2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
12 /* Long double expansions are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, see
31 <http://www.gnu.org/licenses/>. */
33 /* __ieee754_j0(x), __ieee754_y0(x)
34 * Bessel function of the first and second kinds of order zero.
36 * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
37 * 2. Reduce x to |x| since j0(x)=j0(-x), and
39 * j0(x) = 1 - z/4 + z^2*R0/S0, where z = x*x;
41 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
42 * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
44 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
45 * = 1/sqrt(2) * (cos(x) + sin(x))
46 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
47 * = 1/sqrt(2) * (sin(x) - cos(x))
48 * (To avoid cancellation, use
49 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
50 * to compute the worse one.)
60 * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
61 * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
62 * We use the following function to approximate y0,
63 * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
65 * Note: For tiny x, U/V = u0 and j0(x)~1, hence
66 * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
68 * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
69 * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
70 * by the method mentioned above.
71 * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
75 #include <math_private.h>
77 static long double pzero (long double), qzero (long double);
79 static const long double
82 invsqrtpi
= 5.6418958354775628694807945156077258584405e-1L,
83 tpi
= 6.3661977236758134307553505349005744813784e-1L,
85 /* J0(x) = 1 - x^2 / 4 + x^4 R0(x^2) / S0(x^2)
87 peak relative error 1.41e-22 */
89 4.287176872744686992880841716723478740566E7L
,
90 -6.652058897474241627570911531740907185772E5L
,
91 7.011848381719789863458364584613651091175E3L
,
92 -3.168040850193372408702135490809516253693E1L
,
93 6.030778552661102450545394348845599300939E-2L,
97 2.743793198556599677955266341699130654342E9L
,
98 3.364330079384816249840086842058954076201E7L
,
99 1.924119649412510777584684927494642526573E5L
,
100 6.239282256012734914211715620088714856494E2L
,
101 /* 1.000000000000000000000000000000000000000E0L,*/
104 static const long double zero
= 0.0;
107 __ieee754_j0l (long double x
)
109 long double z
, s
, c
, ss
, cc
, r
, u
, v
;
113 GET_LDOUBLE_EXP (se
, x
);
115 if (__glibc_unlikely (ix
>= 0x7fff))
116 return one
/ (x
* x
);
118 if (ix
>= 0x4000) /* |x| >= 2.0 */
120 __sincosl (x
, &s
, &c
);
124 { /* make sure x+x not overflow */
132 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
133 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
135 if (__glibc_unlikely (ix
> 0x4080)) /* 2^129 */
136 z
= (invsqrtpi
* cc
) / __ieee754_sqrtl (x
);
141 z
= invsqrtpi
* (u
* cc
- v
* ss
) / __ieee754_sqrtl (x
);
145 if (__glibc_unlikely (ix
< 0x3fef)) /* |x| < 2**-16 */
147 /* raise inexact if x != 0 */
148 math_force_eval (huge
+ x
);
149 if (ix
< 0x3fde) /* |x| < 2^-33 */
152 return one
- 0.25 * x
* x
;
155 r
= z
* (R
[0] + z
* (R
[1] + z
* (R
[2] + z
* (R
[3] + z
* R
[4]))));
156 s
= S
[0] + z
* (S
[1] + z
* (S
[2] + z
* (S
[3] + z
)));
159 return (one
- 0.25 * z
+ z
* (r
/ s
));
164 return ((one
+ u
) * (one
- u
) + z
* (r
/ s
));
167 strong_alias (__ieee754_j0l
, __j0l_finite
)
170 /* y0(x) = 2/pi ln(x) J0(x) + U(x^2)/V(x^2)
172 peak relative error 1.7e-21 */
173 static const long double
175 -1.054912306975785573710813351985351350861E10L
,
176 2.520192609749295139432773849576523636127E10L
,
177 -1.856426071075602001239955451329519093395E9L
,
178 4.079209129698891442683267466276785956784E7L
,
179 -3.440684087134286610316661166492641011539E5L
,
180 1.005524356159130626192144663414848383774E3L
,
182 static const long double
184 1.429337283720789610137291929228082613676E11L
,
185 2.492593075325119157558811370165695013002E9L
,
186 2.186077620785925464237324417623665138376E7L
,
187 1.238407896366385175196515057064384929222E5L
,
188 4.693924035211032457494368947123233101664E2L
,
189 /* 1.000000000000000000000000000000000000000E0L */
193 __ieee754_y0l (long double x
)
195 long double z
, s
, c
, ss
, cc
, u
, v
;
197 u_int32_t se
, i0
, i1
;
199 GET_LDOUBLE_WORDS (se
, i0
, i1
, x
);
201 /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
202 if (__glibc_unlikely (se
& 0x8000))
203 return zero
/ (zero
* x
);
204 if (__glibc_unlikely (ix
>= 0x7fff))
205 return one
/ (x
+ x
* x
);
206 if (__glibc_unlikely ((i0
| i1
) == 0))
207 return -HUGE_VALL
+ x
; /* -inf and overflow exception. */
211 /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
214 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
215 * = 1/sqrt(2) * (sin(x) + cos(x))
216 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
217 * = 1/sqrt(2) * (sin(x) - cos(x))
218 * To avoid cancellation, use
219 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
220 * to compute the worse one.
222 __sincosl (x
, &s
, &c
);
226 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
227 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
230 { /* make sure x+x not overflow */
237 if (__glibc_unlikely (ix
> 0x4080)) /* 1e39 */
238 z
= (invsqrtpi
* ss
) / __ieee754_sqrtl (x
);
243 z
= invsqrtpi
* (u
* ss
+ v
* cc
) / __ieee754_sqrtl (x
);
247 if (__glibc_unlikely (ix
<= 0x3fde)) /* x < 2^-33 */
249 z
= -7.380429510868722527629822444004602747322E-2L
250 + tpi
* __ieee754_logl (x
);
254 u
= U
[0] + z
* (U
[1] + z
* (U
[2] + z
* (U
[3] + z
* (U
[4] + z
* U
[5]))));
255 v
= V
[0] + z
* (V
[1] + z
* (V
[2] + z
* (V
[3] + z
* (V
[4] + z
))));
256 return (u
/ v
+ tpi
* (__ieee754_j0l (x
) * __ieee754_logl (x
)));
258 strong_alias (__ieee754_y0l
, __y0l_finite
)
260 /* The asymptotic expansions of pzero is
261 * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
262 * For x >= 2, We approximate pzero by
263 * pzero(x) = 1 + s^2 R(s^2) / S(s^2)
265 static const long double pR8
[7] = {
267 Peak relative error 4.62 */
268 -4.094398895124198016684337960227780260127E-9L,
269 -8.929643669432412640061946338524096893089E-7L,
270 -6.281267456906136703868258380673108109256E-5L,
271 -1.736902783620362966354814353559382399665E-3L,
272 -1.831506216290984960532230842266070146847E-2L,
273 -5.827178869301452892963280214772398135283E-2L,
274 -2.087563267939546435460286895807046616992E-2L,
276 static const long double pS8
[6] = {
277 5.823145095287749230197031108839653988393E-8L,
278 1.279281986035060320477759999428992730280E-5L,
279 9.132668954726626677174825517150228961304E-4L,
280 2.606019379433060585351880541545146252534E-2L,
281 2.956262215119520464228467583516287175244E-1L,
282 1.149498145388256448535563278632697465675E0L
,
283 /* 1.000000000000000000000000000000000000000E0L, */
286 static const long double pR5
[7] = {
287 /* 4.54541015625 <= x <= 8
288 Peak relative error 6.51E-22 */
289 -2.041226787870240954326915847282179737987E-7L,
290 -2.255373879859413325570636768224534428156E-5L,
291 -7.957485746440825353553537274569102059990E-4L,
292 -1.093205102486816696940149222095559439425E-2L,
293 -5.657957849316537477657603125260701114646E-2L,
294 -8.641175552716402616180994954177818461588E-2L,
295 -1.354654710097134007437166939230619726157E-2L,
297 static const long double pS5
[6] = {
298 2.903078099681108697057258628212823545290E-6L,
299 3.253948449946735405975737677123673867321E-4L,
300 1.181269751723085006534147920481582279979E-2L,
301 1.719212057790143888884745200257619469363E-1L,
302 1.006306498779212467670654535430694221924E0L
,
303 2.069568808688074324555596301126375951502E0L
,
304 /* 1.000000000000000000000000000000000000000E0L, */
307 static const long double pR3
[7] = {
308 /* 2.85711669921875 <= x <= 4.54541015625
309 peak relative error 5.25e-21 */
310 -5.755732156848468345557663552240816066802E-6L,
311 -3.703675625855715998827966962258113034767E-4L,
312 -7.390893350679637611641350096842846433236E-3L,
313 -5.571922144490038765024591058478043873253E-2L,
314 -1.531290690378157869291151002472627396088E-1L,
315 -1.193350853469302941921647487062620011042E-1L,
316 -8.567802507331578894302991505331963782905E-3L,
318 static const long double pS3
[6] = {
319 8.185931139070086158103309281525036712419E-5L,
320 5.398016943778891093520574483111255476787E-3L,
321 1.130589193590489566669164765853409621081E-1L,
322 9.358652328786413274673192987670237145071E-1L,
323 3.091711512598349056276917907005098085273E0L
,
324 3.594602474737921977972586821673124231111E0L
,
325 /* 1.000000000000000000000000000000000000000E0L, */
328 static const long double pR2
[7] = {
329 /* 2 <= x <= 2.85711669921875
330 peak relative error 2.64e-21 */
331 -1.219525235804532014243621104365384992623E-4L,
332 -4.838597135805578919601088680065298763049E-3L,
333 -5.732223181683569266223306197751407418301E-2L,
334 -2.472947430526425064982909699406646503758E-1L,
335 -3.753373645974077960207588073975976327695E-1L,
336 -1.556241316844728872406672349347137975495E-1L,
337 -5.355423239526452209595316733635519506958E-3L,
339 static const long double pS2
[6] = {
340 1.734442793664291412489066256138894953823E-3L,
341 7.158111826468626405416300895617986926008E-2L,
342 9.153839713992138340197264669867993552641E-1L,
343 4.539209519433011393525841956702487797582E0L
,
344 8.868932430625331650266067101752626253644E0L
,
345 6.067161890196324146320763844772857713502E0L
,
346 /* 1.000000000000000000000000000000000000000E0L, */
350 pzero (long double x
)
352 const long double *p
, *q
;
355 u_int32_t se
, i0
, i1
;
357 GET_LDOUBLE_WORDS (se
, i0
, i1
, x
);
359 /* ix >= 0x4000 for all calls to this function. */
367 i1
= (ix
<< 16) | (i0
>> 16);
368 if (i1
>= 0x40019174) /* x >= 4.54541015625 */
373 else if (i1
>= 0x4000b6db) /* x >= 2.85711669921875 */
387 z
* (p
[2] + z
* (p
[3] + z
* (p
[4] + z
* (p
[5] + z
* p
[6])))));
389 q
[0] + z
* (q
[1] + z
* (q
[2] + z
* (q
[3] + z
* (q
[4] + z
* (q
[5] + z
)))));
390 return (one
+ z
* r
/ s
);
394 /* For x >= 8, the asymptotic expansions of qzero is
395 * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
396 * We approximate qzero by
397 * qzero(x) = s*(-.125 + R(s^2) / S(s^2))
399 static const long double qR8
[7] = {
401 peak relative error 2.23e-21 */
402 3.001267180483191397885272640777189348008E-10L,
403 8.693186311430836495238494289942413810121E-8L,
404 8.496875536711266039522937037850596580686E-6L,
405 3.482702869915288984296602449543513958409E-4L,
406 6.036378380706107692863811938221290851352E-3L,
407 3.881970028476167836382607922840452192636E-2L,
408 6.132191514516237371140841765561219149638E-2L,
410 static const long double qS8
[7] = {
411 4.097730123753051126914971174076227600212E-9L,
412 1.199615869122646109596153392152131139306E-6L,
413 1.196337580514532207793107149088168946451E-4L,
414 5.099074440112045094341500497767181211104E-3L,
415 9.577420799632372483249761659674764460583E-2L,
416 7.385243015344292267061953461563695918646E-1L,
417 1.917266424391428937962682301561699055943E0L
,
418 /* 1.000000000000000000000000000000000000000E0L, */
421 static const long double qR5
[7] = {
422 /* 4.54541015625 <= x <= 8
423 peak relative error 1.03e-21 */
424 3.406256556438974327309660241748106352137E-8L,
425 4.855492710552705436943630087976121021980E-6L,
426 2.301011739663737780613356017352912281980E-4L,
427 4.500470249273129953870234803596619899226E-3L,
428 3.651376459725695502726921248173637054828E-2L,
429 1.071578819056574524416060138514508609805E-1L,
430 7.458950172851611673015774675225656063757E-2L,
432 static const long double qS5
[7] = {
433 4.650675622764245276538207123618745150785E-7L,
434 6.773573292521412265840260065635377164455E-5L,
435 3.340711249876192721980146877577806687714E-3L,
436 7.036218046856839214741678375536970613501E-2L,
437 6.569599559163872573895171876511377891143E-1L,
438 2.557525022583599204591036677199171155186E0L
,
439 3.457237396120935674982927714210361269133E0L
,
440 /* 1.000000000000000000000000000000000000000E0L,*/
443 static const long double qR3
[7] = {
444 /* 2.85711669921875 <= x <= 4.54541015625
445 peak relative error 5.24e-21 */
446 1.749459596550816915639829017724249805242E-6L,
447 1.446252487543383683621692672078376929437E-4L,
448 3.842084087362410664036704812125005761859E-3L,
449 4.066369994699462547896426554180954233581E-2L,
450 1.721093619117980251295234795188992722447E-1L,
451 2.538595333972857367655146949093055405072E-1L,
452 8.560591367256769038905328596020118877936E-2L,
454 static const long double qS3
[7] = {
455 2.388596091707517488372313710647510488042E-5L,
456 2.048679968058758616370095132104333998147E-3L,
457 5.824663198201417760864458765259945181513E-2L,
458 6.953906394693328750931617748038994763958E-1L,
459 3.638186936390881159685868764832961092476E0L
,
460 7.900169524705757837298990558459547842607E0L
,
461 5.992718532451026507552820701127504582907E0L
,
462 /* 1.000000000000000000000000000000000000000E0L, */
465 static const long double qR2
[7] = {
466 /* 2 <= x <= 2.85711669921875
467 peak relative error 1.58e-21 */
468 6.306524405520048545426928892276696949540E-5L,
469 3.209606155709930950935893996591576624054E-3L,
470 5.027828775702022732912321378866797059604E-2L,
471 3.012705561838718956481911477587757845163E-1L,
472 6.960544893905752937420734884995688523815E-1L,
473 5.431871999743531634887107835372232030655E-1L,
474 9.447736151202905471899259026430157211949E-2L,
476 static const long double qS2
[7] = {
477 8.610579901936193494609755345106129102676E-4L,
478 4.649054352710496997203474853066665869047E-2L,
479 8.104282924459837407218042945106320388339E-1L,
480 5.807730930825886427048038146088828206852E0L
,
481 1.795310145936848873627710102199881642939E1L
,
482 2.281313316875375733663657188888110605044E1L
,
483 1.011242067883822301487154844458322200143E1L
,
484 /* 1.000000000000000000000000000000000000000E0L, */
488 qzero (long double x
)
490 const long double *p
, *q
;
493 u_int32_t se
, i0
, i1
;
495 GET_LDOUBLE_WORDS (se
, i0
, i1
, x
);
497 /* ix >= 0x4000 for all calls to this function. */
498 if (ix
>= 0x4002) /* x >= 8 */
505 i1
= (ix
<< 16) | (i0
>> 16);
506 if (i1
>= 0x40019174) /* x >= 4.54541015625 */
511 else if (i1
>= 0x4000b6db) /* x >= 2.85711669921875 */
525 z
* (p
[2] + z
* (p
[3] + z
* (p
[4] + z
* (p
[5] + z
* p
[6])))));
529 z
* (q
[3] + z
* (q
[4] + z
* (q
[5] + z
* (q
[6] + z
))))));
530 return (-.125 + z
* r
/ s
) / x
;