Fix ldbl-128 / ldbl-128ibm tanl for -Wuninitialized.
[glibc.git] / sysdeps / ieee754 / ldbl-128 / k_tanl.c
blobdfba2d9a76e5e453d82bc5dd43835d481f8b78a4
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under
18 the following terms:
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
30 You should have received a copy of the GNU Lesser General Public
31 License along with this library; if not, see
32 <http://www.gnu.org/licenses/>. */
34 /* __kernel_tanl( x, y, k )
35 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36 * Input x is assumed to be bounded by ~pi/4 in magnitude.
37 * Input y is the tail of x.
38 * Input k indicates whether tan (if k=1) or
39 * -1/tan (if k= -1) is returned.
41 * Algorithm
42 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
43 * 2. if x < 2^-57, return x with inexact if x!=0.
44 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45 * on [0,0.67433].
47 * Note: tan(x+y) = tan(x) + tan'(x)*y
48 * ~ tan(x) + (1+x*x)*y
49 * Therefore, for better accuracy in computing tan(x+y), let
50 * r = x^3 * R(x^2)
51 * then
52 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
54 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
55 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
59 #include <libc-internal.h>
60 #include <math.h>
61 #include <math_private.h>
62 static const long double
63 one = 1.0L,
64 pio4hi = 7.8539816339744830961566084581987569936977E-1L,
65 pio4lo = 2.1679525325309452561992610065108379921906E-35L,
67 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
68 0 <= x <= 0.6743316650390625
69 Peak relative error 8.0e-36 */
70 TH = 3.333333333333333333333333333333333333333E-1L,
71 T0 = -1.813014711743583437742363284336855889393E7L,
72 T1 = 1.320767960008972224312740075083259247618E6L,
73 T2 = -2.626775478255838182468651821863299023956E4L,
74 T3 = 1.764573356488504935415411383687150199315E2L,
75 T4 = -3.333267763822178690794678978979803526092E-1L,
77 U0 = -1.359761033807687578306772463253710042010E8L,
78 U1 = 6.494370630656893175666729313065113194784E7L,
79 U2 = -4.180787672237927475505536849168729386782E6L,
80 U3 = 8.031643765106170040139966622980914621521E4L,
81 U4 = -5.323131271912475695157127875560667378597E2L;
82 /* 1.000000000000000000000000000000000000000E0 */
85 long double
86 __kernel_tanl (long double x, long double y, int iy)
88 long double z, r, v, w, s;
89 int32_t ix, sign;
90 ieee854_long_double_shape_type u, u1;
92 u.value = x;
93 ix = u.parts32.w0 & 0x7fffffff;
94 if (ix < 0x3fc60000) /* x < 2**-57 */
96 if ((int) x == 0)
97 { /* generate inexact */
98 if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3
99 | (iy + 1)) == 0)
100 return one / fabs (x);
101 else
102 return (iy == 1) ? x : -one / x;
105 if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
107 if ((u.parts32.w0 & 0x80000000) != 0)
109 x = -x;
110 y = -y;
111 sign = -1;
113 else
114 sign = 1;
115 z = pio4hi - x;
116 w = pio4lo - y;
117 x = z + w;
118 y = 0.0;
120 z = x * x;
121 r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
122 v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
123 r = r / v;
125 s = z * x;
126 r = y + z * (s * r + y);
127 r += TH * s;
128 w = x + r;
129 if (ix >= 0x3ffe5942)
131 v = (long double) iy;
132 w = (v - 2.0 * (x - (w * w / (w + v) - r)));
133 /* SIGN is set for arguments that reach this code, but not
134 otherwise, resulting in warnings that it may be used
135 uninitialized although in the cases where it is used it has
136 always been set. */
137 DIAG_PUSH_NEEDS_COMMENT;
138 #if __GNUC_PREREQ (4, 7)
139 DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized");
140 #else
141 DIAG_IGNORE_NEEDS_COMMENT (5, "-Wuninitialized");
142 #endif
143 if (sign < 0)
144 w = -w;
145 DIAG_POP_NEEDS_COMMENT;
146 return w;
148 if (iy == 1)
149 return w;
150 else
151 { /* if allow error up to 2 ulp,
152 simply return -1.0/(x+r) here */
153 /* compute -1.0/(x+r) accurately */
154 u1.value = w;
155 u1.parts32.w2 = 0;
156 u1.parts32.w3 = 0;
157 v = r - (u1.value - x); /* u1+v = r+x */
158 z = -1.0 / w;
159 u.value = z;
160 u.parts32.w2 = 0;
161 u.parts32.w3 = 0;
162 s = 1.0 + u.value * u1.value;
163 return u.value + z * (s + u.value * v);