120/2^-8))
761 data8 0xc6cc96e441272441,0x3ffd // ln(1/frcpa(1+121/2^-8))
762 data8 0xc8469753eca88c30,0x3ffd // ln(1/frcpa(1+122/2^-8))
763 data8 0xc962cf3ce072b05c,0x3ffd // ln(1/frcpa(1+123/2^-8))
764 data8 0xcadeba8771f694aa,0x3ffd // ln(1/frcpa(1+124/2^-8))
765 data8 0xcc5bc08d1f72da94,0x3ffd // ln(1/frcpa(1+125/2^-8))
766 data8 0xcd7a3f99ea035c29,0x3ffd // ln(1/frcpa(1+126/2^-8))
767 data8 0xcef93860c8a53c35,0x3ffd // ln(1/frcpa(1+127/2^-8))
768 data8 0xd0192f68a7ed23df,0x3ffd // ln(1/frcpa(1+128/2^-8))
769 data8 0xd19a201127d3c645,0x3ffd // ln(1/frcpa(1+129/2^-8))
770 data8 0xd2bb92f4061c172c,0x3ffd // ln(1/frcpa(1+130/2^-8))
771 data8 0xd43e80b2ee8cc8fc,0x3ffd // ln(1/frcpa(1+131/2^-8))
772 data8 0xd56173601fc4ade4,0x3ffd // ln(1/frcpa(1+132/2^-8))
773 data8 0xd6e6637efb54086f,0x3ffd // ln(1/frcpa(1+133/2^-8))
774 data8 0xd80ad9f58f3c8193,0x3ffd // ln(1/frcpa(1+134/2^-8))
775 data8 0xd991d1d31aca41f8,0x3ffd // ln(1/frcpa(1+135/2^-8))
776 data8 0xdab7d02231484a93,0x3ffd // ln(1/frcpa(1+136/2^-8))
777 data8 0xdc40d532cde49a54,0x3ffd // ln(1/frcpa(1+137/2^-8))
778 data8 0xdd685f79ed8b265e,0x3ffd // ln(1/frcpa(1+138/2^-8))
779 data8 0xde9094bbc0e17b1d,0x3ffd // ln(1/frcpa(1+139/2^-8))
780 data8 0xe01c91b78440c425,0x3ffd // ln(1/frcpa(1+140/2^-8))
781 data8 0xe14658f26997e729,0x3ffd // ln(1/frcpa(1+141/2^-8))
782 data8 0xe270cdc2391e0d23,0x3ffd // ln(1/frcpa(1+142/2^-8))
783 data8 0xe3ffce3a2aa64922,0x3ffd // ln(1/frcpa(1+143/2^-8))
784 data8 0xe52bdb274ed82887,0x3ffd // ln(1/frcpa(1+144/2^-8))
785 data8 0xe6589852e75d7df6,0x3ffd // ln(1/frcpa(1+145/2^-8))
786 data8 0xe786068c79937a7d,0x3ffd // ln(1/frcpa(1+146/2^-8))
787 data8 0xe91903adad100911,0x3ffd // ln(1/frcpa(1+147/2^-8))
788 data8 0xea481236f7d35bb0,0x3ffd // ln(1/frcpa(1+148/2^-8))
789 data8 0xeb77d48c692e6b14,0x3ffd // ln(1/frcpa(1+149/2^-8))
790 data8 0xeca84b83d7297b87,0x3ffd // ln(1/frcpa(1+150/2^-8))
791 data8 0xedd977f4962aa158,0x3ffd // ln(1/frcpa(1+151/2^-8))
792 data8 0xef7179a22f257754,0x3ffd // ln(1/frcpa(1+152/2^-8))
793 data8 0xf0a450d139366ca7,0x3ffd // ln(1/frcpa(1+153/2^-8))
794 data8 0xf1d7e0524ff9ffdb,0x3ffd // ln(1/frcpa(1+154/2^-8))
795 data8 0xf30c29036a8b6cae,0x3ffd // ln(1/frcpa(1+155/2^-8))
796 data8 0xf4412bc411ea8d92,0x3ffd // ln(1/frcpa(1+156/2^-8))
797 data8 0xf576e97564c8619d,0x3ffd // ln(1/frcpa(1+157/2^-8))
798 data8 0xf6ad62fa1b5f172f,0x3ffd // ln(1/frcpa(1+158/2^-8))
799 data8 0xf7e499368b55c542,0x3ffd // ln(1/frcpa(1+159/2^-8))
800 data8 0xf91c8d10abaffe22,0x3ffd // ln(1/frcpa(1+160/2^-8))
801 data8 0xfa553f7018c966f3,0x3ffd // ln(1/frcpa(1+161/2^-8))
802 data8 0xfb8eb13e185d802c,0x3ffd // ln(1/frcpa(1+162/2^-8))
803 data8 0xfcc8e3659d9bcbed,0x3ffd // ln(1/frcpa(1+163/2^-8))
804 data8 0xfe03d6d34d487fd2,0x3ffd // ln(1/frcpa(1+164/2^-8))
805 data8 0xff3f8c7581e9f0ae,0x3ffd // ln(1/frcpa(1+165/2^-8))
806 data8 0x803e029e280173ae,0x3ffe // ln(1/frcpa(1+166/2^-8))
807 data8 0x80dca10cc52d0757,0x3ffe // ln(1/frcpa(1+167/2^-8))
808 data8 0x817ba200632755a1,0x3ffe // ln(1/frcpa(1+168/2^-8))
809 data8 0x821b05f3b01d6774,0x3ffe // ln(1/frcpa(1+169/2^-8))
810 data8 0x82bacd623ff19d06,0x3ffe // ln(1/frcpa(1+170/2^-8))
811 data8 0x835af8c88e7a8f47,0x3ffe // ln(1/frcpa(1+171/2^-8))
812 data8 0x83c5f8299e2b4091,0x3ffe // ln(1/frcpa(1+172/2^-8))
813 data8 0x8466cb43f3d87300,0x3ffe // ln(1/frcpa(1+173/2^-8))
814 data8 0x850803a67c80ca4b,0x3ffe // ln(1/frcpa(1+174/2^-8))
815 data8 0x85a9a1d11a23b461,0x3ffe // ln(1/frcpa(1+175/2^-8))
816 data8 0x864ba644a18e6e05,0x3ffe // ln(1/frcpa(1+176/2^-8))
817 data8 0x86ee1182dcc432f7,0x3ffe // ln(1/frcpa(1+177/2^-8))
818 data8 0x875a925d7e48c316,0x3ffe // ln(1/frcpa(1+178/2^-8))
819 data8 0x87fdaa109d23aef7,0x3ffe // ln(1/frcpa(1+179/2^-8))
820 data8 0x88a129ed4becfaf2,0x3ffe // ln(1/frcpa(1+180/2^-8))
821 data8 0x89451278ecd7f9cf,0x3ffe // ln(1/frcpa(1+181/2^-8))
822 data8 0x89b29295f8432617,0x3ffe // ln(1/frcpa(1+182/2^-8))
823 data8 0x8a572ac5a5496882,0x3ffe // ln(1/frcpa(1+183/2^-8))
824 data8 0x8afc2d0ce3b2dadf,0x3ffe // ln(1/frcpa(1+184/2^-8))
825 data8 0x8b6a69c608cfd3af,0x3ffe // ln(1/frcpa(1+185/2^-8))
826 data8 0x8c101e106e899a83,0x3ffe // ln(1/frcpa(1+186/2^-8))
827 data8 0x8cb63de258f9d626,0x3ffe // ln(1/frcpa(1+187/2^-8))
828 data8 0x8d2539c5bd19e2b1,0x3ffe // ln(1/frcpa(1+188/2^-8))
829 data8 0x8dcc0e064b29e6f1,0x3ffe // ln(1/frcpa(1+189/2^-8))
830 data8 0x8e734f45d88357ae,0x3ffe // ln(1/frcpa(1+190/2^-8))
831 data8 0x8ee30cef034a20db,0x3ffe // ln(1/frcpa(1+191/2^-8))
832 data8 0x8f8b0515686d1d06,0x3ffe // ln(1/frcpa(1+192/2^-8))
833 data8 0x90336bba039bf32f,0x3ffe // ln(1/frcpa(1+193/2^-8))
834 data8 0x90a3edd23d1c9d58,0x3ffe // ln(1/frcpa(1+194/2^-8))
835 data8 0x914d0de2f5d61b32,0x3ffe // ln(1/frcpa(1+195/2^-8))
836 data8 0x91be0c20d28173b5,0x3ffe // ln(1/frcpa(1+196/2^-8))
837 data8 0x9267e737c06cd34a,0x3ffe // ln(1/frcpa(1+197/2^-8))
838 data8 0x92d962ae6abb1237,0x3ffe // ln(1/frcpa(1+198/2^-8))
839 data8 0x9383fa6afbe2074c,0x3ffe // ln(1/frcpa(1+199/2^-8))
840 data8 0x942f0421651c1c4e,0x3ffe // ln(1/frcpa(1+200/2^-8))
841 data8 0x94a14a3845bb985e,0x3ffe // ln(1/frcpa(1+201/2^-8))
842 data8 0x954d133857f861e7,0x3ffe // ln(1/frcpa(1+202/2^-8))
843 data8 0x95bfd96468e604c4,0x3ffe // ln(1/frcpa(1+203/2^-8))
844 data8 0x9632d31cafafa858,0x3ffe // ln(1/frcpa(1+204/2^-8))
845 data8 0x96dfaabd86fa1647,0x3ffe // ln(1/frcpa(1+205/2^-8))
846 data8 0x9753261fcbb2a594,0x3ffe // ln(1/frcpa(1+206/2^-8))
847 data8 0x9800c11b426b996d,0x3ffe // ln(1/frcpa(1+207/2^-8))
848 data8 0x9874bf4d45ae663c,0x3ffe // ln(1/frcpa(1+208/2^-8))
849 data8 0x99231f5ee9a74f79,0x3ffe // ln(1/frcpa(1+209/2^-8))
850 data8 0x9997a18a56bcad28,0x3ffe // ln(1/frcpa(1+210/2^-8))
851 data8 0x9a46c873a3267e79,0x3ffe // ln(1/frcpa(1+211/2^-8))
852 data8 0x9abbcfc621eb6cb6,0x3ffe // ln(1/frcpa(1+212/2^-8))
853 data8 0x9b310cb0d354c990,0x3ffe // ln(1/frcpa(1+213/2^-8))
854 data8 0x9be14cf9e1b3515c,0x3ffe // ln(1/frcpa(1+214/2^-8))
855 data8 0x9c5710b8cbb73a43,0x3ffe // ln(1/frcpa(1+215/2^-8))
856 data8 0x9ccd0abd301f399c,0x3ffe // ln(1/frcpa(1+216/2^-8))
857 data8 0x9d7e67f3bdce8888,0x3ffe // ln(1/frcpa(1+217/2^-8))
858 data8 0x9df4ea81a99daa01,0x3ffe // ln(1/frcpa(1+218/2^-8))
859 data8 0x9e6ba405a54514ba,0x3ffe // ln(1/frcpa(1+219/2^-8))
860 data8 0x9f1e21c8c7bb62b3,0x3ffe // ln(1/frcpa(1+220/2^-8))
861 data8 0x9f956593f6b6355c,0x3ffe // ln(1/frcpa(1+221/2^-8))
862 data8 0xa00ce1092e5498c3,0x3ffe // ln(1/frcpa(1+222/2^-8))
863 data8 0xa0c08309c4b912c1,0x3ffe // ln(1/frcpa(1+223/2^-8))
864 data8 0xa1388a8c6faa2afa,0x3ffe // ln(1/frcpa(1+224/2^-8))
865 data8 0xa1b0ca7095b5f985,0x3ffe // ln(1/frcpa(1+225/2^-8))
866 data8 0xa22942eb47534a00,0x3ffe // ln(1/frcpa(1+226/2^-8))
867 data8 0xa2de62326449d0a3,0x3ffe // ln(1/frcpa(1+227/2^-8))
868 data8 0xa357690f88bfe345,0x3ffe // ln(1/frcpa(1+228/2^-8))
869 data8 0xa3d0a93f45169a4b,0x3ffe // ln(1/frcpa(1+229/2^-8))
870 data8 0xa44a22f7ffe65f30,0x3ffe // ln(1/frcpa(1+230/2^-8))
871 data8 0xa500c5e5b4c1aa36,0x3ffe // ln(1/frcpa(1+231/2^-8))
872 data8 0xa57ad064eb2ebbc2,0x3ffe // ln(1/frcpa(1+232/2^-8))
873 data8 0xa5f5152dedf4384e,0x3ffe // ln(1/frcpa(1+233/2^-8))
874 data8 0xa66f9478856233ec,0x3ffe // ln(1/frcpa(1+234/2^-8))
875 data8 0xa6ea4e7cca02c32e,0x3ffe // ln(1/frcpa(1+235/2^-8))
876 data8 0xa765437325341ccf,0x3ffe // ln(1/frcpa(1+236/2^-8))
877 data8 0xa81e21e6c75b4020,0x3ffe // ln(1/frcpa(1+237/2^-8))
878 data8 0xa899ab333fe2b9ca,0x3ffe // ln(1/frcpa(1+238/2^-8))
879 data8 0xa9157039c51ebe71,0x3ffe // ln(1/frcpa(1+239/2^-8))
880 data8 0xa991713433c2b999,0x3ffe // ln(1/frcpa(1+240/2^-8))
881 data8 0xaa0dae5cbcc048b3,0x3ffe // ln(1/frcpa(1+241/2^-8))
882 data8 0xaa8a27ede5eb13ad,0x3ffe // ln(1/frcpa(1+242/2^-8))
883 data8 0xab06de228a9e3499,0x3ffe // ln(1/frcpa(1+243/2^-8))
884 data8 0xab83d135dc633301,0x3ffe // ln(1/frcpa(1+244/2^-8))
885 data8 0xac3fb076adc7fe7a,0x3ffe // ln(1/frcpa(1+245/2^-8))
886 data8 0xacbd3cbbe47988f1,0x3ffe // ln(1/frcpa(1+246/2^-8))
887 data8 0xad3b06b1a5dc57c3,0x3ffe // ln(1/frcpa(1+247/2^-8))
888 data8 0xadb90e94af887717,0x3ffe // ln(1/frcpa(1+248/2^-8))
889 data8 0xae3754a218f7c816,0x3ffe // ln(1/frcpa(1+249/2^-8))
890 data8 0xaeb5d9175437afa2,0x3ffe // ln(1/frcpa(1+250/2^-8))
891 data8 0xaf349c322e9c7cee,0x3ffe // ln(1/frcpa(1+251/2^-8))
892 data8 0xafb39e30d1768d1c,0x3ffe // ln(1/frcpa(1+252/2^-8))
893 data8 0xb032df51c2c93116,0x3ffe // ln(1/frcpa(1+253/2^-8))
894 data8 0xb0b25fd3e6035ad9,0x3ffe // ln(1/frcpa(1+254/2^-8))
895 data8 0xb1321ff67cba178c,0x3ffe // ln(1/frcpa(1+255/2^-8))
897 data8 0xC7DC2985D3B44557,0x3FCA // A00
899 // polynomial approximation of ln(GAMMA(x)), 1 <= x < 2.25
900 // [0.875,1.25)
901 data8 0xBF9A04F7E40C8498,0x3FAB79D8D9380F03 // C17,C16
902 data8 0xBFB3B63609CA0CBD,0x3FB5564EA1675539 // C13,C12
903 data8 0xBFBC806766F48C41,0x3FC010B36CDA773A // C9,C8
904 data8 0xD45CE0BD54BE3D67,0xBFFC // C5
905 data8 0xCD26AADF559676D0,0xBFFD // C3
906 data8 0x93C467E37DB0C7A7,0xBFFE // C1
907 data8 0xBFB10C251723B123,0x3FB2669DAD69A12D // C15,C14
908 data8 0xBFB748A3CFCE4717,0x3FB9A01DEE29966A // C11,C10
909 data8 0xBFC2703A1D85497E,0x3FC5B40CB0FD353C // C7,C6
910 data8 0x8A8991563ECBBA5D,0x3FFD // C4
911 data8 0xD28D3312983E9844,0x3FFE // C2
912 data8 0,0                       // C0
913 // [1.25,1.75)
914 data8 0xBF12680486396DE6,0x3F23C51FC332CD9D // C17,C16
915 data8 0xBF422633DA3A1496,0x3F4CC70680768857 // C13,C12
916 data8 0xBF6E2F1A1F804B5D,0x3F78FCE02A032428 // C9,C8
917 data8 0x864D46FA895985C1,0xBFFA // C5
918 data8 0x97213C6E35E12043,0xBFFC // C3
919 data8 0x8A8A42A401D979B7,0x3FC7 // C1
920 data8 0xBF2E098A8A2332A8,0x3F370E61B73B205C // C15,C14
921 data8 0xBF56F9849D3BC6CC,0x3F6283126F58D7F4 // C11,C10
922 data8 0xBF851F9F9516A98F,0x3F9266E797A1433F // C7,C6
923 data8 0x845A14A6A81B0638,0x3FFB // C4
924 data8 0xF7B95E4771C55C99,0x3FFD // C2
925 data8 0xF8CDCDE61C520E0F,0xBFFB // C0
926 // [1.75,2.25)
927 data8 0xBEA01D7AFA5D8F52,0x3EB1010986E60253 // C17,C16
928 data8 0xBEE3CBEDB4C918AA,0x3EF580F6D9D0F72D // C13,C12
929 data8 0xBF2D3FD4C7F68563,0x3F40B36AF884AE9A // C9,C8
930 data8 0xF2027E10C7B051EC,0xBFF7 // C5
931 data8 0x89F000D2ABB03401,0xBFFB // C3
932 data8 0xD8773039049E70B6,0x3FFD // C1
933 data8 0xBEC112CD07CFC31A,0x3ED2528A428D30E1 // C15,C14
934 data8 0xBF078DE5618D8C9F,0x3F1A127AD811A53D // C11,C10
935 data8 0xBF538AC5C2BF540D,0x3F67ADD6EADB5718 // C7,C6
936 data8 0xA8991563EC243383,0x3FF9 // C4
937 data8 0xA51A6625307D3230,0x3FFD // C2
938 data8 0,0                       // C0
940 // polynomial approximation of ln(sin(Pi*x)/(Pi*x)), 9 <= x <= 0.5
941 data8 0xBFDC1BF0931AE591,0x3FD36D6D6CE263D7 //S28,S26
942 data8 0xBFBD516F4FD9FB18,0xBFBBE1703F315086 //S20,S18
943 data8 0xAAB5A3CCEFCD3628,0xBFFC //S12
944 data8 0x80859B5C318E19A5,0xBFFD //S8
945 data8 0x8A8991563EC7EB33,0xBFFE //S4
946 data8 0xBFD23AB9E6CC88AC,0xBF9957F5146FC7AF //S24,S22
947 data8 0xBFC007B324E23040,0xBFC248DEC29CAC4A //S16,S14
948 data8 0xCD00EFF2F8F86899,0xBFFC //S10
949 data8 0xADA06587FACD668B,0xBFFD //S6
950 data8 0xD28D3312983E98A0,0xBFFF //S2
952 data8 0x8090F777D7942F73,0x4001 // PR01
953 data8 0xE5B521193CF61E63,0x4000 // PR11
954 data8 0xC02C000000001939,0x0000000000000233 // (-15;-14)
955 data8 0xC02A000000016124,0x0000000000002BFB // (-14;-13)
956 data8 0xC02800000011EED9,0x0000000000025CBB // (-13;-12)
957 data8 0xC026000000D7322A,0x00000000001E1095 // (-12;-11)
958 data8 0xC0240000093F2777,0x00000000013DD3DC // (-11;-10)
959 data8 0xC02200005C7768FB,0x000000000C9539B9 // (-10;-9)
960 data8 0xC02000034028B3F9,0x000000007570C565 // (-9;-8)
961 data8 0xC01C0033FDEDFE1F,0x00000007357E670E // (-8;-7)
962 data8 0xC018016B25897C8D,0x000000346DC5D639 // (-7;-6)
963 data8 0xC014086A57F0B6D9,0x0000010624DD2F1B // (-6;-5)
964 data8 0xC010284E78599581,0x0000051EB851EB85 // (-5;-4)
965 data8 0xC009260DBC9E59AF,0x000028F5C28F5C29 // (-4;-3)
966 data8 0xC003A7FC9600F86C,0x0000666666666666 // (-3;-2)
967 data8 0xCC15879606130890,0x4000 // PR21
968 data8 0xB42FE3281465E1CC,0x4000 // PR31
970 data8 0x828185F0B95C9916,0x4001 // PR00
972 data8 0xD4D3C819E4E5654B,0x4000 // PR10
973 data8 0xA82FBBA4FCC75298,0x4000 // PR20
974 data8 0xC02DFFFFFFFFFE52,0x000000000000001C // (-15;-14)
975 data8 0xC02BFFFFFFFFE6C7,0x00000000000001A6 // (-14;-13)
976 data8 0xC029FFFFFFFE9EDC,0x0000000000002BFB // (-13;-12)
977 data8 0xC027FFFFFFEE1127,0x000000000001EEC8 // (-12;-11)
978 data8 0xC025FFFFFF28CDD4,0x00000000001E1095 // (-11;-10)
979 data8 0xC023FFFFF6C0D7C0,0x000000000101B2B3 // (-10;-9)
980 data8 0xC021FFFFA3884BD0,0x000000000D6BF94D // (-9;-8)
981 data8 0xC01FFFF97F8159CF,0x00000000C9539B89 // (-8;-7)
982 data8 0xC01BFFCBF76B86F0,0x00000007357E670E // (-7;-6)
983 data8 0xC017FE92F591F40D,0x000000346DC5D639 // (-6;-5)
984 data8 0xC013F7577A6EEAFD,0x00000147AE147AE1 // (-5;-4)
985 data8 0xC00FA471547C2FE5,0x00000C49BA5E353F // (-4;-3)
986 data8 0xC005FB410A1BD901,0x000053F7CED91687 // (-3;-2)
987 data8 0x80151BB918A293AA,0x4000 // PR30
988 data8 0xB3C9F8F47422A314,0x400B // PRN
990 // right negative roots
991 //(-3;-2)
992 data8 0x40BFCF8B90BE7F6B,0x40B237623345EFC3 // A15,A14
993 data8 0x407A92EFB03B281E,0x40728700C7819759 // A11,A10
994 data8 0x403809F04EF4D0F2,0x4038D32F682D9593 // A7,A6
995 data8 0xB4A5302C53C2F2D8,0x3FFF // A3
996 data8 0xC1FF4B357A9B0383,0x3FFF // A1
997 data8 0x409C46632EB4B2D3,0x4091A72AFA2148F5 // A13,A12
998 data8 0x4059297AC79A88DB,0x40548EAA7BE7FA6B // A9,A8
999 data8 0x4017339FE04B227F,0x4021718D7CA09E02 // A5,A4
1000 data8 0x9B775D8017AAE668,0x4001 // A2
1001 data8 0x8191DB68FF4366A1,0x3FC9 // A0
1002 //(-4;-3)
1003 data8 0x425260910D35307B,0x422668F5BE7983BB // A15,A14
1004 data8 0x41A4454DBE4BEE43,0x41799CA93F6EA817 // A11,A10
1005 data8 0x40FBB97AA1400F31,0x40D293C3F7ADAB15 // A7,A6
1006 data8 0xE089B8926AE4517B,0x4005 // A3
1007 data8 0xF90532F97D630C69,0x4001 // A1
1008 data8 0x41F9F0CF98C5F2EA,0x41D026336C6BF394 // A13,A12
1009 data8 0x415057F61156D5B8,0x41251EA3055CB754 // A9,A8
1010 data8 0x40A99A6337D9FC2B,0x408267203D776151 // A5,A4
1011 data8 0xCEA694BB8A8827A9,0x4003 // A2
1012 data8 0xF4B02F1D73D30EED,0x3FCD // A0
1013 //(-5;-4)
1014 data8 0x4412365489340979,0x43C86441BAFDEE39 // A15,A14
1015 data8 0x42ED68FCB19352DD,0x42A45FCE3905CD6F // A11,A10
1016 data8 0x41CD14FE49FD4FCA,0x41855E3DBFA89744 // A7,A6
1017 data8 0xAACD88D954E0EC16,0x400B // A3
1018 data8 0xD652E7A490B0DCDF,0x4003 // A1
1019 data8 0x437F52608E0E752A,0x433560E0633E33D5 // A13,A12
1020 data8 0x425C83998976DE3D,0x421433DCCD3B473B // A9,A8
1021 data8 0x4140261EB5732106,0x40F96D18E21AE6CC // A5,A4
1022 data8 0xA220AE6C09FA8A0E,0x4007 // A2
1023 data8 0xCC1682D17A2B5A58,0xBFCF // A0
1024 //(-6;-5)
1025 data8 0x4630E41D6386CF5A,0x45C2E7992C628C8C // A15,A14
1026 data8 0x447AABEC714F913A,0x440EDCAB45339F3A // A11,A10
1027 data8 0x42C9A8D00C97E3CE,0x425F7D8D5BEAB44D // A7,A6
1028 data8 0x929EC2B1FB95BB5B,0x4012 // A3
1029 data8 0xF6B970414D717D38,0x4005 // A1
1030 data8 0x45545E578976F6A2,0x44E738288DD52686 // A13,A12
1031 data8 0x43A20921FEC49492,0x433557FD7C6A41B3 // A9,A8
1032 data8 0x41F3E01773761DB4,0x418A225DF2DA6C47 // A5,A4
1033 data8 0xE7661976117F9312,0x400B // A2
1034 data8 0xC33C13FEE07494DE,0x3FCF // A0
1035 //(-7;-6)
1036 data8 0x4898F1E6133305AD,0x4802C5306FE4A850 // A15,A14
1037 data8 0x463FD37946B44094,0x45A8D489B784C2DD // A11,A10
1038 data8 0x43E9500995815F06,0x4354F21E2FEE6DF5 // A7,A6
1039 data8 0xEF281D1E1BBE10BD,0x4019 // A3
1040 data8 0xB4EF24F1D78C2029,0x4008 // A1
1041 data8 0x476AB1D5930011E5,0x46D4867E77BFB622 // A13,A12
1042 data8 0x45139151ECDEF7C5,0x447F3A2BC6BF466F // A9,A8
1043 data8 0x42C1D3D50713FA40,0x422F9C7B52556A1B // A5,A4
1044 data8 0xFE711A4267CEA83A,0x4010 // A2
1045 data8 0xD11E91B3FF8F4B94,0xBFD2 // A0
1046 //(-8;-7)
1047 data8 0x4B39E57569811B6E,0x4A7656073EB1FA21 // A15,A14
1048 data8 0x482C9B24A516B0BB,0x47698FF55139C62B // A11,A10
1049 data8 0x452393E2BC8E8D04,0x44628E1C710DA478 // A7,A6
1050 data8 0x9F2A95AF1B7A773F,0x4022 // A3
1051 data8 0x9DA03D51C303C918,0x400B // A1
1052 data8 0x49B24C241A3D5BCB,0x48F01CB936ECDA67 // A13,A12
1053 data8 0x46A712B3425C6797,0x45E5164114BD6DA1 // A9,A8
1054 data8 0x43A216A356069D01,0x42E25E42A45E2108 // A5,A4
1055 data8 0xC1F42ED57BBC2529,0x4016 // A2
1056 data8 0xB1C7B615A7DCA8A9,0xBFD7 // A0
1057 //(-9;-8)
1058 data8 0x4E09D478E5EE857D,0x4D1647782106E9AB // A15,A14
1059 data8 0x4A3C7F4D51927548,0x49497954796D743A // A11,A10
1060 data8 0x467387BD6AF0CBDF,0x4582843E134111D2 // A7,A6
1061 data8 0x9F003C6DE9666513,0x402B // A3
1062 data8 0x9D8447F6BF99950A,0x400E // A1
1063 data8 0x4C22364D238C61A9,0x4B300B18050AB940 // A13,A12
1064 data8 0x4857004D64215772,0x4765074E448C3C9A // A9,A8
1065 data8 0x44920E9EA07BF624,0x43A257BEC94BBF48 // A5,A4
1066 data8 0xC1D1C49AC5B2A4B4,0x401C // A2
1067 data8 0x9A749AF9F2D2E688,0x3FDB // A0
1068 //(-10;-9)
1069 data8 0x5102C7C43EA26C83,0x4FDCD174DEB0426B // A15,A14
1070 data8 0x4C6A036195CD5BAD,0x4B44ABB52B65628A // A11,A10
1071 data8 0x47D6439374B98FED,0x46B2C3903EF44D7D // A7,A6
1072 data8 0xE25BAF73AB8A7DB3,0x4034 // A3
1073 data8 0xB130901CA6D81B61,0x4011 // A1
1074 data8 0x4EB50BB0726AE206,0x4D907A96E6D2B6E2 // A13,A12
1075 data8 0x4A20975D78EAF01A,0x48FAF79C9C3E7908 // A9,A8
1076 data8 0x459044144129A247,0x446D6043FA3150A3 // A5,A4
1077 data8 0xF547997E083D9BA7,0x4022 // A2
1078 data8 0x977AF525A6ECA1BC,0x3FDC // A0
1079 //(-11;-10)
1080 data8 0x5420A5D5E90C6D73,0x52C4710A503DC67A // A15,A14
1081 data8 0x4EB2ED07BA88D2A8,0x4D581001ED9A5ECE // A11,A10
1082 data8 0x494A8A28E9E3DFEF,0x47F1E4E1E476793E // A7,A6
1083 data8 0xDD0C97E12D4A3378,0x403E // A3
1084 data8 0xDD7C12D5182FD543,0x4014 // A1
1085 data8 0x5167ED536877A072,0x500DF9AF21DDC0B6 // A13,A12
1086 data8 0x4BFEE6F04BC34FF8,0x4AA4175CEF736A5E // A9,A8
1087 data8 0x4698D1B4388FEC78,0x4541EDE7607A600D // A5,A4
1088 data8 0xBF9F645F282AC552,0x4029 // A2
1089 data8 0xAE1BBE4D3CDACCF4,0x3FE1 // A0
1090 //(-12;-11)
1091 data8 0x575F0EEF5FB7D4C0,0x55CBB7302B211A7C // A15,A14
1092 data8 0x5113A4F1825C7CB2,0x4F822A0D46E0605A // A11,A10
1093 data8 0x4ACED38FC8BE069A,0x493E3B56D2649F18 // A7,A6
1094 data8 0x8FA8FF5DF8B72D5E,0x4049 // A3
1095 data8 0x9845417E8598D642,0x4018 // A1
1096 data8 0x5437780541C3F2D3,0x52A56279B563C1B2 // A13,A12
1097 data8 0x4DF0F71A48C50188,0x4C600B358988DEBF // A9,A8
1098 data8 0x47AE7EE95BDA3DE9,0x46200599DC16B18F // A5,A4
1099 data8 0xB5249F914932E55D,0x4030 // A2
1100 data8 0xEAE760CD2C086094,0x3FE5 // A0
1101 //(-13;-12)
1102 data8 0x5ABA5848651F6D18,0x58EF60D8A817650B // A15,A14
1103 data8 0x538A8CA86E13EFB1,0x51C05DBD4D01076D // A11,A10
1104 data8 0x4C607594C339D259,0x4A9585BD5BF932BB // A7,A6
1105 data8 0xF26D282C36EC3611,0x4053 // A3
1106 data8 0xE467DF4810EE7EEE,0x401B // A1
1107 data8 0x5721D9BA485E8CC3,0x5555AF2CCFB2104D // A13,A12
1108 data8 0x4FF4619A17B14EA6,0x4E29B2F29EB9F8C4 // A9,A8
1109 data8 0x48CCF27629D46E79,0x47044715F991A63D // A5,A4
1110 data8 0xCBC92FB9BDAA95A9,0x4037 // A2
1111 data8 0xFB743A426163665B,0xBFE6 // A0
1112 //(-14;-13)
1113 data8 0x5E3295B24B353EAA,0x5C2B447E29796F20 // A15,A14
1114 data8 0x5615A35CB5EAFAE5,0x54106AB089C95CAF // A11,A10
1115 data8 0x4DFEC7D93501900A,0x4BF8C4C685F01B83 // A7,A6
1116 data8 0x820899603D9A74D5,0x405F // A3
1117 data8 0xB9949919933821CB,0x401F // A1
1118 data8 0x5A23373DB9A995AC,0x581CBA0AF7F53009 // A13,A12
1119 data8 0x520929836BB304CD,0x500386409A7076DA // A9,A8
1120 data8 0x49F480173FEAF90B,0x47F1ACB14B810793 // A5,A4
1121 data8 0x86881B8674DBF205,0x403F // A2
1122 data8 0x8CF3CC35AA2C5F90,0x3FED // A0
1123 //(-15;-14)
1124 data8 0x61C37D53BE0029D6,0x5F80667CD9D68354 // A15,A14
1125 data8 0x58B3F01898E6605B,0x567149652116DB6A // A11,A10
1126 data8 0x4FA82FA4F5D35B00,0x4D663DB00832DF8F // A7,A6
1127 data8 0xAE426731C9B94996,0x406A // A3
1128 data8 0xA264C84BE3708F3F,0x4023 // A1
1129 data8 0x5D3B254BC1C806A8,0x5AF72E736048B553 // A13,A12
1130 data8 0x542E476505104BB0,0x51EAD96CDC4FB48F // A9,A8
1131 data8 0x4B25095F498DB134,0x48E4B9FDEBFE24AB // A5,A4
1132 data8 0xCE076A5A116C1D34,0x4046 // A2
1133 data8 0x940013871A15050B,0x3FF1 // A0
1135 // left negative roots
1136 //(-3;-2)
1137 data8 0x41AEB7998DBE2B2C,0xC19053D8FAC05DF7 // A16,A15
1138 data8 0x4133197BF1ADEAF9,0xC1150728B9B82072 // A12,A11
1139 data8 0x40BDBA65E74F4526,0xC0A12239BEEF8F72 // A8,A7
1140 data8 0xFA8256664F99E2AA,0x4004 // A4
1141 data8 0x9933F9E132D2A5DB,0x4002 // A2
1142 data8 0x416FFB167B85F77C,0xC15166AE0ACCF87C // A14,A13
1143 data8 0x40F75815106322C0,0xC0DA2D23C59C348D // A10,A9
1144 data8 0x4084373F7CC42043,0xC0685884581F8C61 // A6,A5
1145 data8 0xA0C2D6186460FF9D,0xC003 // A3
1146 data8 0xF5096D48258CA0AD,0xBFFF // A1
1147 //(-4;-3)
1148 data8 0xC3E5BD233016D4B9,0x43A084DAD2D94AB1 // A15,A14
1149 data8 0xC2CCFFF5E5AED722,0x4286D143AC7D29A6 // A11,A10
1150 data8 0xC1B7DBBE0680D07B,0x4173E8F3ABB79CED // A7,A6
1151 data8 0xE929ACEA59799BAF,0xC00A // A3
1152 data8 0xA5CCECB362B21E1C,0xC003 // A1
1153 data8 0xC357EED873871B81,0x43128E0B873204FC // A13,A12
1154 data8 0xC242225FA76E8450,0x41FD2F76AE7386CE // A9,A8
1155 data8 0xC13116F7806D0C7A,0x40EE8F829F141025 // A5,A4
1156 data8 0xFBB6F57021B5B397,0x4006 // A2
1157 data8 0xEEE019B4C05AC269,0xBFCB // A0
1158 //(-5;-4)
1159 data8 0xC626A52FE8AAA100,0x45B9FD1F4DDFE31E // A15,A14
1160 data8 0xC473812A5675F08B,0x440738530AECC254 // A11,A10
1161 data8 0xC2C5068B3F94AC27,0x425A8C5C539A500B // A7,A6
1162 data8 0x869FBFF732F20C3A,0xC012 // A3
1163 data8 0xE91251F7CF25A655,0xC005 // A1
1164 data8 0xC54C18CB48E5DA0F,0x44E07BD36FF561DF // A13,A12
1165 data8 0xC39BEC120D2FEBEA,0x4330FFA5388435BE // A9,A8
1166 data8 0xC1F13D5D163B7FB5,0x418752A6F5AC0F39 // A5,A4
1167 data8 0xDA99E33C51D360F0,0x400B // A2
1168 data8 0x9F47A66A2F53D9B9,0x3FD1 // A0
1169 //(-6;-5)
1170 data8 0xC8970DAC16B6D59E,0x480170728306FD76 // A15,A14
1171 data8 0xC63E0E5030604CF3,0x45A7924D74D57C65 // A11,A10
1172 data8 0xC3E8684E41730FC6,0x43544D54EA2E5B9A // A7,A6
1173 data8 0xEB7404450C47C5F4,0xC019 // A3
1174 data8 0xB30FB521D2C19F8B,0xC008 // A1
1175 data8 0xC768F34D35DF6320,0x46D348B3BB2E68B8 // A13,A12
1176 data8 0xC512AC2FE5EA638E,0x447DF44BC7FC5E17 // A9,A8
1177 data8 0xC2C15EA6B0AAFEF9,0x422EF5D308DBC420 // A5,A4
1178 data8 0xFBCEE5BCA70FD3A3,0x4010 // A2
1179 data8 0x8589A7CFFE0A3E86,0xBFD5 // A0
1180 //(-7;-6)
1181 data8 0xCB3995A0CC961E5A,0x4A7615C6C7116ADD // A15,A14
1182 data8 0xC82C5AFE0BF9C427,0x47695BD2F367668B // A11,A10
1183 data8 0xC52377E70BA14CF5,0x4462775E859E4392 // A7,A6
1184 data8 0x9EC8ED6E4C3D4DBE,0xC022 // A3
1185 data8 0x9D5FBD2E75520E65,0xC00B // A1
1186 data8 0xC9B21BB881A4DDF8,0x48EFEAB06FBA0207 // A13,A12
1187 data8 0xC6A6E8550CBC188F,0x45E4F3D26238B099 // A9,A8
1188 data8 0xC3A20427DF1B110A,0x42E24F3D636F2E4E // A5,A4
1189 data8 0xC1A4D12A82280CFB,0x4016 // A2
1190 data8 0xEF46D8DCCA9E8197,0x3FD2 // A0
1191 //(-8;-7)
1192 data8 0xCE0946982B27DE5B,0x4D15DBC6664E2DD2 // A15,A14
1193 data8 0xCA3C769F6B3B2B93,0x49497251CD0C4363 // A11,A10
1194 data8 0xC67384066C47F489,0x458281393433AB28 // A7,A6
1195 data8 0x9EF3459926D0F14F,0xC02B // A3
1196 data8 0x9D7BB7F2600DFF0B,0xC00E // A1
1197 data8 0xCC22351326C939A7,0x4B3009431C4F1D3F // A13,A12
1198 data8 0xC856FAADDD48815D,0x476502BC3ECA040C // A9,A8
1199 data8 0xC4920C2A84173810,0x43A255C052525F99 // A5,A4
1200 data8 0xC1C73B6554011EFA,0x401C // A2
1201 data8 0x954612700ADF8317,0xBFD8 // A0
1202 //(-9;-8)
1203 data8 0xD102F5CC7B590D3A,0x4FDD0F1C30E4EB22 // A15,A14
1204 data8 0xCC6A02912B0DF650,0x4B44AB18E4FCC159 // A11,A10
1205 data8 0xC7D64314B4A2FAAB,0x46B2C334AE5E2D34 // A7,A6
1206 data8 0xE2598724F7E28E99,0xC034 // A3
1207 data8 0xB12F6FE2E195452C,0xC011 // A1
1208 data8 0xCEB507747AF9356A,0x4D907802C08BA48F // A13,A12
1209 data8 0xCA2096E3DC29516F,0x48FAF6ED046A1DB7 // A9,A8
1210 data8 0xC59043D21BA5EE56,0x446D5FE468B30450 // A5,A4
1211 data8 0xF5460A8196B59C83,0x4022 // A2
1212 data8 0xB108F35A8EDA92D5,0xBFDD // A0
1213 //(-10;-9)
1214 data8 0xD420430D91F8265B,0x52C406CAAAC9E0EE // A15,A14
1215 data8 0xCEB2ECDDDAA3DAD1,0x4D580FDA97F92E3A // A11,A10
1216 data8 0xC94A8A192341B5D4,0x47F1E4D8C690D07B // A7,A6
1217 data8 0xDD0C5F920C2F0D2B,0xC03E // A3
1218 data8 0xDD7BED3631657B48,0xC014 // A1
1219 data8 0xD167F410E64E90A4,0x500DFFED20F714A7 // A13,A12
1220 data8 0xCBFEE6D9043169E9,0x4AA4174F64B40AA7 // A9,A8
1221 data8 0xC698D1A9AF0AB9C2,0x4541EDE14987A887 // A5,A4
1222 data8 0xBF9F43D461B3DE6E,0x4029 // A2
1223 data8 0xF3891A50642FAF26,0x3FE1 // A0
1224 //(-11;-10)
1225 data8 0xD75F0EEAF769D42A,0x55CBB72C8869183A // A15,A14
1226 data8 0xD113A4EF80394F77,0x4F822A0B96B3ECA9 // A11,A10
1227 data8 0xCACED38DC75763CB,0x493E3B5522D2D028 // A7,A6
1228 data8 0x8FA8FB5C92533701,0xC049 // A3
1229 data8 0x98453EDB9339C24E,0xC018 // A1
1230 data8 0xD43778026CCD4B20,0x52A5627753273B9B // A13,A12
1231 data8 0xCDF0F718DD7E1214,0x4C600B34582911EB // A9,A8
1232 data8 0xC7AE7EE7F112362C,0x46200599439C264F // A5,A4
1233 data8 0xB5249C335342B5BC,0x4030 // A2
1234 data8 0x881550711D143475,0x3FE4 // A0
1235 //(-12;-11)
1236 data8 0xDAB9C724EEEE2BBB,0x58EEC971340EDDBA // A15,A14
1237 data8 0xD38A8C8AE63BD8BF,0x51C05DB21CEE00D3 // A11,A10
1238 data8 0xCC607594C311C12D,0x4A9585BD5BE6AB57 // A7,A6
1239 data8 0xF26D282C36EC0E66,0xC053 // A3
1240 data8 0xE467DF1FA674BFAE,0xC01B // A1
1241 data8 0xD721DE506999AA9C,0x5555B34F71B45132 // A13,A12
1242 data8 0xCFF4619A476BF76F,0x4E29B2F2BBE7A67E // A9,A8
1243 data8 0xC8CCF27629D48EDC,0x47044715F991AB46 // A5,A4
1244 data8 0xCBC92FB9BDAA928D,0x4037 // A2
1245 data8 0xCE27C4F01CF53284,0xBFE6 // A0
1246 //(-13;-12)
1247 data8 0xDE3295B24355C5A1,0x5C2B447E298B562D // A15,A14
1248 data8 0xD615A35CB5E92103,0x54106AB089C95E8C // A11,A10
1249 data8 0xCDFEC7D935019005,0x4BF8C4C685F01B83 // A7,A6
1250 data8 0x820899603D9A74D5,0xC05F // A3
1251 data8 0xB9949916F8DF4AC4,0xC01F // A1
1252 data8 0xDA23373DBA0B7548,0x581CBA0AF7F45C01 // A13,A12
1253 data8 0xD20929836BB30934,0x500386409A7076D6 // A9,A8
1254 data8 0xC9F480173FEAF90B,0x47F1ACB14B810793 // A5,A4
1255 data8 0x86881B8674DBF205,0x403F // A2
1256 data8 0x8CFAFA9A142C1FF0,0x3FED // A0
1257 //(-14;-13)
1258 data8 0xE1C33F356FA2C630,0x5F8038B8AA919DD7 // A15,A14
1259 data8 0xD8B3F0167E14982D,0x5671496400BAE0DB // A11,A10
1260 data8 0xCFA82FA4F5D25C3E,0x4D663DB008328C58 // A7,A6
1261 data8 0xAE426731C9B94980,0xC06A // A3
1262 data8 0xA264C84BB8A66F86,0xC023 // A1
1263 data8 0xDD3B26E34762ED1E,0x5AF72F76E3C1B793 // A13,A12
1264 data8 0xD42E476507E3D06E,0x51EAD96CDD881DFA // A9,A8
1265 data8 0xCB25095F498DB15F,0x48E4B9FDEBFE24B5 // A5,A4
1266 data8 0xCE076A5A116C1D32,0x4046 // A2
1267 data8 0x94001BF5A24966F5,0x3FF1 // A0
1268 //(-15;-14)
1269 data8 0xE56DB8B72D7156FF,0x62EAB0CDB22539BE // A15,A14
1270 data8 0xDB63D76B0D3457E7,0x58E254823D0AE4FF // A11,A10
1271 data8 0xD15F060BF548404A,0x4EDE65C20CD4E961 // A7,A6
1272 data8 0x900DA565ED76C19D,0xC076 // A3
1273 data8 0x9868C809852DA712,0xC027 // A1
1274 data8 0xE067CCDA0408AAF0,0x5DE5A79C5C5C54AF // A13,A12
1275 data8 0xD6611ADBF5958ED0,0x53E0294092BE9677 // A9,A8
1276 data8 0xCC5EA28D90EE8C5D,0x49E014930EF336EE // A5,A4
1277 data8 0xB57930DCE7A61AE8,0x404E // A2
1278 data8 0x976BEC1F30DF151C,0x3FF5 // A0
1279 LOCAL_OBJECT_END(lgamma_data)
1282 .section .text
1283 GLOBAL_LIBM_ENTRY(__libm_lgamma)
1285 { .mfi
1286       getf.exp      GR_SignExp = f8
1287       frcpa.s1      FR_C,p9 = f1,f8
1288       mov           GR_ExpMask = 0x1ffff
1290 { .mfi
1291       addl          GR_ad_Data = @ltoff(lgamma_data),gp
1292       fcvt.fx.s1    FR_int_N = f8
1293       mov           GR_2_25 = 0x4002 // 2.25
1295 { .mfi
1296       getf.d        GR_ArgAsIs = f8
1297       fclass.m      p13,p0 = f8,0x1EF // is x NaTVal, NaN,
1298                                       // +/-0, +/-INF or +/-deno?
1299       mov           GR_ExpBias = 0xFFFF
1301 { .mfi
1302       ld8           GR_ad_Data = [GR_ad_Data]
1303       fcvt.fx.trunc.s1 FR_int_Ntrunc = f8
1304       mov           GR_ExpOf256 = 0x10007
1306 { .mfi
1307       mov           GR_ExpOf2 = 0x10000
1308       fcmp.lt.s1    p14,p15 = f8,f0 // p14 if x<0
1309       dep.z         GR_Ind = GR_SignExp,8,4
1311 { .mfi
1312       and           GR_Exp = GR_SignExp,GR_ExpMask
1313       fma.s1        FR_2 = f1,f1,f1
1314       cmp.lt        p10,p0 = GR_SignExp,GR_ExpBias
1316 { .mfi
1317       add           GR_ad_1 = 0xB80,GR_ad_Data
1318       fnorm.s1      FR_NormX = f8
1319       shr.u         GR_Arg = GR_ArgAsIs,48
1321 { .mib
1322       add           GR_ad_Co = GR_Ind,GR_ad_Data
1323       add           GR_ad_Ce = 0x10,GR_ad_Data
1324       // jump if the input argument is NaTVal, NaN, +/-0, +/-INF or +/-deno
1325 (p13) br.cond.spnt  lgamma_spec
1327 lgamma_common:
1328 { .mfi
1329       ldfpd         FR_LocalMin,FR_05 = [GR_ad_1],16
1330       fmerge.se     FR_x = f1,f8
1331       add           GR_ad_2 = 0xBC0,GR_ad_Data
1333 { .mfb
1334       add           GR_ad_Ce = GR_Ind,GR_ad_Ce
1335       fms.s1        FR_w = f8,f1,f1 // x-1
1336       // jump if the input argument is positive and  less than 1.0
1337 (p10) br.cond.spnt  lgamma_0_1
1339 { .mfi
1340       ldfe          FR_C01 = [GR_ad_Co],32
1341       fnma.s1       FR_InvX = FR_C,f8,f1 // NR iteration #1
1342 (p15) cmp.lt.unc    p8,p0 = GR_ExpOf256,GR_SignExp
1344 { .mib
1345       ldfe          FR_C11 = [GR_ad_Ce],32
1346 (p15) cmp.lt.unc    p11,p0 = GR_Arg,GR_2_25
1347       // jump if the input argument isn't less than 512.0
1348 (p8)  br.cond.spnt  lgamma_pstirling
1350 { .mfi
1351       ldfe          FR_C21 = [GR_ad_Co],32
1352 (p14) fms.s1        FR_r = FR_C,f8,f1 // reduced arg for log(x)
1353 (p14) cmp.lt.unc    p0,p9 = GR_Exp,GR_ExpOf256
1355 { .mib
1356       ldfe          FR_C31 = [GR_ad_Ce],32
1357       add           GR_ad_Co7 = 0x12C0,GR_ad_2
1358       // jump if the input argument is from range [1.0; 2.25)
1359 (p11) br.cond.spnt  lgamma_1_2
1361 { .mfi
1362       ldfe          FR_C41 = [GR_ad_Co],32
1363       fcvt.xf       FR_N = FR_int_N
1364       add           GR_ad_Ce7 = 0x1310,GR_ad_2
1366 { .mfb
1367       ldfe          FR_C51 = [GR_ad_Ce],32
1368 (p14) fma.s1        FR_5 = FR_2,FR_2,f1
1369       // jump if the input argument is less or equal to -512.0
1370 (p9)  br.cond.spnt  lgamma_negstirling
1372 { .mfi
1373       ldfe          FR_C61 = [GR_ad_Co],32
1374 (p14) fcvt.xf       FR_Ntrunc = FR_int_Ntrunc
1375       shr           GR_Ind = GR_Ind,4
1377 { .mfi
1378       ldfe          FR_C71 = [GR_ad_Ce],32
1379 (p14) fma.s1        FR_Xp1 = f1,f1,FR_NormX // x+1
1380       cmp.eq        p6,p7 = GR_ExpOf2,GR_SignExp
1382 .pred.rel "mutex",p6,p7
1383 { .mfi
1384       ldfe          FR_C81 = [GR_ad_Co],32
1385 (p6)  fma.s1        FR_x = f0,f0,FR_NormX
1386       shladd        GR_Offs7 = GR_Ind,2,GR_Ind // (ind*16)*5
1388 { .mfi
1389       ldfe          FR_C91 = [GR_ad_Ce],32
1390 (p7)  fms.s1        FR_x = FR_x,f1,f1
1391       add           GR_ad_Co7 = 0x800,GR_ad_Data
1393 { .mfi
1394       ldfe          FR_CA1 = [GR_ad_Co],32
1395 (p14) fma.s1        FR_3 = f1,f1,FR_2
1396       shladd        GR_Offs7 = GR_Ind,1,GR_Offs7 // (ind*16)*7
1398 { .mfi
1399       ldfe          FR_C00 = [GR_ad_Ce],32
1400 (p14) fma.s1        FR_Xp4 = FR_2,FR_2,FR_NormX
1401       add           GR_ad_Ce7 = 0x810,GR_ad_Data
1403 { .mfi
1404       ldfe          FR_C10 = [GR_ad_Co],32
1405 (p6)  fms.s1        FR_Xm2 = FR_w,f1,f1
1406       add           GR_ad_Co7 = GR_ad_Co7,GR_Offs7
1408 { .mfi
1409       ldfe          FR_C20 = [GR_ad_Ce],32
1410 (p14) fma.s1        FR_r2 = FR_r,FR_r,f0 // log(x)
1411       add           GR_ad_Ce7 = GR_ad_Ce7,GR_Offs7
1413 { .mfi
1414       ldfe          FR_C30 = [GR_ad_Co],32
1415 (p14) fms.s1        FR_Xf = FR_NormX,f1,FR_N  // xf = x - [x]
1416 (p14) mov           GR_Arg17 = 0xC031 // -17
1418 { .mfi
1419       ldfe          FR_C40 = [GR_ad_Ce],32
1420 (p14) fma.s1        FR_Xp5 = FR_5,f1,FR_NormX
1421 (p14) sub           GR_Exp = GR_Exp,GR_ExpBias
1423 { .mfi
1424       ldfe          FR_C50 = [GR_ad_Co7],32
1425 (p14) fms.s1        FR_Xfr = FR_Xp1,f1,FR_Ntrunc // xfr = (x+1) - [x]
1426 (p14) cmp.lt.unc    p13,p0 = GR_Arg,GR_Arg17
1428 { .mfb
1429       ldfe          FR_C60 = [GR_ad_Ce7],32
1430 (p14) fma.s1        FR_Xp10 = FR_5,FR_2,FR_NormX
1431       // jump if the input argument is negative and great than -17.0
1432 (p13) br.cond.spnt  lgamma_negrecursion
1434 { .mfi
1435       ldfe          FR_C70 = [GR_ad_Co7],32
1436       fma.s1        FR_C01 = FR_x,f1,FR_C01
1437 (p14) add           GR_ad_Ce = 0x1310,GR_ad_2
1439 { .mfi
1440       ldfe          FR_C80 = [GR_ad_Ce7],32
1441       fma.s1        FR_C11 = FR_x,f1,FR_C11
1442 (p14) add           GR_ad_Co = 0x12C0,GR_ad_2
1444 { .mfi
1445       ldfe          FR_C90 = [GR_ad_Co7],32
1446       fma.s1        FR_C21 = FR_x,f1,FR_C21
1447       nop.i         0
1449 { .mfi
1450       ldfe          FR_CA0 = [GR_ad_Ce7],32
1451       fma.s1        FR_C31 = FR_x,f1,FR_C31
1452       nop.i         0
1454 { .mfi
1455       ldfe          FR_CN = [GR_ad_Co7],32
1456       fma.s1        FR_C41 = FR_x,f1,FR_C41
1457       nop.i         0
1459 { .mfi
1460 (p14) ldfpd         FR_P5,FR_P4 = [GR_ad_1],16
1461       fma.s1        FR_C51 = FR_x,f1,FR_C51
1462       nop.i         0
1464 { .mfi
1465 (p14) ldfpd         FR_P3,FR_P2 = [GR_ad_2],16
1466       fma.s1        FR_C61 = FR_x,f1,FR_C61
1467       nop.i         0
1469 { .mfi
1470 (p14) ldfe          FR_Ln2 = [GR_ad_1]
1471       fma.s1        FR_C71 = FR_x,f1,FR_C71
1472       nop.i         0
1474 { .mfi
1475 (p14) ldfpd         FR_S28,FR_S26 = [GR_ad_Co],16
1476       fma.s1        FR_C81 = FR_x,f1,FR_C81
1477       add           GR_ad_2 = 0x60,GR_ad_2
1479 { .mfi
1480 (p14) ldfpd         FR_S24,FR_S22 = [GR_ad_Ce],16
1481       fma.s1        FR_C91 = FR_x,f1,FR_C91
1482       nop.i         0
1484 { .mfi
1485 (p14) ldfpd         FR_S20,FR_S18 = [GR_ad_Co],16
1486       fma.s1        FR_CA1 = FR_x,f1,FR_CA1
1487       nop.i         0
1489 { .mfi
1490 (p14) ldfpd         FR_S16,FR_S14 = [GR_ad_Ce],16
1491       fma.s1        FR_C01 = FR_C01,FR_x,FR_C00
1492       nop.i         0
1494 { .mfi
1495 (p14) getf.exp      GR_SignExp = FR_Xf
1496       fma.s1        FR_C11 = FR_C11,FR_x,FR_C10
1497       nop.i         0
1499 { .mfi
1500 (p14) ldfe          FR_S12 = [GR_ad_Co],16
1501       fma.s1        FR_C21 = FR_C21,FR_x,FR_C20
1502       nop.i         0
1504 { .mfi
1505 (p14) getf.sig      GR_Sig = FR_Xf
1506 (p14) frcpa.s1      FR_InvXf,p0 = f1,FR_Xf
1507       nop.i         0
1509 { .mfi
1510 (p14) ldfe          FR_S10 = [GR_ad_Ce],16
1511       fma.s1        FR_C41 = FR_C41,FR_x,FR_C40
1512       nop.i         0
1514 { .mfi
1515 (p14) ldfe          FR_S8 = [GR_ad_Co],16
1516       fma.s1        FR_C51 = FR_C51,FR_x,FR_C50
1517       nop.i         0
1519 { .mfi
1520 (p14) ldfe          FR_S6 = [GR_ad_Ce],16
1521       fma.s1        FR_C61 = FR_C61,FR_x,FR_C60
1522 (p14) and           GR_Expf = GR_SignExp,GR_ExpMask
1524 { .mfi
1525 (p14) sub           GR_Expf = GR_Expf,GR_ExpBias
1526       fma.s1        FR_C71 = FR_C71,FR_x,FR_C70
1527 (p14) shl           GR_Ind = GR_Sig,1
1529 { .mfi
1530 (p14) ldfe          FR_S4 = [GR_ad_Co],16
1531       fma.s1        FR_C81 = FR_C81,FR_x,FR_C80
1532 (p14) cmp.eq.unc    p8,p0 = 0,GR_Sig
1534 { .mfi
1535 (p14) setf.sig      FR_int_Nf = GR_Expf
1536       fma.s1        FR_C91 = FR_C91,FR_x,FR_C90
1537 (p14) shr.u         GR_Ind = GR_Ind,56
1539 { .mfb
1540 (p14) ldfe          FR_S2 = [GR_ad_Ce],16
1541       fma.s1        FR_CA1 = FR_CA1,FR_x,FR_CA0
1542       // jump if the input argument is integer number from range (-512.0;-17.0]
1543 (p8)  br.cond.spnt  lgamma_singularity
1545 { .mfi
1546 (p14) getf.sig      GR_Sig = FR_int_Ntrunc
1547       fma.s1        FR_C01 = FR_C01,FR_C11,f0
1548       nop.i         0
1550 { .mfi
1551 (p14) shladd        GR_ad_T = GR_Ind,4,GR_ad_2
1552       fma.s1        FR_C31 = FR_C31,FR_x,FR_C30
1553       nop.i         0
1555 { .mfi
1556 (p14) ldfe          FR_Tf = [GR_ad_T]
1557 (p14) fms.s1        FR_rf = FR_InvXf,FR_Xf,f1 // reduced arg for log({x})
1558 (p14) extr.u        GR_Ind = GR_ArgAsIs,44,8
1560 { .mfi
1561       // set p9  if signgum is 32-bit int
1562       // set p10 if signgum is 64-bit int
1563       cmp.eq        p10,p9 = 8,r34
1564       fma.s1        FR_C21 = FR_C21,FR_C41,f0
1565       mov           GR_SignOfGamma = 1
1567 { .mfi
1568       nop.m         0
1569       fma.s1        FR_C51 = FR_C51,FR_C61,f0
1570 (p14) tbit.z.unc    p8,p0 = GR_Sig,0
1572 { .mfi
1573 (p14) shladd        GR_ad_T = GR_Ind,4,GR_ad_2
1574 (p6)  fma.s1        FR_CN = FR_CN,FR_Xm2,f0
1575       nop.i         0
1577 { .mfi
1578 (p14) setf.sig      FR_int_N = GR_Exp
1579       fma.s1        FR_C71 = FR_C71,FR_C81,f0
1580 (p8)  sub           GR_SignOfGamma = r0,GR_SignOfGamma
1582 { .mfi
1583       nop.m         0
1584 (p14) fma.s1        FR_Xf2 = FR_Xf,FR_Xf,f0
1585       nop.i         0
1587 { .mfi
1588 (p14) ldfe          FR_T = [GR_ad_T]
1589       fma.s1        FR_C91 = FR_C91,FR_CA1,f0
1590       nop.i         0
1592 { .mfi
1593       nop.m         0
1594 (p14) fma.s1        FR_r2 = FR_r,FR_r,f0
1595       nop.i         0
1597 .pred.rel "mutex",p9,p10
1598 { .mfi
1599       // store sign of gamma(x) as 32-bit int
1600 (p9)  st4           [r33] = GR_SignOfGamma
1601       fma.s1        FR_C01 = FR_C01,FR_C31,f0
1602       nop.i         0
1604 { .mfi
1605       // store sign of gamma(x) as 64-bit int
1606 (p10) st8           [r33] = GR_SignOfGamma
1607 (p14) fma.s1        FR_P54 = FR_P5,FR_r,FR_P4
1608       nop.i         0
1610 { .mfi
1611       nop.m         0
1612 (p14) fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
1613       nop.i         0
1615 { .mfb
1616       nop.m         0
1617 (p14) fma.s1        FR_P54f = FR_P5,FR_rf,FR_P4
1618       // jump if the input argument is non-integer from range (-512.0;-17.0]
1619 (p14) br.cond.spnt  lgamma_negpoly
1621 { .mfi
1622       nop.m         0
1623       fma.s1        FR_C21 = FR_C21,FR_C51,f0
1624       nop.i         0
1626 { .mfi
1627       nop.m         0
1628       fma.s1        FR_C71 = FR_C71,FR_C91,f0
1629       nop.i         0
1631 { .mfi
1632       nop.m         0
1633       fma.s1        FR_CN  = FR_C01,FR_CN,f0
1634       nop.i         0
1636 { .mfi
1637       nop.m         0
1638       fma.s1        FR_C21 = FR_C21,FR_C71,f0
1639       nop.i         0
1641 { .mfb
1642       nop.m         0
1643       fma.d.s0      f8 = FR_C21,FR_CN,f0
1644       br.ret.sptk   b0 // exit for arguments from range [2.25; 512.0)
1646 // branch for calculating of ln(GAMMA(x)) for -512 < x < -17
1647 //---------------------------------------------------------------------
1648 .align 32
1649 lgamma_negpoly:
1650 { .mfi
1651       nop.m         0
1652       fma.s1        FR_Xf4 = FR_Xf2,FR_Xf2,f0
1653       nop.i         0
1655 { .mfi
1656       nop.m         0
1657       fma.s1        FR_S28 = FR_S28,FR_Xf2,FR_S26
1658       nop.i         0
1660 { .mfi
1661       nop.m         0
1662       fma.s1        FR_S24 = FR_S24,FR_Xf2,FR_S22
1663       nop.i         0
1665 { .mfi
1666       nop.m         0
1667       fma.s1        FR_S20 = FR_S20,FR_Xf2,FR_S18
1668       nop.i         0
1670 { .mfi
1671       nop.m         0
1672       fma.s1        FR_S16 = FR_S16,FR_Xf2,FR_S14
1673       nop.i         0
1675 { .mfi
1676       nop.m         0
1677       fma.s1        FR_S12 = FR_S12,FR_Xf2,FR_S10
1678       nop.i         0
1680 { .mfi
1681       nop.m         0
1682       fma.s1        FR_S8 = FR_S8,FR_Xf2,FR_S6
1683       nop.i         0
1685 { .mfi
1686       nop.m         0
1687       fma.s1        FR_S4 = FR_S4,FR_Xf2,FR_S2
1688       nop.i         0
1690 { .mfi
1691       nop.m         0
1692       fma.s1        FR_rf2 = FR_rf,FR_rf,f0
1693       nop.i         0
1695 { .mfi
1696       nop.m         0
1697       fma.s1        FR_P32f = FR_P3,FR_rf,FR_P2 // log(x)
1698       nop.i         0
1700 { .mfi
1701       nop.m         0
1702       fma.s1        FR_r3 = FR_r2,FR_r,f0 // log(x)
1703       nop.i         0
1705 { .mfi
1706       nop.m         0
1707       fcvt.xf       FR_Nf = FR_int_Nf // log({x})
1708       nop.i         0
1710 { .mfi
1711       nop.m         0
1712       fma.s1        FR_S28 = FR_S28,FR_Xf4,FR_S24
1713       nop.i         0
1715 { .mfi
1716       nop.m         0
1717       fma.s1        FR_Xf8 = FR_Xf4,FR_Xf4,f0
1718       nop.i         0
1720 { .mfi
1721       nop.m         0
1722       fma.s1        FR_S20 = FR_S20,FR_Xf4,FR_S16
1723       nop.i         0
1725 { .mfi
1726       nop.m         0
1727       fma.s1        FR_C21 = FR_C21,FR_C51,f0
1728       nop.i         0
1730 { .mfi
1731       nop.m         0
1732       fma.s1        FR_S12 = FR_S12,FR_Xf4,FR_S8
1733       nop.i         0
1735 { .mfi
1736       nop.m         0
1737       fma.s1        FR_C71 = FR_C71,FR_C91,f0
1738       nop.i         0
1740 { .mfi
1741       nop.m         0
1742       fnma.s1       FR_P10 = FR_r2,FR_05,FR_r // log(x)
1743       nop.i         0
1745 { .mfi
1746       nop.m         0
1747       fma.s1        FR_P54 = FR_P54,FR_r2,FR_P32 // log(x)
1748       nop.i         0
1750 { .mfi
1751       nop.m         0
1752       fnma.s1       FR_P10f = FR_rf2,FR_05,FR_rf // log({x})
1753       nop.i         0
1755 { .mfi
1756       nop.m         0
1757       fcvt.xf       FR_N = FR_int_N // log(x)
1758       nop.i         0
1760 { .mfi
1761       nop.m         0
1762       fma.s1        FR_rf3 = FR_rf2,FR_rf,f0 // log({x})
1763       nop.i         0
1765 { .mfi
1766       nop.m         0
1767       fma.s1        FR_P54f = FR_P54f,FR_rf2,FR_P32f // log({x})
1768       nop.i         0
1770 { .mfi
1771       nop.m         0
1772       fma.s1        FR_S28 = FR_S28,FR_Xf8,FR_S20
1773       nop.i         0
1775 { .mfi
1776       nop.m         0
1777       fma.s1        FR_TpNxLn2f = FR_Nf,FR_Ln2,FR_Tf // log({x})
1778       nop.i         0
1780 { .mfi
1781       nop.m         0
1782       fma.s1        FR_CN  = FR_C01,FR_CN,f0
1783       nop.i         0
1785 { .mfi
1786       nop.m         0
1787       fma.s1        FR_C21 = FR_C21,FR_C71,f0
1788       nop.i         0
1790 { .mfi
1791       nop.m         0
1792       fma.s1        FR_P54 = FR_P54,FR_r3,FR_P10 // log(x)
1793       nop.i         0
1795 { .mfi
1796       nop.m         0
1797       fma.s1        FR_TpNxLn2 = FR_N,FR_Ln2,FR_T // log(x)
1798       nop.i         0
1800 { .mfi
1801       nop.m         0
1802       fma.s1        FR_P54f = FR_P54f,FR_rf3,FR_P10f // log({x})
1803       nop.i         0
1805 { .mfi
1806       nop.m         0
1807       fma.s1        FR_S28 = FR_S28,FR_Xf8,FR_S12
1808       nop.i         0
1810 { .mfi
1811       nop.m         0
1812       fnma.s1       FR_C21 = FR_C21,FR_CN,f0
1813       nop.i         0
1815 { .mfi
1816       nop.m         0
1817       fma.s1        FR_LnX = FR_TpNxLn2,f1,FR_P54 // log(x)
1818       nop.i         0
1820 { .mfi
1821       nop.m         0
1822       fma.s1        FR_LnXf = FR_TpNxLn2f,f1,FR_P54f // log({x})
1823       nop.i         0
1825 { .mfi
1826       nop.m         0
1827       fma.s1        FR_S28 = FR_S28,FR_Xf4,FR_S4
1828       nop.i         0
1830 { .mfi
1831       nop.m         0
1832       fma.s1        FR_LnX = FR_LnX,f1,FR_LnXf
1833       nop.i         0
1835 { .mfi
1836       nop.m         0
1837       fnma.s1       FR_S28 = FR_S28,FR_Xf2,FR_C21
1838       nop.i         0
1840 { .mfb
1841       nop.m         0
1842       fms.d.s0      f8 = FR_S28,f1,FR_LnX
1843       br.ret.sptk   b0
1845 // branch for calculating of ln(GAMMA(x)) for x >= 512
1846 //---------------------------------------------------------------------
1847 .align 32
1848 lgamma_pstirling:
1849 { .mfi
1850       ldfpd         FR_P5,FR_P4 = [GR_ad_1],16
1851       nop.f         0
1852       and           GR_Exp = GR_SignExp,GR_ExpMask
1854 { .mfi
1855       ldfpd         FR_P3,FR_P2 = [GR_ad_2],16
1856       fma.s1        FR_InvX = FR_C,FR_InvX,FR_C // NR iteration #1
1857       mov           GR_ExpBias = 0xffff
1859 { .mfi
1860       ldfe          FR_Ln2 = [GR_ad_1],16
1861       nop.f         0
1862       sub           GR_Exp = GR_Exp,GR_ExpBias
1864 { .mfi
1865       ldfpd         FR_W4,FR_OvfBound = [GR_ad_2],16
1866       nop.f         0
1867       nop.i         0
1869 { .mfi
1870       setf.sig      FR_int_N = GR_Exp
1871       fms.s1        FR_r = FR_C,f8,f1
1872       nop.i         0
1874 { .mmf
1875       getf.sig      GR_Sig = FR_NormX
1876       ldfe          FR_LnSqrt2Pi = [GR_ad_1],16
1877       nop.f         0
1879 { .mmf
1880       ldfe          FR_W2 = [GR_ad_2],16
1881       nop.m         0
1882       fnma.s1       FR_InvX2 = FR_InvX,FR_NormX,f1 // NR iteration #2
1884 { .mfi
1885       add           GR_ad_2 = 0x40,GR_ad_2
1886       nop.f         0
1887       shl           GR_Ind = GR_Sig,1
1889 { .mfi
1890       mov           GR_SignOfGamma = 1
1891       nop.f         0
1892       shr.u         GR_Ind = GR_Ind,56
1894 { .mfi
1895       shladd        GR_ad_2 = GR_Ind,4,GR_ad_2
1896       fma.s1        FR_r2 = FR_r,FR_r,f0
1897       // set p9  if signgum is 32-bit int
1898       // set p10 if signgum is 64-bit int
1899       cmp.eq        p10,p9 = 8,r34
1901 { .mfi
1902       ldfe          FR_T = [GR_ad_2]
1903       fma.s1        FR_P54 = FR_P5,FR_r,FR_P4
1904       nop.i         0
1906 { .mfi
1907       nop.m         0
1908       fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
1909       nop.i         0
1911 { .mfi
1912       nop.m         0
1913       fcmp.le.s1    p6,p0 = FR_OvfBound,FR_NormX
1914       nop.i         0
1916 { .mfi
1917       nop.m         0
1918       fma.s1        FR_InvX2 = FR_InvX,FR_InvX2,FR_InvX // NR iteration #2
1919       nop.i         0
1921 { .mfi
1922       nop.m         0
1923       fcvt.xf       FR_N = FR_int_N
1924       nop.i         0
1926 { .mfb
1927       nop.m         0
1928       nop.f         0
1929       // jump if x is great than OVERFLOW_BOUNDARY
1930 (p6)  br.cond.spnt  lgamma_overflow
1932 .pred.rel "mutex",p9,p10
1933 { .mfi
1934       // store sign of gamma(x) as 32-bit int
1935 (p9)  st4           [r33] = GR_SignOfGamma
1936       fma.s1        FR_r3 = FR_r2,FR_r,f0
1937       nop.i         0
1939 { .mfi
1940       // store sign of gamma(x) as 64-bit int
1941 (p10) st8           [r33] = GR_SignOfGamma
1942       fnma.s1       FR_P10 = FR_r2,FR_05,FR_r
1943       nop.i         0
1945 { .mfi
1946       nop.m         0
1947       fma.s1        FR_P54 = FR_P54,FR_r2,FR_P32
1948       nop.i         0
1950 { .mfi
1951       nop.m         0
1952       fnma.s1       FR_InvX = FR_InvX2,FR_NormX,f1 // NR iteration #3
1953       nop.i         0
1955 { .mfi
1956       nop.m         0
1957       fms.s1        FR_Xm05 = FR_NormX,f1,FR_05 // (x-1/2)
1958       nop.i         0
1960 { .mfi
1961       nop.m         0
1962       fma.s1        FR_TpNxLn2 = FR_N,FR_Ln2,FR_T
1963       nop.i         0
1965 { .mfi
1966       nop.m         0
1967       fma.s1        FR_P54 = FR_P54,FR_r3,FR_P10
1968       nop.i         0
1970 { .mfi
1971       nop.m         0
1972       fma.s1        FR_InvX = FR_InvX2,FR_InvX,FR_InvX2 // NR iteration #3
1973       nop.i         0
1975 { .mfi
1976       nop.m         0
1977       fms.s1        FR_LnSqrt2Pi = FR_LnSqrt2Pi,f1,FR_NormX // ln(sqrt(2*Pi))-x
1978       nop.i         0
1980 { .mfi
1981       nop.m         0
1982       fma.s1        FR_LnX = FR_TpNxLn2,f1,FR_P54
1983       nop.i         0
1985 { .mfi
1986       nop.m         0
1987       fma.s1        FR_InvX2 = FR_InvX,FR_InvX,f0
1988       nop.i         0
1990 { .mfi
1991       nop.m         0
1992       // (x-1/2)*ln(x)+ln(sqrt(2*Pi))-x
1993       fma.s1        FR_LnX = FR_LnX,FR_Xm05,FR_LnSqrt2Pi
1994       nop.i         0
1996 { .mfi
1997       nop.m         0
1998       fma.s1        FR_W2 = FR_W4,FR_InvX2,FR_W2 // W2 + W4/x^2
1999       nop.i         0
2001 { .mfb
2002       nop.m         0
2003       fma.d.s0      f8 = FR_InvX,FR_W2,FR_LnX
2004       br.ret.sptk   b0
2006 // branch for calculating of ln(GAMMA(x)) for x < -512
2007 //---------------------------------------------------------------------
2008 .align 32
2009 lgamma_negstirling:
2010 { .mfi
2011       ldfpd         FR_P5,FR_P4 = [GR_ad_1],16
2012       fms.s1        FR_Xf = FR_NormX,f1,FR_N  // xf = x - [x]
2013       and           GR_Exp = GR_SignExp,GR_ExpMask
2015 { .mfi
2016       ldfpd         FR_P3,FR_P2 = [GR_ad_2],16
2017       fma.s1        FR_InvX = FR_C,FR_InvX,FR_C // NR iteration #1
2018       mov           GR_0x30033 = 0x30033
2020 { .mfi
2021       ldfe          FR_Ln2 = [GR_ad_1],16
2022       nop.f         0
2023       extr.u        GR_Ind = GR_ArgAsIs,44,8
2025 { .mib
2026       ldfd          FR_W4 = [GR_ad_2],16
2027       // jump if x is less or equal to -2^52, i.e. x is big negative integer
2028       cmp.leu.unc   p7,p0 = GR_0x30033,GR_SignExp
2029 (p7)  br.cond.spnt  lgamma_singularity
2031 { .mfi
2032       ldfpd         FR_S28,FR_S26 = [GR_ad_Co7],16
2033       nop.f         0
2034       add           GR_ad_LnT = 0x50,GR_ad_2
2036 { .mfi
2037       ldfpd         FR_S24,FR_S22 = [GR_ad_Ce7],16
2038       nop.f         0
2039       mov           GR_ExpBias = 0xffff
2041 { .mfi
2042       ldfpd         FR_S20,FR_S18 = [GR_ad_Co7],16
2043       nop.f         0
2044       shladd        GR_ad_T = GR_Ind,4,GR_ad_LnT
2046 { .mfi
2047       ldfpd         FR_S16,FR_S14 = [GR_ad_Ce7],16
2048       nop.f         0
2049       sub           GR_Exp = GR_Exp,GR_ExpBias
2051 { .mfi
2052       ldfe          FR_S12 = [GR_ad_Co7],16
2053       nop.f         0
2054       nop.i         0
2056 { .mfi
2057       ldfe          FR_S10 = [GR_ad_Ce7],16
2058       fms.s1        FR_r = FR_C,f8,f1
2059       nop.i         0
2061 { .mmf
2062       ldfe          FR_S8 = [GR_ad_Co7],16
2063       ldfe          FR_S6 = [GR_ad_Ce7],16
2064       nop.f         0
2066 { .mfi
2067       ldfe          FR_S4 = [GR_ad_Co7],16
2068       fma.s1        FR_Xf2 = FR_Xf,FR_Xf,f0
2069       nop.i         0
2071 { .mfi
2072       ldfe          FR_S2 = [GR_ad_Ce7],16
2073       fnma.s1       FR_InvX2 = FR_InvX,FR_NormX,f1 // NR iteration #2
2074       nop.i         0
2076 { .mfi
2077       setf.sig      FR_int_N = GR_Exp
2078       frcpa.s1      FR_InvXf,p9 = f1,FR_Xf // 1/xf
2079       nop.i         0
2081 { .mfi
2082       ldfe          FR_LnSqrt2Pi = [GR_ad_1],16
2083       nop.f         0
2084       nop.i         0
2086 { .mfi
2087       getf.exp      GR_SignExp = FR_Xf
2088       nop.f         0
2089       nop.i         0
2091 { .mfi
2092       ldfe          FR_W2 = [GR_ad_2],16
2093       nop.f         0
2094       nop.i         0
2096 { .mfi
2097       getf.sig      GR_Sig = FR_Xf
2098       fma.s1        FR_P54 = FR_P5,FR_r,FR_P4
2099       nop.i         0
2101 { .mfi
2102       ldfe          FR_T = [GR_ad_T]
2103       fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
2104       nop.i         0
2106 { .mfi
2107       and           GR_Exp = GR_SignExp,GR_ExpMask
2108       fma.s1        FR_r2 = FR_r,FR_r,f0
2109       nop.i         0
2111 { .mfi
2112       nop.m         0
2113       fms.s1        FR_Xm05 = FR_NormX,f1,FR_05 // (x-1/2)
2114       nop.i         0
2116 { .mfi
2117       nop.m         0
2118       fma.s1        FR_InvX2 = FR_InvX,FR_InvX2,FR_InvX // NR iteration #2
2119       extr.u        GR_Ind = GR_Sig,55,8
2121 { .mfi
2122       sub           GR_Exp = GR_Exp,GR_ExpBias
2123       fma.s1        FR_Xf4 = FR_Xf2,FR_Xf2,f0
2124       cmp.eq        p6,p0 = 0,GR_Sig
2126 { .mfi
2127       setf.sig      FR_int_Nf = GR_Exp
2128       fma.s1        FR_S28 = FR_S28,FR_Xf2,FR_S26
2129       shladd        GR_ad_T = GR_Ind,4,GR_ad_LnT
2131 { .mfb
2132       nop.m         0
2133       fma.s1        FR_S24 = FR_S24,FR_Xf2,FR_S22
2134       // jump if the input argument is integer number from range (-512.0;-17.0]
2135 (p6)  br.cond.spnt  lgamma_singularity
2137 { .mfi
2138       getf.sig      GR_Sig = FR_int_Ntrunc
2139       fma.s1        FR_S20 = FR_S20,FR_Xf2,FR_S18
2140       nop.i         0
2142 { .mfi
2143       nop.m         0
2144       fma.s1        FR_S16 = FR_S16,FR_Xf2,FR_S14
2145       nop.i         0
2147 { .mfi
2148       ldfe          FR_Tf = [GR_ad_T]
2149       fma.s1        FR_S12 = FR_S12,FR_Xf2,FR_S10
2150       nop.i         0
2152 { .mfi
2153       nop.m         0
2154       fma.s1        FR_S8 = FR_S8,FR_Xf2,FR_S6
2155       mov           GR_SignOfGamma = 1
2157 { .mfi
2158       nop.m         0
2159       fms.s1        FR_rf = FR_InvXf,FR_Xf,f1 // reduced arg rf
2160       tbit.z        p8,p0 = GR_Sig,0
2162 { .mfi
2163       nop.m         0
2164       fma.s1        FR_r3 = FR_r2,FR_r,f0
2165       // set p9  if signgum is 32-bit int
2166       // set p10 if signgum is 64-bit int
2167       cmp.eq        p10,p9 = 8,r34
2169 { .mfi
2170       nop.m         0
2171       fcvt.xf       FR_N = FR_int_N
2172 (p8)  sub           GR_SignOfGamma = r0,GR_SignOfGamma
2174 { .mfi
2175       nop.m         0
2176       fnma.s1       FR_InvX = FR_InvX2,FR_NormX,f1 // NR iteration #3
2177       nop.i         0
2179 .pred.rel "mutex",p9,p10
2180 { .mfi
2181       // store sign of gamma(x) as 32-bit int
2182 (p9)  st4           [r33] = GR_SignOfGamma
2183       fma.s1        FR_P54 = FR_P54,FR_r2,FR_P32
2184       nop.i         0
2186 { .mfi
2187       // store sign of gamma(x) as 64-bit int
2188 (p10) st8           [r33] = GR_SignOfGamma
2189       fnma.s1       FR_P10 = FR_r2,FR_05,FR_r
2190       nop.i         0
2192 { .mfi
2193       nop.m         0
2194       fma.s1        FR_Xf8 = FR_Xf4,FR_Xf4,f0
2195       nop.i         0
2197 { .mfi
2198       nop.m         0
2199       fma.s1        FR_S28 = FR_S28,FR_Xf4,FR_S24
2200       nop.i         0
2202 { .mfi
2203       nop.m         0
2204       fma.s1        FR_S20 = FR_S20,FR_Xf4,FR_S16
2205       nop.i         0
2207 { .mfi
2208       nop.m         0
2209       fma.s1        FR_S12 = FR_S12,FR_Xf4,FR_S8
2210       nop.i         0
2212 { .mfi
2213       nop.m         0
2214       fma.s1        FR_rf2 = FR_rf,FR_rf,f0
2215       nop.i         0
2217 { .mfi
2218       nop.m         0
2219       fma.s1        FR_P54f = FR_P5,FR_rf,FR_P4
2220       nop.i         0
2222 { .mfi
2223       nop.m         0
2224       fma.s1        FR_P32f = FR_P3,FR_rf,FR_P2
2225       nop.i         0
2227 { .mfi
2228       nop.m         0
2229       fma.s1        FR_InvX = FR_InvX2,FR_InvX,FR_InvX2 // NR iteration #3
2230       nop.i         0
2232 { .mfi
2233       nop.m         0
2234       fcvt.xf       FR_Nf = FR_int_Nf
2235       nop.i         0
2237 { .mfi
2238       nop.m         0
2239       fma.s1        FR_LnSqrt2Pi = FR_NormX,f1,FR_LnSqrt2Pi // x+ln(sqrt(2*Pi))
2240       nop.i         0
2242 { .mfi
2243       nop.m         0
2244       fma.s1        FR_P54 = FR_P54,FR_r3,FR_P10
2245       nop.i         0
2247 { .mfi
2248       nop.m         0
2249       fma.s1        FR_S28 = FR_S28,FR_Xf8,FR_S20
2250       nop.i         0
2252 { .mfi
2253       nop.m         0
2254       fma.s1        FR_rf3 = FR_rf2,FR_rf,f0
2255       nop.i         0
2257 { .mfi
2258       nop.m         0
2259       fnma.s1       FR_P10f = FR_rf2,FR_05,FR_rf
2260       nop.i         0
2262 { .mfi
2263       nop.m         0
2264       fma.s1        FR_TpNxLn2 = FR_N,FR_Ln2,FR_T
2265       nop.i         0
2267 { .mfi
2268       nop.m         0
2269       fma.s1        FR_P54f = FR_P54f,FR_rf2,FR_P32f
2270       nop.i         0
2272 { .mfi
2273       nop.m         0
2274       fma.s1        FR_InvX2 = FR_InvX,FR_InvX,f0
2275       nop.i         0
2277 { .mfi
2278       nop.m         0
2279       fma.s1        FR_S28 = FR_S28,FR_Xf8,FR_S12
2280       nop.i         0
2282 { .mfi
2283       nop.m         0
2284       fma.s1        FR_S4 = FR_S4,FR_Xf2,FR_S2
2285       nop.i         0
2287 { .mfi
2288       nop.m         0
2289       fma.s1        FR_P54f = FR_P54f,FR_rf3,FR_P10f
2290       nop.i         0
2292 { .mfi
2293       nop.m         0
2294       fma.s1        FR_TpNxLn2f = FR_Nf,FR_Ln2,FR_Tf
2295       nop.i         0
2297 { .mfi
2298       nop.m         0
2299       fma.s1        FR_LnX = FR_TpNxLn2,f1,FR_P54
2300       nop.i         0
2302 { .mfi
2303       nop.m         0
2304       fma.s1        FR_W2 = FR_W4,FR_InvX2,FR_W2
2305       nop.i         0
2307 { .mfi
2308       nop.m         0
2309       fma.s1        FR_S28 = FR_S28,FR_Xf4,FR_S4
2310       nop.i         0
2312 { .mfi
2313       nop.m         0
2314       fma.s1        FR_LnXf = FR_TpNxLn2f,f1,FR_P54f
2315       nop.i         0
2317 { .mfi
2318       nop.m         0
2319       fms.s1        FR_LnX = FR_LnX,FR_Xm05,FR_LnSqrt2Pi
2320       nop.i         0
2322 { .mfi
2323       nop.m         0
2324       fma.s1        FR_LnX = FR_InvX,FR_W2,FR_LnX
2325       nop.i         0
2327 { .mfi
2328       nop.m         0
2329       fnma.s1       FR_LnX = FR_S28,FR_Xf2,FR_LnX
2330       nop.i         0
2332 { .mfb
2333       nop.m         0
2334       fms.d.s0      f8 = FR_LnX,f1,FR_LnXf
2335       br.ret.sptk   b0
2337 // branch for calculating of ln(GAMMA(x)) for 0 <= x < 1
2338 //---------------------------------------------------------------------
2339 .align 32
2340 lgamma_0_1:
2341 { .mfi
2342       ldfpd         FR_P5,FR_P4 = [GR_ad_1],16
2343       fms.s1        FR_x = FR_NormX,f1,f0 // x
2344       mov           GR_Arg025 = 0x3FD0
2346 { .mfi
2347       ldfpd         FR_P3,FR_P2 = [GR_ad_2],16
2348       nop.f         0
2349       add           GR_ad_Co = 0x1C40,GR_ad_Data
2351 { .mfi
2352       ldfe          FR_Ln2 = [GR_ad_1],0x50
2353       nop.f         0
2354       // p6 if arg < 0.25
2355       cmp.lt        p6,p9 = GR_Arg,GR_Arg025
2357 { .mfi
2358       add           GR_ad_2 = 0x40,GR_ad_2
2359       nop.f         0
2360       mov           GR_Arg075 = 0x3FE8
2362 { .mfi
2363       ldfpd         FR_Q8,FR_Q7 = [GR_ad_1],16
2364       fma.s1        FR_w2 = FR_w,FR_w,f0
2365       // p7 if 0.25 <= arg < 0.75
2366       // p8 if 0.75 <= arg < 1.0
2367 (p9)  cmp.lt.unc    p7,p8 = GR_Arg,GR_Arg075
2369 { .mfi
2370       mov           GR_Arg0875 = 0x3FEC
2371       nop.f         0
2372       sub           GR_Exp = GR_Exp,GR_ExpBias
2374 { .mfi
2375       ldfpd         FR_Q6,FR_Q5 = [GR_ad_2],16
2376       nop.f         0
2377 (p8)  cmp.lt        p9,p0 = GR_Arg,GR_Arg0875
2379 { .mfi
2380       ldfpd         FR_Q4,FR_Q3 = [GR_ad_1],16
2381       nop.f         0
2382       add           GR_ad_Ce = 0x60,GR_ad_Co
2384 .pred.rel "mutex",p7,p8
2385 { .mfi
2386       ldfd          FR_Q2 = [GR_ad_2],16
2387       fms.s1        FR_r = FR_C,f8,f1
2388 (p7)  mov           GR_Offs = 0xC0
2390 { .mfi
2391       setf.sig      FR_int_N = GR_Exp
2392       nop.f         0
2393 (p8)  mov           GR_Offs = 0x180
2395 .pred.rel "mutex",p6,p7
2396 { .mfi
2397 (p9)  add           GR_ad_Co = GR_Offs,GR_ad_Co
2398 (p8)  fms.s1        FR_x = FR_NormX,f1,f1 // x-1
2399       nop.i         0
2401 { .mfi
2402 (p9)  add           GR_ad_Ce = GR_Offs,GR_ad_Ce
2403 (p7)  fms.s1        FR_x = FR_NormX,f1,FR_LocalMin // x-LocalMin
2404       cmp.lt        p10,p0 = GR_Arg,GR_Arg0875
2406 lgamma_common_0_2:
2407 { .mfi
2408       ldfpd         FR_A17,FR_A16 = [GR_ad_Co],16
2409       nop.f         0
2410       nop.i         0
2412 { .mfi
2413       ldfpd         FR_A15,FR_A14 = [GR_ad_Ce],16
2414       nop.f         0
2415       nop.i         0
2417 { .mfi
2418       ldfpd         FR_A13,FR_A12 = [GR_ad_Co],16
2419       nop.f         0
2420 (p10) extr.u        GR_Ind = GR_ArgAsIs,44,8
2422 { .mfi
2423       ldfpd         FR_A11,FR_A10 = [GR_ad_Ce],16
2424       nop.f         0
2425       nop.i         0
2427 { .mfi
2428       ldfpd         FR_A9,FR_A8 = [GR_ad_Co],16
2429 (p10) fnma.s1       FR_Q1 = FR_05,FR_w2,FR_w
2430       nop.i         0
2432 { .mfi
2433       ldfpd         FR_A7,FR_A6 = [GR_ad_Ce],16
2434 (p10) fma.s1        FR_w3 = FR_w2,FR_w,f0
2435       nop.i         0
2437 { .mfi
2438 (p10) getf.exp      GR_SignExp_w = FR_w
2439 (p10) fma.s1        FR_w4 = FR_w2,FR_w2,f0
2440       nop.i         0
2442 { .mfi
2443 (p10) shladd        GR_ad_2 = GR_Ind,4,GR_ad_2
2444 (p10) fma.s1        FR_r2 = FR_r,FR_r,f0
2445       nop.i         0
2447 { .mfi
2448 (p10) ldfe          FR_T = [GR_ad_2]
2449 (p10) fma.s1        FR_P54 = FR_P5,FR_r,FR_P4
2450       nop.i         0
2452 { .mfi
2453       ldfe          FR_A5 = [GR_ad_Co],16
2454 (p10) fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
2455       nop.i         0
2457 { .mfi
2458       ldfe          FR_A4 = [GR_ad_Ce],16
2459       fma.s1        FR_x2 = FR_x,FR_x,f0
2460 (p10) and           GR_Exp_w = GR_ExpMask, GR_SignExp_w
2462 { .mfi
2463       ldfe          FR_A3 = [GR_ad_Co],16
2464       nop.f         0
2465 (p10) mov           GR_fff9 = 0xfff9
2467 //    p13 <== large w __libm_lgamma
2468 //    p14 <== small w __libm_lgamma
2469 { .mfi
2470       ldfe          FR_A2 = [GR_ad_Ce],16
2471 (p10) fma.s1        FR_Q8 = FR_Q8,FR_w,FR_Q7
2472 (p10) cmp.ge.unc    p13,p14 = GR_Exp_w,GR_fff9
2474 { .mfi
2475       ldfe          FR_A1 = [GR_ad_Co],16
2476 (p10) fma.s1        FR_Q6 = FR_Q6,FR_w,FR_Q5
2477       nop.i         0
2479 { .mfi
2480       ldfe          FR_A0 = [GR_ad_Ce],16
2481 (p10) fma.s1        FR_Q4 = FR_Q4,FR_w,FR_Q3
2482       nop.i         0
2484 { .mfi
2485       nop.m         0
2486 (p10) fma.s1        FR_Q2 = FR_Q2,FR_w3,FR_Q1
2487       nop.i         0
2489 { .mfi
2490       // set p11 if signgum is 32-bit int
2491       // set p12 if signgum is 64-bit int
2492       cmp.eq        p12,p11 = 8,r34
2493 (p10) fma.s1        FR_r3 = FR_r2,FR_r,f0
2494       nop.i         0
2496 { .mfi
2497       nop.m         0
2498 (p10) fnma.s1       FR_P10 = FR_r2,FR_05,FR_r
2499       mov           GR_SignOfGamma = 1
2501 .pred.rel "mutex",p11,p12
2502 { .mfi
2503       // store sign of gamma(x) as 32-bit int
2504 (p11) st4           [r33] = GR_SignOfGamma
2505       fma.s1        FR_A17 = FR_A17,FR_x,FR_A16
2506       nop.i         0
2508 { .mfi
2509       // store sign of gamma(x) as 64-bit int
2510 (p12) st8           [r33] = GR_SignOfGamma
2511       fma.s1        FR_A15 = FR_A15,FR_x,FR_A14
2512       nop.i         0
2514 { .mfi
2515       nop.m         0
2516 (p10) fcvt.xf       FR_N = FR_int_N
2517       nop.i         0
2519 { .mfi
2520       nop.m         0
2521 (p10) fma.s1        FR_P54 = FR_P54,FR_r2,FR_P32
2522       nop.i         0
2524 { .mfi
2525       nop.m         0
2526       fma.s1        FR_A13 = FR_A13,FR_x,FR_A12
2527       nop.i         0
2529 { .mfi
2530       nop.m         0
2531       fma.s1        FR_A11 = FR_A11,FR_x,FR_A10
2532       nop.i         0
2534 { .mfi
2535       nop.m         0
2536       fma.s1        FR_A9 = FR_A9,FR_x,FR_A8
2537       nop.i         0
2539 { .mfi
2540       nop.m         0
2541       fma.s1        FR_A7 = FR_A7,FR_x,FR_A6
2542       nop.i         0
2544 { .mfi
2545       nop.m         0
2546 (p10) fma.s1        FR_Qlo = FR_Q8,FR_w2,FR_Q6
2547       nop.i         0
2549 { .mfi
2550       nop.m         0
2551 (p10) fma.s1        FR_w6 = FR_w3,FR_w3,f0
2552       nop.i         0
2554 { .mfi
2555       nop.m         0
2556 (p10) fma.s1        FR_Qhi = FR_Q4,FR_w4,FR_Q2
2557       nop.i         0
2559 { .mfi
2560       nop.m         0
2561       fma.s1        FR_A5 = FR_A5,FR_x,FR_A4
2562       nop.i         0
2564 { .mfi
2565       nop.m         0
2566 (p10) fma.s1        FR_TpNxLn2 = FR_N,FR_Ln2,FR_T
2567       nop.i         0
2569 { .mfi
2570       nop.m         0
2571       fma.s1        FR_A3 = FR_A3,FR_x,FR_A2
2572       nop.i         0
2574 { .mfi
2575       nop.m         0
2576 (p10) fma.s1        FR_P54 = FR_P54,FR_r3,FR_P10
2577       nop.i         0
2579 { .mfi
2580       nop.m         0
2581       fma.s1        FR_A1 = FR_A1,FR_x,FR_A0
2582       nop.i         0
2584 { .mfi
2585       nop.m         0
2586       fma.s1        FR_A17 = FR_A17,FR_x2,FR_A15
2587       nop.i         0
2589 { .mfi
2590       nop.m         0
2591       fma.s1        FR_A13 = FR_A13,FR_x2,FR_A11
2592       nop.i         0
2594 { .mfi
2595       nop.m         0
2596       fma.s1        FR_A9 = FR_A9,FR_x2,FR_A7
2597       nop.i         0
2599 { .mfi
2600       nop.m         0
2601       fma.s1        FR_x4 = FR_x2,FR_x2,f0
2602       nop.i         0
2604 { .mfi
2605       nop.m         0
2606 (p14) fma.s1        FR_LnX = FR_Qlo,FR_w6,FR_Qhi
2607       nop.i         0
2609 { .mfi
2610       nop.m         0
2611       fma.s1        FR_A5 = FR_A5,FR_x2,FR_A3
2612       nop.i         0
2614 { .mfi
2615       nop.m         0
2616 (p13) fma.s1        FR_LnX = FR_TpNxLn2,f1,FR_P54
2617       nop.i         0
2619 { .mfi
2620       nop.m         0
2621       fma.s1        FR_A17 = FR_A17,FR_x4,FR_A13
2622       nop.i         0
2624 { .mfi
2625       nop.m         0
2626       fma.s1        FR_x8 = FR_x4,FR_x4,f0
2627       nop.i         0
2629 { .mfi
2630       nop.m         0
2631       fma.s1        FR_A9 = FR_A9,FR_x4,FR_A5
2632       nop.i         0
2634 { .mfi
2635       nop.m         0
2636       fma.s1        FR_A17 = FR_A17,FR_x8,FR_A9
2637       nop.i         0
2639 { .mfi
2640       nop.m         0
2641 (p10) fms.s1        FR_A1 = FR_A1,f1,FR_LnX
2642       nop.i         0
2644 { .mfb
2645       nop.m         0
2646       fma.d.s0      f8 = FR_A17,FR_x2,FR_A1
2647       br.ret.sptk   b0
2649 // branch for calculating of ln(GAMMA(x)) for 1.0 <= x < 2.25
2650 //---------------------------------------------------------------------
2651 .align 32
2652 lgamma_1_2:
2653 { .mfi
2654       add           GR_ad_Co = 0x10B0,GR_ad_1
2655       fcmp.eq.s1    p12,p0 = f1,FR_w
2656       mov           GR_Arg125 = 0x3FF4
2658 { .mfi
2659       add           GR_ad_Ce = 0x1110,GR_ad_1
2660       nop.f         0
2661       mov           GR_Arg175 = 0x3FFC
2663 { .mfi
2664       mov           GR_SignOfGamma = 1
2665       fcmp.eq.s1    p13,p0 = f1,FR_NormX
2666       cmp.lt        p6,p9 = GR_Arg,GR_Arg125 // 1.0 <= x < 1.25
2668 { .mfi
2669       // set p10 if signgum is 32-bit int
2670       // set p11 if signgum is 64-bit int
2671       cmp.eq        p11,p10 = 8,r34
2672       nop.f         0
2673       cmp.ge        p8,p0 = GR_Arg,GR_Arg175 // x >= 1.75
2675 .pred.rel "mutex",p10,p11
2676 { .mfi
2677       // store sign of gamma(x) as 32-bit int
2678 (p10) st4           [r33] = GR_SignOfGamma
2679 (p12) fma.d.s0      f8 = f0,f0,f0
2680 (p9)  cmp.lt.unc    p7,p0 = GR_Arg,GR_Arg175 // 1.25 <= x < 1.75
2682 { .mib
2683       // store sign of gamma(x) as 64-bit int
2684 (p11) st8           [r33] = GR_SignOfGamma
2685       mov           GR_Offs = 0
2686 (p12) br.ret.spnt   b0 // fast exit for 2.0
2688 .pred.rel "mutex",p7,p8
2689 { .mfi
2690 (p7)  mov           GR_Offs = 0xC0
2691 (p7)  fms.s1        FR_x = FR_w,f1,FR_LocalMin
2692       nop.i         0
2694 { .mfb
2695 (p8)  mov           GR_Offs = 0x180
2696 (p13) fma.d.s0      f8 = f0,f0,f0
2697 (p13) br.ret.spnt   b0 // fast exit for 1.0
2699 .pred.rel "mutex",p6,p8
2700 { .mfi
2701       add           GR_ad_Co = GR_ad_Co,GR_Offs
2702 (p8)  fms.s1        FR_x = FR_w,f1,f1
2703       cmp.eq        p0,p10 = r0,r0
2705 { .mfb
2706       add           GR_ad_Ce = GR_ad_Ce,GR_Offs
2707 (p6)  fma.s1        FR_x = f0,f0,FR_w
2708       br.cond.sptk  lgamma_common_0_2
2710 // branch for calculating of ln(GAMMA(x)) for -17 < x < 0
2711 //---------------------------------------------------------------------
2712 .align 32
2713 lgamma_negrecursion:
2714 { .mfi
2715       getf.d        GR_ArgXfrAsIs = FR_Xfr
2716       fma.s1        FR_Xp2 = FR_2,f1,FR_NormX
2717       mov           GR_Arg05 = 0x3FE
2719 { .mfi
2720       add           GR_ad_Roots = 0x1390,GR_ad_1
2721       fma.s1        FR_NormX = FR_NormX,FR_Xfr,f0
2722       mov           GR_Arg075 = 0x3FE8
2724 { .mfi
2725       getf.sig      GR_Sig = FR_int_Ntrunc
2726       fma.s1        FR_Xp3 = FR_2,f1,FR_Xp1
2727       shl           GR_Arg05 = GR_Arg05,52
2729 { .mfi
2730       mov           GR_Arg025 = 0x3FD0
2731       fma.s1        FR_Xp6 = FR_5,f1,FR_Xp1
2732       add           GR_ad_Co = 0x1C40,GR_ad_Data
2734 { .mfi
2735       add           GR_ad_Dx = 8,GR_ad_Roots
2736       fma.s1        FR_Xp7 = FR_2,f1,FR_Xp5
2737       shr.u         GR_ArgXfr = GR_ArgXfrAsIs,48
2739 { .mfi
2740       add           GR_ad_Ce = 0x60,GR_ad_Co
2741       fma.s1        FR_Xp8 = FR_3,f1,FR_Xp5
2742       cmp.lt        p6,p0 = GR_ArgXfrAsIs,GR_Arg05
2744 { .mfi
2745       and           GR_RootInd = 0xF,GR_Sig
2746       fma.s1        FR_Xp9 = FR_2,FR_2,FR_Xp5
2747       // p10 if arg < 0.25
2748       cmp.lt        p10,p14 = GR_ArgXfr,GR_Arg025
2750 { .mfi
2751 (p6)  add           GR_ad_Roots = 0x120,GR_ad_Roots
2752       fma.s1        FR_Xp11 = f1,f1,FR_Xp10
2753 (p6)  add           GR_ad_Dx = 0x120,GR_ad_Dx
2755 { .mfi
2756       shladd        GR_ad_Root = GR_RootInd,4,GR_ad_Roots
2757       fma.s1        FR_Xp12 = FR_2,f1,FR_Xp10
2758       // p11 if 0.25 <= arg < 0.75
2759       // p12 if 0.75 <= arg < 1.0
2760 (p14) cmp.lt.unc    p11,p12 = GR_ArgXfr,GR_Arg075
2762 { .mfi
2763       shladd        GR_ad_Dx = GR_RootInd,4,GR_ad_Dx
2764       fma.s1        FR_Xp13 = FR_3,f1,FR_Xp10
2765       cmp.eq        p0,p13 = 0,GR_Sig
2767 { .mfi
2768       ld8           GR_Root = [GR_ad_Root]
2769       fma.s1        FR_Xp14 = FR_2,FR_2,FR_Xp10
2770 (p12) mov           GR_Offs = 0x180
2772 { .mfi
2773       ldfd          FR_Root = [GR_ad_Root]
2774       fma.s1        FR_Xp15 = FR_5,f1,FR_Xp10
2775       and           GR_Sig = 0xF,GR_Sig
2777 { .mfi
2778       ld8           GR_Dx = [GR_ad_Dx]
2779       fma.s1        FR_Xp16 = FR_3,FR_2,FR_Xp10
2780 (p13) cmp.ge.unc    p6,p0 = 0xD,GR_Sig
2782 { .mfi
2783 (p11) mov           GR_Offs = 0xC0
2784 (p13) fma.s1        FR_NormX = FR_NormX,FR_Xp1,f0
2785 (p13) cmp.ge.unc    p7,p0 = 0xB,GR_Sig
2787 { .mfi
2788 (p14) add           GR_ad_Co = GR_Offs,GR_ad_Co
2789 (p6)  fma.s1        FR_Xp2 = FR_Xp2,FR_Xp3,f0
2790 (p13) cmp.ge.unc    p8,p0 = 0x9,GR_Sig
2792 { .mfi
2793 (p14) add           GR_ad_Ce = GR_Offs,GR_ad_Ce
2794 (p7)  fma.s1        FR_Xp4 = FR_Xp4,FR_Xp5,f0
2795 (p13) cmp.ge.unc    p9,p0 = 0x7,GR_Sig
2797 { .mfi
2798       ldfpd         FR_B17,FR_B16 = [GR_ad_Co],16
2799 (p8)  fma.s1        FR_Xp6 = FR_Xp6,FR_Xp7,f0
2800 (p13) cmp.ge.unc    p6,p0 = 0x5,GR_Sig
2802 { .mfi
2803       ldfpd         FR_B15,FR_B14 = [GR_ad_Ce],16
2804 (p9)  fma.s1        FR_Xp8 = FR_Xp8,FR_Xp9,f0
2805 (p13) cmp.ge.unc    p7,p0 = 0x3,GR_Sig
2807 { .mfi
2808       ldfpd         FR_B13,FR_B12 = [GR_ad_Co],16
2809 (p6)  fma.s1        FR_Xp10 = FR_Xp10,FR_Xp11,f0
2810 (p13) cmp.ge.unc    p8,p0 = 0x1,GR_Sig
2812 { .mfi
2813       ldfpd         FR_B11,FR_B10 = [GR_ad_Ce],16
2814 (p7)  fma.s1        FR_Xp12 = FR_Xp12,FR_Xp13,f0
2815 (p13) cmp.eq.unc    p9,p0 = 0,GR_Sig
2817 { .mfi
2818       ldfpd         FR_B9,FR_B8 = [GR_ad_Co],16
2819 (p8)  fma.s1        FR_Xp14 = FR_Xp14,FR_Xp15,f0
2820       mov           GR_Arg15 = 0xC02E // -15
2822 { .mfi
2823       ldfpd         FR_B7,FR_B6 = [GR_ad_Ce],16
2824       fcmp.eq.s1    p15,p0 = f0,FR_Xf
2825 (p13) cmp.ge.unc    p6,p0 = 0xC,GR_Sig
2827 { .mfi
2828       ldfe          FR_B5 = [GR_ad_Co],16
2829 (p9)  fma.s1        FR_NormX = FR_NormX,FR_Xp16,f0
2830       sub           GR_Root = GR_ArgAsIs,GR_Root
2832 { .mfi
2833       sub           GR_RootInd = 0xE,GR_RootInd
2834 (p11) fms.s1        FR_x = FR_Xfr,f1,FR_LocalMin // x-LocalMin
2835 (p13) cmp.ge.unc    p7,p0 = 0x8,GR_Sig
2837 .pred.rel "mutex",p10,p12
2838 { .mfi
2839       ldfe          FR_B4 = [GR_ad_Ce],16
2840 (p10) fms.s1        FR_x = FR_Xfr,f1,f0 // x
2841       add           GR_Root = GR_Root,GR_Dx
2843 { .mfb
2844       cmp.gtu       p14,p0 = 0xE,GR_RootInd
2845 (p12) fms.s1        FR_x = FR_Xfr,f1,f1 // x-1
2846 (p15) br.cond.spnt  lgamma_singularity
2848 { .mfi
2849       ldfe          FR_B3 = [GR_ad_Co],16
2850 (p6)  fma.s1        FR_Xp2 = FR_Xp2,FR_Xp4,f0
2851 (p14) cmp.lt.unc    p11,p0 = GR_Arg,GR_Arg15
2853 { .mfi
2854       ldfe          FR_B2 = [GR_ad_Ce],16
2855 (p7)  fma.s1        FR_Xp6 = FR_Xp6,FR_Xp8,f0
2856       add           GR_2xDx = GR_Dx,GR_Dx
2858 { .mfi
2859       ldfe          FR_B1 = [GR_ad_Co],16
2860       fms.s1        FR_r = f8,f1,FR_Root
2861 (p13) cmp.ge.unc    p6,p0 = 0x4,GR_Sig
2863 { .mib
2864       ldfe          FR_B0 = [GR_ad_Ce],16
2865 (p11) cmp.leu.unc   p10,p0 = GR_Root,GR_2xDx
2866 (p10) br.cond.spnt  lgamma_negroots
2868 { .mfi
2869       ldfpd         FR_P5,FR_P4 = [GR_ad_1],16
2870 (p6)  fma.s1        FR_Xp10 = FR_Xp10,FR_Xp12,f0
2871       tbit.z        p14,p15 = GR_Sig,0
2873 { .mfi
2874       ldfpd         FR_P3,FR_P2 = [GR_ad_2],16
2875       fnma.d.s0     FR_T = f1,f1,f8 //      nop.f         0
2877 (p13) cmp.ge.unc    p7,p0 = 0x2,GR_Sig
2879 { .mfi
2880       ldfe          FR_Ln2 = [GR_ad_1],0x50
2881 (p7)  fma.s1        FR_NormX = FR_NormX,FR_Xp14,f0
2882       mov           GR_PseudoRoot = 0xBFFBC
2884 { .mlx
2885       add           GR_ad_2 = 0x40,GR_ad_2
2886       movl          GR_2xDx = 0x00002346DC5D6389
2888 { .mfi
2889       ldfpd         FR_Q8,FR_Q7 = [GR_ad_1],16
2890       fma.s1        FR_x2 = FR_x,FR_x,f0
2891       shl           GR_PseudoRoot = GR_PseudoRoot,44
2893 { .mfi
2894       ldfpd         FR_Q6,FR_Q5 = [GR_ad_2],16
2895       fma.s1        FR_B17 = FR_B17,FR_x,FR_B16
2896 (p13) cmp.ge.unc    p6,p0 = 0xA,GR_Sig
2898 { .mfi
2899       ldfpd         FR_Q4,FR_Q3 = [GR_ad_1],16
2900 (p6)  fma.s1        FR_Xp2 = FR_Xp2,FR_Xp6,f0
2901       sub           GR_PseudoRoot = GR_ArgAsIs,GR_PseudoRoot
2903 { .mfi
2904       ldfpd         FR_Q2,FR_Q1 = [GR_ad_2],16
2905       fma.s1        FR_B15 = FR_B15,FR_x,FR_B14
2906 (p13) cmp.ge.unc    p7,p0 = 0x6,GR_Sig
2908 { .mfi
2909       add           GR_ad_Co = 0x12F0,GR_ad_2
2910       fma.s1        FR_B13 = FR_B13,FR_x,FR_B12
2911       cmp.leu.unc   p10,p0 = GR_PseudoRoot,GR_2xDx
2913 { .mfi
2914       add           GR_ad_Ce = 0x1300,GR_ad_2
2915       fma.s1        FR_B11 = FR_B11,FR_x,FR_B10
2916       mov           GR_ExpMask = 0x1ffff
2918 { .mfi
2919 (p10) ldfe          FR_PR01 = [GR_ad_Co],0xF0
2920       fma.s1        FR_B9 = FR_B9,FR_x,FR_B8
2921       mov           GR_ExpBias = 0xFFFF
2923 { .mfb
2924 (p10) ldfe          FR_PR11 = [GR_ad_Ce],0xF0
2925       fma.s1        FR_B7 = FR_B7,FR_x,FR_B6
2926 (p10) br.cond.spnt  lgamma_pseudoroot
2928 { .mfi
2929 (p13) cmp.ge.unc    p6,p0 = 0xE,GR_Sig
2930 (p7)  fma.s1        FR_NormX = FR_NormX,FR_Xp10,f0
2931       tbit.z.unc    p8,p0 = GR_Sig,0
2933 { .mfi
2934       mov           GR_SignOfGamma = 1
2935       fma.s1        FR_B5 = FR_B5,FR_x,FR_B4
2936       // set p9  if signgum is 32-bit int
2937       // set p10 if signgum is 64-bit int
2938       cmp.eq        p10,p9 = 8,r34
2940 { .mfi
2941       nop.m         0
2942       fma.s1        FR_B3 = FR_B3,FR_x,FR_B2
2943 (p8)  sub           GR_SignOfGamma = r0,GR_SignOfGamma
2945 { .mfi
2946       nop.m         0
2947 (p14) fms.s1        FR_w = f0,f0,f1
2948       nop.i         0
2950 .pred.rel "mutex",p9,p10
2951 { .mfi
2952       // store sign of gamma(x) as 32-bit int
2953 (p9)  st4           [r33] = GR_SignOfGamma
2954       fma.s1        FR_B1 = FR_B1,FR_x,FR_B0
2955       nop.i         0
2957 { .mfi
2958       // store sign of gamma(x) as 64-bit int
2959 (p10) st8           [r33] = GR_SignOfGamma
2960       fma.s1        FR_B17 = FR_B17,FR_x2,FR_B15
2961       nop.i         0
2963 { .mfi
2964       nop.m         0
2965       fma.s1        FR_B13 = FR_B13,FR_x2,FR_B11
2966       nop.i         0
2968 { .mfi
2969       nop.m         0
2970       fma.s1        FR_B9 = FR_B9,FR_x2,FR_B7
2971       nop.i         0
2973 { .mfi
2974       nop.m         0
2975       fma.s1        FR_x4 = FR_x2,FR_x2,f0
2976       nop.i         0
2978 { .mfi
2979       nop.m         0
2980 (p6)  fma.s1        FR_NormX = FR_NormX,FR_Xp2,f0
2981       nop.i         0
2983 { .mfi
2984       nop.m         0
2985       fma.s1        FR_B5 = FR_B5,FR_x2,FR_B3
2986       nop.i         0
2988 { .mfi
2989       nop.m         0
2990       fma.s1        FR_B17 = FR_B17,FR_x4,FR_B13
2991       nop.i         0
2993 { .mfi
2994       nop.m         0
2995       fma.s1        FR_x8 = FR_x4,FR_x4,f0
2996       nop.i         0
2998 .pred.rel "mutex",p14,p15
2999 { .mfi
3000       nop.m         0
3001 (p15) fms.s1        FR_w = FR_NormX,f1,f1
3002       nop.i         0
3004 { .mfi
3005       nop.m         0
3006 (p14) fnma.s1       FR_w = FR_NormX,f1,FR_w
3007       nop.i         0
3009 { .mfi
3010       nop.m         0
3011       fma.s1        FR_B9 = FR_B9,FR_x4,FR_B5
3012       nop.i         0
3014 { .mfi
3015       nop.m         0
3016       frcpa.s1      FR_C,p0 = f1,FR_NormX
3017       nop.i         0
3019 { .mfi
3020       getf.exp      GR_Exp = FR_NormX
3021       nop.f         0
3022       nop.i         0
3024 { .mfi
3025       getf.d        GR_ArgAsIs = FR_NormX
3026       nop.f         0
3027       nop.i         0
3029 { .mfi
3030       nop.m         0
3031       fma.s1        FR_w2 = FR_w,FR_w,f0
3032       nop.i         0
3034 { .mfi
3035       and           GR_Exp = GR_Exp,GR_ExpMask
3036       fma.s1        FR_Q8 = FR_Q8,FR_w,FR_Q7
3037       nop.i         0
3039 { .mfi
3040       sub           GR_Exp = GR_Exp,GR_ExpBias
3041       fma.s1        FR_B17 = FR_B17,FR_x8,FR_B9
3042       extr.u        GR_Ind = GR_ArgAsIs,44,8
3044 { .mfi
3045       nop.m         0
3046       fma.s1        FR_Q6 = FR_Q6,FR_w,FR_Q5
3047       nop.i         0
3049 { .mfi
3050       setf.sig      FR_int_N = GR_Exp
3051       fms.s1        FR_r = FR_C,FR_NormX,f1
3052       nop.i         0
3054 { .mfi
3055       shladd        GR_ad_2 = GR_Ind,4,GR_ad_2
3056       nop.f         0
3057       nop.i         0
3059 { .mfi
3060       getf.exp      GR_SignExp_w = FR_w
3061       fma.s1        FR_Q4 = FR_Q4,FR_w,FR_Q3
3062       nop.i         0
3064 { .mfi
3065       ldfe          FR_T = [GR_ad_2]
3066       nop.f         0
3067       nop.i         0
3069 { .mfi
3070       and           GR_Exp_w = GR_ExpMask, GR_SignExp_w
3071       fnma.s1       FR_Q1 = FR_05,FR_w2,FR_w
3072       mov           GR_fff9 = 0xfff9
3074 { .mfi
3075       nop.m         0
3076       fma.s1        FR_w3 = FR_w2,FR_w,f0
3077       nop.i         0
3079 { .mfi
3080       nop.m         0
3081       fma.s1        FR_w4 = FR_w2,FR_w2,f0
3082 //    p13 <== large w __libm_lgamma
3083 //    p14 <== small w __libm_lgamma
3084       cmp.ge        p13,p14 = GR_Exp_w,GR_fff9
3086 { .mfi
3087       nop.m         0
3088       fma.s1        FR_Qlo = FR_Q8,FR_w2,FR_Q6
3089       nop.i         0
3091 { .mfi
3092       nop.m         0
3093 (p13) fma.s1        FR_r2 = FR_r,FR_r,f0
3094       nop.i         0
3096 { .mfi
3097       nop.m         0
3098       fma.s1        FR_B17 = FR_B17,FR_x2,FR_B1
3099       nop.i         0
3101 { .mfi
3102       nop.m         0
3103 (p13) fma.s1        FR_P32 = FR_P3,FR_r,FR_P2
3104       nop.i         0
3106 { .mfi
3107       nop.m         0
3108 (p13) fma.s1        FR_P54 = FR_P5,FR_r,FR_P4
3109       nop.i         0
3111 { .mfi
3112       nop.m         0
3113 (p14) fma.s1        FR_Q2 = FR_Q2,FR_w3,FR_Q1
3114       nop.i         0
3116 { .mfi
3117       nop.m         0
3118 (p14) fma.s1        FR_w6 = FR_w3,FR_w3,f0
3119       nop.i         0
3121 { .mfi
3122       nop.m         0
3123 (p13) fcvt.xf       FR_N = FR_int_N
3124       nop.i         0
3126 { .mfi
3127       nop.m         0
3128 (p13) fma.s1        FR_r3 = FR_r2,FR_r,f0
3129       nop.i         0
3131 { .mfi
3132       nop.m         0
3133 (p13) fnma.s1       FR_P10 = FR_r2,FR_05,FR_r
3134       nop.i         0
3136 { .mfi
3137       nop.m         0
3138 (p13) fma.s1        FR_P54 = FR_P54,FR_r2,FR_P32
3139       nop.i         0
3141 { .mfi
3142       nop.m         0
3143 (p14) fma.s1        FR_Qhi = FR_Q4,FR_w4,FR_Q2
3144       nop.i         0
3146 { .mfi
3147       nop.m         0
3148 (p14) fnma.s1       FR_Qlo = FR_Qlo,FR_w6,FR_B17
3149       nop.i         0
3151 { .mfi
3152       nop.m         0
3153 (p13) fma.s1        FR_TpNxLn2 = FR_N,FR_Ln2,FR_T
3154       nop.i         0
3156 { .mfi
3157       nop.m         0
3158 (p13) fma.s1        FR_P54 = FR_P54,FR_r3,FR_P10
3159       nop.i         0
3161 .pred.rel "mutex",p13,p14
3162 { .mfi
3163       nop.m         0
3164 (p14) fms.d.s0      f8 = FR_Qlo,f1,FR_Qhi
3165       nop.i         0
3167 { .mfi
3168       nop.m         0
3169 (p13) fma.s1        FR_LnX = FR_TpNxLn2,f1,FR_P54
3170       nop.i         0
3172 { .mfb
3173       nop.m         0
3174 (p13) fms.d.s0      f8 = FR_B17,f1,FR_LnX
3175       br.ret.sptk   b0
3177 // branch for calculating of ln(GAMMA(x)) near negative roots
3178 //---------------------------------------------------------------------
3179 .align 32
3180 lgamma_negroots:
3181 { .mfi
3182       shladd        GR_Offs = GR_RootInd,3,r0 //GR_RootInd*8
3183       fma.s1        FR_r2 = FR_r,FR_r,f0
3184       add           GR_ad_Co = 0x15C0,GR_ad_1//0x1590,GR_ad_1
3186 { .mfi
3187       add           GR_ad_Ce = 0x1610,GR_ad_1//0x15E0,GR_ad_1
3188       nop.f         0
3189       cmp.lt        p6,p0 = GR_ArgXfrAsIs,GR_Arg05
3191 { .mfi
3192       add           GR_ad_Roots = 0x10A0,GR_ad_1
3193       nop.f         0
3194 (p6)  add           GR_ad_Co = 0x820,GR_ad_Co
3196 { .mfi
3197 (p6)  add           GR_ad_Ce = 0x820,GR_ad_Ce
3198       nop.f         0
3199       shladd        GR_Offs = GR_RootInd,1,GR_Offs //GR_RootInd*10
3201 { .mmi
3202       shladd        GR_ad_Co = GR_Offs,4,GR_ad_Co
3203       shladd        GR_ad_Ce = GR_Offs,4,GR_ad_Ce
3204       cmp.eq        p8,p7 = r0,r0
3206 { .mmi
3207       ldfpd         FR_A15,FR_A14 = [GR_ad_Co],16
3208       ldfpd         FR_A13,FR_A12 = [GR_ad_Ce],16
3209       mov           GR_SignOfGamma = 1
3211 { .mmi
3212       ldfpd         FR_A11,FR_A10 = [GR_ad_Co],16
3213       ldfpd         FR_A9,FR_A8   = [GR_ad_Ce],16
3214 (p6)  cmp.eq        p7,p8 = r0,GR_RootInd
3216 { .mmi
3217       ldfpd         FR_A7,FR_A6 = [GR_ad_Co],16
3218       ldfpd         FR_A5,FR_A4 = [GR_ad_Ce],16
3219       tbit.z        p11,p0 = GR_Sig,0
3221 { .mmi
3222       ldfe          FR_A3 = [GR_ad_Co],16
3223       ldfe          FR_A2 = [GR_ad_Ce],16
3224       // set p9  if signgum is 32-bit int
3225       // set p10 if signgum is 64-bit int
3226       cmp.eq        p10,p9 = 8,r34
3228 { .mmi
3229       ldfe          FR_A1 = [GR_ad_Co],16
3230       ldfe          FR_A0 = [GR_ad_Ce],16
3231 (p11) sub           GR_SignOfGamma = r0,GR_SignOfGamma
3233 { .mfi
3234       ldfe          FR_A00 = [GR_ad_Roots]
3235       fma.s1        FR_r4 = FR_r2,FR_r2,f0
3236       nop.i         0
3238 { .mfi
3239       nop.m         0
3240       fma.s1        FR_A15 = FR_A15,FR_r,FR_A14
3241       nop.i         0
3243 { .mfi
3244       nop.m         0
3245       fma.s1        FR_A13 = FR_A13,FR_r,FR_A12
3246       nop.i         0
3248 .pred.rel "mutex",p9,p10
3249 { .mfi
3250       // store sign of gamma(x) as 32-bit int
3251 (p9)  st4           [r33] = GR_SignOfGamma
3252       fma.s1        FR_A11 = FR_A11,FR_r,FR_A10
3253       nop.i         0
3255 { .mfi
3256       // store sign of gamma(x) as 64-bit int
3257 (p10) st8           [r33] = GR_SignOfGamma
3258       fma.s1        FR_A9 = FR_A9,FR_r,FR_A8
3259       nop.i         0
3261 { .mfi
3262       nop.m         0
3263       fma.s1        FR_A7 = FR_A7,FR_r,FR_A6
3264       nop.i         0
3266 { .mfi
3267       nop.m         0
3268       fma.s1        FR_A5 = FR_A5,FR_r,FR_A4
3269       nop.i         0
3271 { .mfi
3272       nop.m         0
3273       fma.s1        FR_A3 = FR_A3,FR_r,FR_A2
3274       nop.i         0
3276 { .mfi
3277       nop.m         0
3278       fma.s1        FR_r8 = FR_r4,FR_r4,f0
3279       nop.i         0
3281 { .mfi
3282       nop.m         0
3283       fma.s1        FR_A1 = FR_A1,FR_r,FR_A0
3284       nop.i         0
3286 { .mfi
3287       nop.m         0
3288       fma.s1        FR_A15 = FR_A15,FR_r2,FR_A13
3289       nop.i         0
3291 { .mfi
3292       nop.m         0
3293       fma.s1        FR_A11 = FR_A11,FR_r2,FR_A9
3294       nop.i         0
3296 { .mfi
3297       nop.m         0
3298       fma.s1        FR_A7 = FR_A7,FR_r2,FR_A5
3299       nop.i         0
3301 { .mfi
3302       nop.m         0
3303       fma.s1        FR_A3 = FR_A3,FR_r2,FR_A1
3304       nop.i         0
3306 { .mfi
3307       nop.m         0
3308       fma.s1        FR_A15 = FR_A15,FR_r4,FR_A11
3309       nop.i         0
3311 { .mfi
3312       nop.m         0
3313       fma.s1        FR_A7 = FR_A7,FR_r4,FR_A3
3314       nop.i         0
3316 .pred.rel "mutex",p7,p8
3317 { .mfi
3318       nop.m         0
3319 (p7)  fma.s1        FR_A1 = FR_A15,FR_r8,FR_A7
3320       nop.i         0
3322 { .mfi
3323       nop.m         0
3324 (p8)  fma.d.s0      f8 = FR_A15,FR_r8,FR_A7
3325       nop.i         0
3327 { .mfb
3328       nop.m         0
3329 (p7)  fma.d.s0      f8 = FR_A1,FR_r,FR_A00
3330       br.ret.sptk   b0
3332 // branch for handling pseudo root on (-2;-1)
3333 //---------------------------------------------------------------------
3334 .align 32
3335 lgamma_pseudoroot:
3336 { .mmi
3337       ldfe          FR_PR21 = [GR_ad_Co],32
3338       ldfe          FR_PR31 = [GR_ad_Ce],32
3339       // set p9  if signgum is 32-bit int
3340       // set p10 if signgum is 64-bit int
3341       cmp.eq        p10,p9 = 8,r34
3343 { .mmi
3344       ldfe          FR_PR00 = [GR_ad_Co],32
3345       ldfe          FR_PR10 = [GR_ad_Ce],0xF0
3346       mov           GR_SignOfGamma = 1
3348 { .mmi
3349       ldfe          FR_PR20 = [GR_ad_Co],0xF0
3350       ldfe          FR_PR30 = [GR_ad_Ce]
3351       tbit.z        p8,p0 = GR_Sig,0
3353 { .mfi
3354       ldfe          FR_PRN = [GR_ad_Co]
3355       fma.s1        FR_PR01 = f8,f1,FR_PR01
3356       nop.i         0
3358 { .mfi
3359       nop.m         0
3360       fma.s1        FR_PR11 = f8,f1,FR_PR11
3361 (p8)  sub           GR_SignOfGamma = r0,GR_SignOfGamma
3363 .pred.rel "mutex",p9,p10
3364 { .mfi
3365       // store sign of gamma(x) as 32-bit int
3366 (p9)  st4           [r33] = GR_SignOfGamma
3367       fma.s1        FR_PR21 = f8,f1,FR_PR21
3368       nop.i         0
3370 { .mfi
3371       // store sign of gamma(x) as 64-bit int
3372 (p10) st8           [r33] = GR_SignOfGamma
3373       fma.s1        FR_PR31 = f8,f1,FR_PR31
3374       nop.i         0
3376 { .mfi
3377       nop.m         0
3378       fma.s1        FR_PR01 = f8,FR_PR01,FR_PR00
3379       nop.i         0
3381 { .mfi
3382       nop.m         0
3383       fma.s1        FR_PR11 = f8,FR_PR11,FR_PR10
3384       nop.i         0
3386 { .mfi
3387       nop.m         0
3388       fma.s1        FR_PR21 = f8,FR_PR21,FR_PR20
3389       nop.i         0
3391 { .mfi
3392       nop.m         0
3393       fma.s1        FR_PR31 = f8,FR_PR31,FR_PR30
3394       nop.i         0
3396 { .mfi
3397       nop.m         0
3398       fma.s1        FR_PR01 = FR_PR11,FR_PR01,f0
3399       nop.i         0
3401 { .mfi
3402       nop.m         0
3403       fma.s1        FR_PR21 = FR_PR31,FR_PR21,f0
3404       nop.i         0
3406 { .mfi
3407       nop.m         0
3408       fma.s1        FR_PR01 = FR_PR21,FR_PR01,f0
3409       nop.i         0
3411 { .mfb
3412       nop.m         0
3413       fma.d.s0      f8 = FR_PR01,FR_PRN,f0
3414       br.ret.sptk   b0
3416 // branch for handling +/-0, NaT, QNaN, +/-INF and denormalised numbers
3417 //---------------------------------------------------------------------
3418 .align 32
3419 lgamma_spec:
3420 { .mfi
3421       getf.exp      GR_SignExp = FR_NormX
3422       fclass.m      p6,p0 = f8,0x21 // is arg +INF?
3423       mov           GR_SignOfGamma = 1
3425 { .mfi
3426       getf.sig      GR_ArgAsIs = FR_NormX
3427       fclass.m      p7,p0 = f8,0xB // is x deno?
3428       // set p11 if signgum is 32-bit int
3429       // set p12 if signgum is 64-bit int
3430       cmp.eq        p12,p11 = 8,r34
3432 .pred.rel "mutex",p11,p12
3433 { .mfi
3434       // store sign of gamma(x) as 32-bit int
3435 (p11) st4           [r33] = GR_SignOfGamma
3436       fclass.m      p8,p0 = f8,0x1C0 // is arg NaT or NaN?
3437       dep.z         GR_Ind = GR_SignExp,8,4
3439 { .mib
3440       // store sign of gamma(x) as 64-bit int
3441 (p12) st8           [r33] = GR_SignOfGamma
3442       cmp.lt        p10,p0 = GR_SignExp,GR_ExpBias
3443 (p6)  br.ret.spnt   b0 // exit for +INF
3445 { .mfi
3446       and           GR_Exp = GR_SignExp,GR_ExpMask
3447       fclass.m      p9,p0 = f8,0x22 // is arg -INF?
3448       nop.i         0
3450 { .mfi
3451       add           GR_ad_Co = GR_Ind,GR_ad_Data
3452 (p7)  fma.s0        FR_tmp = f8,f8,f8
3453       extr.u        GR_ArgAsIs = GR_ArgAsIs,11,52
3455 { .mfb
3456       nop.m         0
3457 (p8)  fms.d.s0      f8 = f8,f1,f8
3458 (p8)  br.ret.spnt   b0 // exit for NaT and NaN
3460 { .mib
3461       nop.m         0
3462       shr.u         GR_Arg = GR_ArgAsIs,48
3463 (p7)  br.cond.sptk  lgamma_common
3465 { .mfb
3466       nop.m         0
3467 (p9)  fmerge.s      f8 = f1,f8
3468 (p9)  br.ret.spnt   b0 // exit -INF
3470 // branch for handling negative integers and +/-0
3471 //---------------------------------------------------------------------
3472 .align 32
3473 lgamma_singularity:
3474 { .mfi
3475       mov           GR_ad_SignGam = r33
3476       fclass.m      p6,p0 = f8, 0x6 // is x -0?
3477       mov           GR_SignOfGamma = 1
3479 { .mfi
3480       // set p9  if signgum is 32-bit int
3481       // set p10 if signgum is 64-bit int
3482       cmp.eq        p10,p9 = 8,r34
3483       fma.s1        FR_X = f0,f0,f8
3484       nop.i         0
3486 { .mfi
3487       nop.m         0
3488       frcpa.s0      f8,p0 = f1,f0
3489       mov           GR_TAG = 106 // negative
3491 { .mib
3492       nop.m         0
3493 (p6)  sub           GR_SignOfGamma = r0,GR_SignOfGamma
3494       br.cond.sptk  lgamma_libm_err
3496 // overflow (x > OVERFLOV_BOUNDARY)
3497 //---------------------------------------------------------------------
3498 .align 32
3499 lgamma_overflow:
3500 { .mfi
3501       mov           GR_SignOfGamma = 1
3502       nop.f         0
3503       mov           r8 = 0x1FFFE
3505 { .mfi
3506       setf.exp      f9 = r8
3507       fmerge.s      FR_X = f8,f8
3508       mov           GR_TAG = 105 // overflow
3510 { .mfi
3511       mov           GR_ad_SignGam = r33
3512       nop.f         0
3513       // set p9  if signgum is 32-bit int
3514       // set p10 if signgum is 64-bit int
3515       cmp.eq        p10,p9 = 8,r34
3517 { .mfi
3518       nop.m         0
3519       fma.d.s0      f8 = f9,f9,f0 // Set I,O and +INF result
3520       nop.i         0
3523 //---------------------------------------------------------------------
3524 .align 32
3525 lgamma_libm_err:
3526 { .mmi
3527       alloc         r32 = ar.pfs,1,4,4,0
3528       mov           GR_Parameter_TAG = GR_TAG
3529       nop.i         0
3531 .pred.rel "mutex",p9,p10
3532 { .mmi
3533       // store sign of gamma(x) as 32-bit int
3534 (p9)  st4           [GR_ad_SignGam] = GR_SignOfGamma
3535       // store sign of gamma(x) as 64-bit int
3536 (p10) st8           [GR_ad_SignGam] = GR_SignOfGamma
3537       nop.i         0
3539 GLOBAL_LIBM_END(__libm_lgamma)
3541 LOCAL_LIBM_ENTRY(__libm_error_region)
3542 .prologue
3543 { .mfi
3544         add   GR_Parameter_Y=-32,sp             // Parameter 2 value
3545         nop.f 0
3546 .save   ar.pfs,GR_SAVE_PFS
3547         mov   GR_SAVE_PFS=ar.pfs                // Save ar.pfs
3549 { .mfi
3550 .fframe 64
3551         add   sp=-64,sp                         // Create new stack
3552         nop.f 0
3553         mov   GR_SAVE_GP=gp                     // Save gp
3555 { .mmi
3556         stfd [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
3557         add GR_Parameter_X = 16,sp              // Parameter 1 address
3558 .save   b0, GR_SAVE_B0
3559         mov GR_SAVE_B0=b0                       // Save b0
3561 .body
3562 { .mib
3563         stfd [GR_Parameter_X] = FR_X                  // STORE Parameter 1
3564                                                       // on stack
3565         add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
3566         nop.b 0
3568 { .mib
3569         stfd [GR_Parameter_Y] = FR_RESULT             // STORE Parameter 3
3570                                                       // on stack
3571         add   GR_Parameter_Y = -16,GR_Parameter_Y
3572         br.call.sptk b0=__libm_error_support#         // Call error handling
3573                                                       // function
3575 { .mmi
3576         nop.m 0
3577         nop.m 0
3578         add   GR_Parameter_RESULT = 48,sp
3580 { .mmi
3581         ldfd  f8 = [GR_Parameter_RESULT]       // Get return result off stack
3582 .restore sp
3583         add   sp = 64,sp                       // Restore stack pointer
3584         mov   b0 = GR_SAVE_B0                  // Restore return address
3586 { .mib
3587         mov   gp = GR_SAVE_GP                  // Restore gp
3588         mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
3589         br.ret.sptk     b0                     // Return
3592 LOCAL_LIBM_END(__libm_error_region)
3593 .type   __libm_error_support#,@function
3594 .global __libm_error_support#