Add more tests of tan.
[glibc.git] / stdlib / mod_1.c
blob9323cf72a0c6a235783d404acf599b3a1f6526ea
1 /* mpn_mod_1(dividend_ptr, dividend_size, divisor_limb) --
2 Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
3 Return the single-limb remainder.
4 There are no constraints on the value of the divisor.
6 Copyright (C) 1991-2015 Free Software Foundation, Inc.
8 This file is part of the GNU MP Library.
10 The GNU MP Library is free software; you can redistribute it and/or modify
11 it under the terms of the GNU Lesser General Public License as published by
12 the Free Software Foundation; either version 2.1 of the License, or (at your
13 option) any later version.
15 The GNU MP Library is distributed in the hope that it will be useful, but
16 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
18 License for more details.
20 You should have received a copy of the GNU Lesser General Public License
21 along with the GNU MP Library; see the file COPYING.LIB. If not, see
22 <http://www.gnu.org/licenses/>. */
24 #include <gmp.h>
25 #include "gmp-impl.h"
26 #include "longlong.h"
28 #ifndef UMUL_TIME
29 #define UMUL_TIME 1
30 #endif
32 #ifndef UDIV_TIME
33 #define UDIV_TIME UMUL_TIME
34 #endif
36 /* FIXME: We should be using invert_limb (or invert_normalized_limb)
37 here (not udiv_qrnnd). */
39 mp_limb_t
40 #if __STDC__
41 mpn_mod_1 (mp_srcptr dividend_ptr, mp_size_t dividend_size,
42 mp_limb_t divisor_limb)
43 #else
44 mpn_mod_1 (dividend_ptr, dividend_size, divisor_limb)
45 mp_srcptr dividend_ptr;
46 mp_size_t dividend_size;
47 mp_limb_t divisor_limb;
48 #endif
50 mp_size_t i;
51 mp_limb_t n1, n0, r;
52 mp_limb_t dummy __attribute__ ((unused));
54 /* Botch: Should this be handled at all? Rely on callers? */
55 if (dividend_size == 0)
56 return 0;
58 /* If multiplication is much faster than division, and the
59 dividend is large, pre-invert the divisor, and use
60 only multiplications in the inner loop. */
62 /* This test should be read:
63 Does it ever help to use udiv_qrnnd_preinv?
64 && Does what we save compensate for the inversion overhead? */
65 if (UDIV_TIME > (2 * UMUL_TIME + 6)
66 && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME)
68 int normalization_steps;
70 count_leading_zeros (normalization_steps, divisor_limb);
71 if (normalization_steps != 0)
73 mp_limb_t divisor_limb_inverted;
75 divisor_limb <<= normalization_steps;
77 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
78 result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
79 most significant bit (with weight 2**N) implicit. */
81 /* Special case for DIVISOR_LIMB == 100...000. */
82 if (divisor_limb << 1 == 0)
83 divisor_limb_inverted = ~(mp_limb_t) 0;
84 else
85 udiv_qrnnd (divisor_limb_inverted, dummy,
86 -divisor_limb, 0, divisor_limb);
88 n1 = dividend_ptr[dividend_size - 1];
89 r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
91 /* Possible optimization:
92 if (r == 0
93 && divisor_limb > ((n1 << normalization_steps)
94 | (dividend_ptr[dividend_size - 2] >> ...)))
95 ...one division less... */
97 for (i = dividend_size - 2; i >= 0; i--)
99 n0 = dividend_ptr[i];
100 udiv_qrnnd_preinv (dummy, r, r,
101 ((n1 << normalization_steps)
102 | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
103 divisor_limb, divisor_limb_inverted);
104 n1 = n0;
106 udiv_qrnnd_preinv (dummy, r, r,
107 n1 << normalization_steps,
108 divisor_limb, divisor_limb_inverted);
109 return r >> normalization_steps;
111 else
113 mp_limb_t divisor_limb_inverted;
115 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
116 result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
117 most significant bit (with weight 2**N) implicit. */
119 /* Special case for DIVISOR_LIMB == 100...000. */
120 if (divisor_limb << 1 == 0)
121 divisor_limb_inverted = ~(mp_limb_t) 0;
122 else
123 udiv_qrnnd (divisor_limb_inverted, dummy,
124 -divisor_limb, 0, divisor_limb);
126 i = dividend_size - 1;
127 r = dividend_ptr[i];
129 if (r >= divisor_limb)
130 r = 0;
131 else
132 i--;
134 for (; i >= 0; i--)
136 n0 = dividend_ptr[i];
137 udiv_qrnnd_preinv (dummy, r, r,
138 n0, divisor_limb, divisor_limb_inverted);
140 return r;
143 else
145 if (UDIV_NEEDS_NORMALIZATION)
147 int normalization_steps;
149 count_leading_zeros (normalization_steps, divisor_limb);
150 if (normalization_steps != 0)
152 divisor_limb <<= normalization_steps;
154 n1 = dividend_ptr[dividend_size - 1];
155 r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
157 /* Possible optimization:
158 if (r == 0
159 && divisor_limb > ((n1 << normalization_steps)
160 | (dividend_ptr[dividend_size - 2] >> ...)))
161 ...one division less... */
163 for (i = dividend_size - 2; i >= 0; i--)
165 n0 = dividend_ptr[i];
166 udiv_qrnnd (dummy, r, r,
167 ((n1 << normalization_steps)
168 | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
169 divisor_limb);
170 n1 = n0;
172 udiv_qrnnd (dummy, r, r,
173 n1 << normalization_steps,
174 divisor_limb);
175 return r >> normalization_steps;
178 /* No normalization needed, either because udiv_qrnnd doesn't require
179 it, or because DIVISOR_LIMB is already normalized. */
181 i = dividend_size - 1;
182 r = dividend_ptr[i];
184 if (r >= divisor_limb)
185 r = 0;
186 else
187 i--;
189 for (; i >= 0; i--)
191 n0 = dividend_ptr[i];
192 udiv_qrnnd (dummy, r, r, n0, divisor_limb);
194 return r;