Consolidate multiple precision sin/cos functions
[glibc.git] / soft-fp / op-1.h
bloba9ad0d62cd8c016a8de22dc4602b1cddba6aa5b6
1 /* Software floating-point emulation.
2 Basic one-word fraction declaration and manipulation.
3 Copyright (C) 1997-2013 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Richard Henderson (rth@cygnus.com),
6 Jakub Jelinek (jj@ultra.linux.cz),
7 David S. Miller (davem@redhat.com) and
8 Peter Maydell (pmaydell@chiark.greenend.org.uk).
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
15 In addition to the permissions in the GNU Lesser General Public
16 License, the Free Software Foundation gives you unlimited
17 permission to link the compiled version of this file into
18 combinations with other programs, and to distribute those
19 combinations without any restriction coming from the use of this
20 file. (The Lesser General Public License restrictions do apply in
21 other respects; for example, they cover modification of the file,
22 and distribution when not linked into a combine executable.)
24 The GNU C Library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with the GNU C Library; if not, see
31 <http://www.gnu.org/licenses/>. */
33 #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f
34 #define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f)
35 #define _FP_FRAC_SET_1(X,I) (X##_f = I)
36 #define _FP_FRAC_HIGH_1(X) (X##_f)
37 #define _FP_FRAC_LOW_1(X) (X##_f)
38 #define _FP_FRAC_WORD_1(X,w) (X##_f)
40 #define _FP_FRAC_ADDI_1(X,I) (X##_f += I)
41 #define _FP_FRAC_SLL_1(X,N) \
42 do { \
43 if (__builtin_constant_p(N) && (N) == 1) \
44 X##_f += X##_f; \
45 else \
46 X##_f <<= (N); \
47 } while (0)
48 #define _FP_FRAC_SRL_1(X,N) (X##_f >>= N)
50 /* Right shift with sticky-lsb. */
51 #define _FP_FRAC_SRST_1(X,S,N,sz) __FP_FRAC_SRST_1(X##_f, S, N, sz)
52 #define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz)
54 #define __FP_FRAC_SRST_1(X,S,N,sz) \
55 do { \
56 S = (__builtin_constant_p(N) && (N) == 1 \
57 ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0); \
58 X = X >> (N); \
59 } while (0)
61 #define __FP_FRAC_SRS_1(X,N,sz) \
62 (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \
63 ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
65 #define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f)
66 #define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f)
67 #define _FP_FRAC_DEC_1(X,Y) (X##_f -= Y##_f)
68 #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f)
70 /* Predicates */
71 #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0)
72 #define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
73 #define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs)
74 #define _FP_FRAC_CLEAR_OVERP_1(fs,X) (X##_f &= ~_FP_OVERFLOW_##fs)
75 #define _FP_FRAC_HIGHBIT_DW_1(fs,X) (X##_f & _FP_HIGHBIT_DW_##fs)
76 #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
77 #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
78 #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
80 #define _FP_ZEROFRAC_1 0
81 #define _FP_MINFRAC_1 1
82 #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE)0)
85 * Unpack the raw bits of a native fp value. Do not classify or
86 * normalize the data.
89 #define _FP_UNPACK_RAW_1(fs, X, val) \
90 do { \
91 union _FP_UNION_##fs _flo; _flo.flt = (val); \
93 X##_f = _flo.bits.frac; \
94 X##_e = _flo.bits.exp; \
95 X##_s = _flo.bits.sign; \
96 } while (0)
98 #define _FP_UNPACK_RAW_1_P(fs, X, val) \
99 do { \
100 union _FP_UNION_##fs *_flo = \
101 (union _FP_UNION_##fs *)(val); \
103 X##_f = _flo->bits.frac; \
104 X##_e = _flo->bits.exp; \
105 X##_s = _flo->bits.sign; \
106 } while (0)
109 * Repack the raw bits of a native fp value.
112 #define _FP_PACK_RAW_1(fs, val, X) \
113 do { \
114 union _FP_UNION_##fs _flo; \
116 _flo.bits.frac = X##_f; \
117 _flo.bits.exp = X##_e; \
118 _flo.bits.sign = X##_s; \
120 (val) = _flo.flt; \
121 } while (0)
123 #define _FP_PACK_RAW_1_P(fs, val, X) \
124 do { \
125 union _FP_UNION_##fs *_flo = \
126 (union _FP_UNION_##fs *)(val); \
128 _flo->bits.frac = X##_f; \
129 _flo->bits.exp = X##_e; \
130 _flo->bits.sign = X##_s; \
131 } while (0)
135 * Multiplication algorithms:
138 /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
139 multiplication immediately. */
141 #define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y) \
142 do { \
143 R##_f = X##_f * Y##_f; \
144 } while (0)
146 #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
147 do { \
148 _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y); \
149 /* Normalize since we know where the msb of the multiplicands \
150 were (bit B), we know that the msb of the of the product is \
151 at either 2B or 2B-1. */ \
152 _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits); \
153 } while (0)
155 /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
157 #define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit) \
158 do { \
159 doit(R##_f1, R##_f0, X##_f, Y##_f); \
160 } while (0)
162 #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
163 do { \
164 _FP_FRAC_DECL_2(_Z); \
165 _FP_MUL_MEAT_DW_1_wide(wfracbits, _Z, X, Y, doit); \
166 /* Normalize since we know where the msb of the multiplicands \
167 were (bit B), we know that the msb of the of the product is \
168 at either 2B or 2B-1. */ \
169 _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits); \
170 R##_f = _Z_f0; \
171 } while (0)
173 /* Finally, a simple widening multiply algorithm. What fun! */
175 #define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y) \
176 do { \
177 _FP_W_TYPE _xh, _xl, _yh, _yl; \
178 _FP_FRAC_DECL_2(_a); \
180 /* split the words in half */ \
181 _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
182 _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
183 _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
184 _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
186 /* multiply the pieces */ \
187 R##_f0 = _xl * _yl; \
188 _a_f0 = _xh * _yl; \
189 _a_f1 = _xl * _yh; \
190 R##_f1 = _xh * _yh; \
192 /* reassemble into two full words */ \
193 if ((_a_f0 += _a_f1) < _a_f1) \
194 R##_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \
195 _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \
196 _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \
197 _FP_FRAC_ADD_2(R, R, _a); \
198 } while (0)
200 #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
201 do { \
202 _FP_FRAC_DECL_2(_z); \
203 _FP_MUL_MEAT_DW_1_hard(wfracbits, _z, X, Y); \
205 /* normalize */ \
206 _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits); \
207 R##_f = _z_f0; \
208 } while (0)
212 * Division algorithms:
215 /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
216 division immediately. Give this macro either _FP_DIV_HELP_imm for
217 C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
218 choose will depend on what the compiler does with divrem4. */
220 #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
221 do { \
222 _FP_W_TYPE _q, _r; \
223 X##_f <<= (X##_f < Y##_f \
224 ? R##_e--, _FP_WFRACBITS_##fs \
225 : _FP_WFRACBITS_##fs - 1); \
226 doit(_q, _r, X##_f, Y##_f); \
227 R##_f = _q | (_r != 0); \
228 } while (0)
230 /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
231 that may be useful in this situation. This first is for a primitive
232 that requires normalization, the second for one that does not. Look
233 for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
235 #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
236 do { \
237 _FP_W_TYPE _nh, _nl, _q, _r, _y; \
239 /* Normalize Y -- i.e. make the most significant bit set. */ \
240 _y = Y##_f << _FP_WFRACXBITS_##fs; \
242 /* Shift X op correspondingly high, that is, up one full word. */ \
243 if (X##_f < Y##_f) \
245 R##_e--; \
246 _nl = 0; \
247 _nh = X##_f; \
249 else \
251 _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
252 _nh = X##_f >> 1; \
255 udiv_qrnnd(_q, _r, _nh, _nl, _y); \
256 R##_f = _q | (_r != 0); \
257 } while (0)
259 #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
260 do { \
261 _FP_W_TYPE _nh, _nl, _q, _r; \
262 if (X##_f < Y##_f) \
264 R##_e--; \
265 _nl = X##_f << _FP_WFRACBITS_##fs; \
266 _nh = X##_f >> _FP_WFRACXBITS_##fs; \
268 else \
270 _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
271 _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
273 udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \
274 R##_f = _q | (_r != 0); \
275 } while (0)
279 * Square root algorithms:
280 * We have just one right now, maybe Newton approximation
281 * should be added for those machines where division is fast.
284 #define _FP_SQRT_MEAT_1(R, S, T, X, q) \
285 do { \
286 while (q != _FP_WORK_ROUND) \
288 T##_f = S##_f + q; \
289 if (T##_f <= X##_f) \
291 S##_f = T##_f + q; \
292 X##_f -= T##_f; \
293 R##_f += q; \
295 _FP_FRAC_SLL_1(X, 1); \
296 q >>= 1; \
298 if (X##_f) \
300 if (S##_f < X##_f) \
301 R##_f |= _FP_WORK_ROUND; \
302 R##_f |= _FP_WORK_STICKY; \
304 } while (0)
307 * Assembly/disassembly for converting to/from integral types.
308 * No shifting or overflow handled here.
311 #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
312 #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
316 * Convert FP values between word sizes
319 #define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f)