1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 This is a version (aka ptmalloc2) of malloc/free/realloc written by
24 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
26 * Version ptmalloc2-20011215
28 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
30 Note: There may be an updated version of this malloc obtainable at
31 http://www.malloc.de/malloc/ptmalloc2.tar.gz
32 Check before installing!
36 In order to compile this implementation, a Makefile is provided with
37 the ptmalloc2 distribution, which has pre-defined targets for some
38 popular systems (e.g. "make posix" for Posix threads). All that is
39 typically required with regard to compiler flags is the selection of
40 the thread package via defining one out of USE_PTHREADS, USE_THR or
41 USE_SPROC. Check the thread-m.h file for what effects this has.
42 Many/most systems will additionally require USE_TSD_DATA_HACK to be
43 defined, so this is the default for "make posix".
45 * Why use this malloc?
47 This is not the fastest, most space-conserving, most portable, or
48 most tunable malloc ever written. However it is among the fastest
49 while also being among the most space-conserving, portable and tunable.
50 Consistent balance across these factors results in a good general-purpose
51 allocator for malloc-intensive programs.
53 The main properties of the algorithms are:
54 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
55 with ties normally decided via FIFO (i.e. least recently used).
56 * For small (<= 64 bytes by default) requests, it is a caching
57 allocator, that maintains pools of quickly recycled chunks.
58 * In between, and for combinations of large and small requests, it does
59 the best it can trying to meet both goals at once.
60 * For very large requests (>= 128KB by default), it relies on system
61 memory mapping facilities, if supported.
63 For a longer but slightly out of date high-level description, see
64 http://gee.cs.oswego.edu/dl/html/malloc.html
66 You may already by default be using a C library containing a malloc
67 that is based on some version of this malloc (for example in
68 linux). You might still want to use the one in this file in order to
69 customize settings or to avoid overheads associated with library
72 * Contents, described in more detail in "description of public routines" below.
74 Standard (ANSI/SVID/...) functions:
76 calloc(size_t n_elements, size_t element_size);
78 realloc(Void_t* p, size_t n);
79 memalign(size_t alignment, size_t n);
82 mallopt(int parameter_number, int parameter_value)
85 independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
86 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
89 malloc_trim(size_t pad);
90 malloc_usable_size(Void_t* p);
95 Supported pointer representation: 4 or 8 bytes
96 Supported size_t representation: 4 or 8 bytes
97 Note that size_t is allowed to be 4 bytes even if pointers are 8.
98 You can adjust this by defining INTERNAL_SIZE_T
100 Alignment: 2 * sizeof(size_t) (default)
101 (i.e., 8 byte alignment with 4byte size_t). This suffices for
102 nearly all current machines and C compilers. However, you can
103 define MALLOC_ALIGNMENT to be wider than this if necessary.
105 Minimum overhead per allocated chunk: 4 or 8 bytes
106 Each malloced chunk has a hidden word of overhead holding size
107 and status information.
109 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
110 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
112 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
113 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
114 needed; 4 (8) for a trailing size field and 8 (16) bytes for
115 free list pointers. Thus, the minimum allocatable size is
118 Even a request for zero bytes (i.e., malloc(0)) returns a
119 pointer to something of the minimum allocatable size.
121 The maximum overhead wastage (i.e., number of extra bytes
122 allocated than were requested in malloc) is less than or equal
123 to the minimum size, except for requests >= mmap_threshold that
124 are serviced via mmap(), where the worst case wastage is 2 *
125 sizeof(size_t) bytes plus the remainder from a system page (the
126 minimal mmap unit); typically 4096 or 8192 bytes.
128 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
129 8-byte size_t: 2^64 minus about two pages
131 It is assumed that (possibly signed) size_t values suffice to
132 represent chunk sizes. `Possibly signed' is due to the fact
133 that `size_t' may be defined on a system as either a signed or
134 an unsigned type. The ISO C standard says that it must be
135 unsigned, but a few systems are known not to adhere to this.
136 Additionally, even when size_t is unsigned, sbrk (which is by
137 default used to obtain memory from system) accepts signed
138 arguments, and may not be able to handle size_t-wide arguments
139 with negative sign bit. Generally, values that would
140 appear as negative after accounting for overhead and alignment
141 are supported only via mmap(), which does not have this
144 Requests for sizes outside the allowed range will perform an optional
145 failure action and then return null. (Requests may also
146 also fail because a system is out of memory.)
148 Thread-safety: thread-safe unless NO_THREADS is defined
150 Compliance: I believe it is compliant with the 1997 Single Unix Specification
151 (See http://www.opennc.org). Also SVID/XPG, ANSI C, and probably
154 * Synopsis of compile-time options:
156 People have reported using previous versions of this malloc on all
157 versions of Unix, sometimes by tweaking some of the defines
158 below. It has been tested most extensively on Solaris and
159 Linux. It is also reported to work on WIN32 platforms.
160 People also report using it in stand-alone embedded systems.
162 The implementation is in straight, hand-tuned ANSI C. It is not
163 at all modular. (Sorry!) It uses a lot of macros. To be at all
164 usable, this code should be compiled using an optimizing compiler
165 (for example gcc -O3) that can simplify expressions and control
166 paths. (FAQ: some macros import variables as arguments rather than
167 declare locals because people reported that some debuggers
168 otherwise get confused.)
172 Compilation Environment options:
174 __STD_C derived from C compiler defines
177 USE_MEMCPY 1 if HAVE_MEMCPY is defined
178 HAVE_MMAP defined as 1
180 HAVE_MREMAP 0 unless linux defined
181 USE_ARENAS the same as HAVE_MMAP
182 malloc_getpagesize derived from system #includes, or 4096 if not
183 HAVE_USR_INCLUDE_MALLOC_H NOT defined
184 LACKS_UNISTD_H NOT defined unless WIN32
185 LACKS_SYS_PARAM_H NOT defined unless WIN32
186 LACKS_SYS_MMAN_H NOT defined unless WIN32
188 Changing default word sizes:
190 INTERNAL_SIZE_T size_t
191 MALLOC_ALIGNMENT 2 * sizeof(INTERNAL_SIZE_T)
193 Configuration and functionality options:
195 USE_DL_PREFIX NOT defined
196 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
197 USE_MALLOC_LOCK NOT defined
198 MALLOC_DEBUG NOT defined
199 REALLOC_ZERO_BYTES_FREES 1
200 MALLOC_FAILURE_ACTION errno = ENOMEM, if __STD_C defined, else no-op
203 Options for customizing MORECORE:
207 MORECORE_CONTIGUOUS 1
208 MORECORE_CANNOT_TRIM NOT defined
210 MMAP_AS_MORECORE_SIZE (1024 * 1024)
212 Tuning options that are also dynamically changeable via mallopt:
215 DEFAULT_TRIM_THRESHOLD 128 * 1024
217 DEFAULT_MMAP_THRESHOLD 128 * 1024
218 DEFAULT_MMAP_MAX 65536
220 There are several other #defined constants and macros that you
221 probably don't want to touch unless you are extending or adapting malloc. */
224 __STD_C should be nonzero if using ANSI-standard C compiler, a C++
225 compiler, or a C compiler sufficiently close to ANSI to get away
230 #if defined(__STDC__) || defined(__cplusplus)
239 Void_t* is the pointer type that malloc should say it returns
243 #if (__STD_C || defined(WIN32))
251 #include <stddef.h> /* for size_t */
252 #include <stdlib.h> /* for getenv(), abort() */
254 #include <sys/types.h>
257 #include <malloc-machine.h>
260 #include <stdio-common/_itoa.h>
267 /* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
269 /* #define LACKS_UNISTD_H */
271 #ifndef LACKS_UNISTD_H
275 /* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
277 /* #define LACKS_SYS_PARAM_H */
280 #include <stdio.h> /* needed for malloc_stats */
281 #include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */
286 /* For va_arg, va_start, va_end. */
289 /* For writev and struct iovec. */
292 #include <sys/syslog.h>
294 /* For various dynamic linking things. */
301 Because freed chunks may be overwritten with bookkeeping fields, this
302 malloc will often die when freed memory is overwritten by user
303 programs. This can be very effective (albeit in an annoying way)
304 in helping track down dangling pointers.
306 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
307 enabled that will catch more memory errors. You probably won't be
308 able to make much sense of the actual assertion errors, but they
309 should help you locate incorrectly overwritten memory. The checking
310 is fairly extensive, and will slow down execution
311 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
312 will attempt to check every non-mmapped allocated and free chunk in
313 the course of computing the summmaries. (By nature, mmapped regions
314 cannot be checked very much automatically.)
316 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
317 this code. The assertions in the check routines spell out in more
318 detail the assumptions and invariants underlying the algorithms.
320 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
321 checking that all accesses to malloced memory stay within their
322 bounds. However, there are several add-ons and adaptations of this
323 or other mallocs available that do this.
330 #define assert(x) ((void)0)
335 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
338 The default version is the same as size_t.
340 While not strictly necessary, it is best to define this as an
341 unsigned type, even if size_t is a signed type. This may avoid some
342 artificial size limitations on some systems.
344 On a 64-bit machine, you may be able to reduce malloc overhead by
345 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
346 expense of not being able to handle more than 2^32 of malloced
347 space. If this limitation is acceptable, you are encouraged to set
348 this unless you are on a platform requiring 16byte alignments. In
349 this case the alignment requirements turn out to negate any
350 potential advantages of decreasing size_t word size.
352 Implementors: Beware of the possible combinations of:
353 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
354 and might be the same width as int or as long
355 - size_t might have different width and signedness as INTERNAL_SIZE_T
356 - int and long might be 32 or 64 bits, and might be the same width
357 To deal with this, most comparisons and difference computations
358 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
359 aware of the fact that casting an unsigned int to a wider long does
360 not sign-extend. (This also makes checking for negative numbers
361 awkward.) Some of these casts result in harmless compiler warnings
365 #ifndef INTERNAL_SIZE_T
366 #define INTERNAL_SIZE_T size_t
369 /* The corresponding word size */
370 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
374 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
375 It must be a power of two at least 2 * SIZE_SZ, even on machines
376 for which smaller alignments would suffice. It may be defined as
377 larger than this though. Note however that code and data structures
378 are optimized for the case of 8-byte alignment.
382 #ifndef MALLOC_ALIGNMENT
383 #define MALLOC_ALIGNMENT (2 * SIZE_SZ)
386 /* The corresponding bit mask value */
387 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
392 REALLOC_ZERO_BYTES_FREES should be set if a call to
393 realloc with zero bytes should be the same as a call to free.
394 This is required by the C standard. Otherwise, since this malloc
395 returns a unique pointer for malloc(0), so does realloc(p, 0).
398 #ifndef REALLOC_ZERO_BYTES_FREES
399 #define REALLOC_ZERO_BYTES_FREES 1
403 TRIM_FASTBINS controls whether free() of a very small chunk can
404 immediately lead to trimming. Setting to true (1) can reduce memory
405 footprint, but will almost always slow down programs that use a lot
408 Define this only if you are willing to give up some speed to more
409 aggressively reduce system-level memory footprint when releasing
410 memory in programs that use many small chunks. You can get
411 essentially the same effect by setting MXFAST to 0, but this can
412 lead to even greater slowdowns in programs using many small chunks.
413 TRIM_FASTBINS is an in-between compile-time option, that disables
414 only those chunks bordering topmost memory from being placed in
418 #ifndef TRIM_FASTBINS
419 #define TRIM_FASTBINS 0
424 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
425 This is necessary when you only want to use this malloc in one part
426 of a program, using your regular system malloc elsewhere.
429 /* #define USE_DL_PREFIX */
433 Two-phase name translation.
434 All of the actual routines are given mangled names.
435 When wrappers are used, they become the public callable versions.
436 When DL_PREFIX is used, the callable names are prefixed.
440 #define public_cALLOc dlcalloc
441 #define public_fREe dlfree
442 #define public_cFREe dlcfree
443 #define public_mALLOc dlmalloc
444 #define public_mEMALIGn dlmemalign
445 #define public_rEALLOc dlrealloc
446 #define public_vALLOc dlvalloc
447 #define public_pVALLOc dlpvalloc
448 #define public_mALLINFo dlmallinfo
449 #define public_mALLOPt dlmallopt
450 #define public_mTRIm dlmalloc_trim
451 #define public_mSTATs dlmalloc_stats
452 #define public_mUSABLe dlmalloc_usable_size
453 #define public_iCALLOc dlindependent_calloc
454 #define public_iCOMALLOc dlindependent_comalloc
455 #define public_gET_STATe dlget_state
456 #define public_sET_STATe dlset_state
457 #else /* USE_DL_PREFIX */
460 /* Special defines for the GNU C library. */
461 #define public_cALLOc __libc_calloc
462 #define public_fREe __libc_free
463 #define public_cFREe __libc_cfree
464 #define public_mALLOc __libc_malloc
465 #define public_mEMALIGn __libc_memalign
466 #define public_rEALLOc __libc_realloc
467 #define public_vALLOc __libc_valloc
468 #define public_pVALLOc __libc_pvalloc
469 #define public_mALLINFo __libc_mallinfo
470 #define public_mALLOPt __libc_mallopt
471 #define public_mTRIm __malloc_trim
472 #define public_mSTATs __malloc_stats
473 #define public_mUSABLe __malloc_usable_size
474 #define public_iCALLOc __libc_independent_calloc
475 #define public_iCOMALLOc __libc_independent_comalloc
476 #define public_gET_STATe __malloc_get_state
477 #define public_sET_STATe __malloc_set_state
478 #define malloc_getpagesize __getpagesize()
481 #define munmap __munmap
482 #define mremap __mremap
483 #define mprotect __mprotect
484 #define MORECORE (*__morecore)
485 #define MORECORE_FAILURE 0
487 Void_t
* __default_morecore (ptrdiff_t);
488 Void_t
*(*__morecore
)(ptrdiff_t) = __default_morecore
;
491 #define public_cALLOc calloc
492 #define public_fREe free
493 #define public_cFREe cfree
494 #define public_mALLOc malloc
495 #define public_mEMALIGn memalign
496 #define public_rEALLOc realloc
497 #define public_vALLOc valloc
498 #define public_pVALLOc pvalloc
499 #define public_mALLINFo mallinfo
500 #define public_mALLOPt mallopt
501 #define public_mTRIm malloc_trim
502 #define public_mSTATs malloc_stats
503 #define public_mUSABLe malloc_usable_size
504 #define public_iCALLOc independent_calloc
505 #define public_iCOMALLOc independent_comalloc
506 #define public_gET_STATe malloc_get_state
507 #define public_sET_STATe malloc_set_state
509 #endif /* USE_DL_PREFIX */
512 #define __builtin_expect(expr, val) (expr)
514 #define fwrite(buf, size, count, fp) _IO_fwrite (buf, size, count, fp)
518 HAVE_MEMCPY should be defined if you are not otherwise using
519 ANSI STD C, but still have memcpy and memset in your C library
520 and want to use them in calloc and realloc. Otherwise simple
521 macro versions are defined below.
523 USE_MEMCPY should be defined as 1 if you actually want to
524 have memset and memcpy called. People report that the macro
525 versions are faster than libc versions on some systems.
527 Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
528 (of <= 36 bytes) are manually unrolled in realloc and calloc.
542 #if (__STD_C || defined(HAVE_MEMCPY))
548 /* On Win32 memset and memcpy are already declared in windows.h */
551 void* memset(void*, int, size_t);
552 void* memcpy(void*, const void*, size_t);
562 MALLOC_FAILURE_ACTION is the action to take before "return 0" when
563 malloc fails to be able to return memory, either because memory is
564 exhausted or because of illegal arguments.
566 By default, sets errno if running on STD_C platform, else does nothing.
569 #ifndef MALLOC_FAILURE_ACTION
571 #define MALLOC_FAILURE_ACTION \
575 #define MALLOC_FAILURE_ACTION
580 MORECORE-related declarations. By default, rely on sbrk
584 #ifdef LACKS_UNISTD_H
585 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
587 extern Void_t
* sbrk(ptrdiff_t);
589 extern Void_t
* sbrk();
595 MORECORE is the name of the routine to call to obtain more memory
596 from the system. See below for general guidance on writing
597 alternative MORECORE functions, as well as a version for WIN32 and a
598 sample version for pre-OSX macos.
602 #define MORECORE sbrk
606 MORECORE_FAILURE is the value returned upon failure of MORECORE
607 as well as mmap. Since it cannot be an otherwise valid memory address,
608 and must reflect values of standard sys calls, you probably ought not
612 #ifndef MORECORE_FAILURE
613 #define MORECORE_FAILURE (-1)
617 If MORECORE_CONTIGUOUS is true, take advantage of fact that
618 consecutive calls to MORECORE with positive arguments always return
619 contiguous increasing addresses. This is true of unix sbrk. Even
620 if not defined, when regions happen to be contiguous, malloc will
621 permit allocations spanning regions obtained from different
622 calls. But defining this when applicable enables some stronger
623 consistency checks and space efficiencies.
626 #ifndef MORECORE_CONTIGUOUS
627 #define MORECORE_CONTIGUOUS 1
631 Define MORECORE_CANNOT_TRIM if your version of MORECORE
632 cannot release space back to the system when given negative
633 arguments. This is generally necessary only if you are using
634 a hand-crafted MORECORE function that cannot handle negative arguments.
637 /* #define MORECORE_CANNOT_TRIM */
639 /* MORECORE_CLEARS (default 1)
640 The degree to which the routine mapped to MORECORE zeroes out
641 memory: never (0), only for newly allocated space (1) or always
642 (2). The distinction between (1) and (2) is necessary because on
643 some systems, if the application first decrements and then
644 increments the break value, the contents of the reallocated space
648 #ifndef MORECORE_CLEARS
649 #define MORECORE_CLEARS 1
654 Define HAVE_MMAP as true to optionally make malloc() use mmap() to
655 allocate very large blocks. These will be returned to the
656 operating system immediately after a free(). Also, if mmap
657 is available, it is used as a backup strategy in cases where
658 MORECORE fails to provide space from system.
660 This malloc is best tuned to work with mmap for large requests.
661 If you do not have mmap, operations involving very large chunks (1MB
662 or so) may be slower than you'd like.
669 Standard unix mmap using /dev/zero clears memory so calloc doesn't
674 #define MMAP_CLEARS 1
679 #define MMAP_CLEARS 0
685 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
686 sbrk fails, and mmap is used as a backup (which is done only if
687 HAVE_MMAP). The value must be a multiple of page size. This
688 backup strategy generally applies only when systems have "holes" in
689 address space, so sbrk cannot perform contiguous expansion, but
690 there is still space available on system. On systems for which
691 this is known to be useful (i.e. most linux kernels), this occurs
692 only when programs allocate huge amounts of memory. Between this,
693 and the fact that mmap regions tend to be limited, the size should
694 be large, to avoid too many mmap calls and thus avoid running out
698 #ifndef MMAP_AS_MORECORE_SIZE
699 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
703 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
704 large blocks. This is currently only possible on Linux with
705 kernel versions newer than 1.3.77.
710 #define HAVE_MREMAP 1
712 #define HAVE_MREMAP 0
715 #endif /* HAVE_MMAP */
717 /* Define USE_ARENAS to enable support for multiple `arenas'. These
718 are allocated using mmap(), are necessary for threads and
719 occasionally useful to overcome address space limitations affecting
723 #define USE_ARENAS HAVE_MMAP
728 The system page size. To the extent possible, this malloc manages
729 memory from the system in page-size units. Note that this value is
730 cached during initialization into a field of malloc_state. So even
731 if malloc_getpagesize is a function, it is only called once.
733 The following mechanics for getpagesize were adapted from bsd/gnu
734 getpagesize.h. If none of the system-probes here apply, a value of
735 4096 is used, which should be OK: If they don't apply, then using
736 the actual value probably doesn't impact performance.
740 #ifndef malloc_getpagesize
742 #ifndef LACKS_UNISTD_H
746 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
747 # ifndef _SC_PAGE_SIZE
748 # define _SC_PAGE_SIZE _SC_PAGESIZE
752 # ifdef _SC_PAGE_SIZE
753 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
755 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
756 extern size_t getpagesize();
757 # define malloc_getpagesize getpagesize()
759 # ifdef WIN32 /* use supplied emulation of getpagesize */
760 # define malloc_getpagesize getpagesize()
762 # ifndef LACKS_SYS_PARAM_H
763 # include <sys/param.h>
765 # ifdef EXEC_PAGESIZE
766 # define malloc_getpagesize EXEC_PAGESIZE
770 # define malloc_getpagesize NBPG
772 # define malloc_getpagesize (NBPG * CLSIZE)
776 # define malloc_getpagesize NBPC
779 # define malloc_getpagesize PAGESIZE
780 # else /* just guess */
781 # define malloc_getpagesize (4096)
792 This version of malloc supports the standard SVID/XPG mallinfo
793 routine that returns a struct containing usage properties and
794 statistics. It should work on any SVID/XPG compliant system that has
795 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
796 install such a thing yourself, cut out the preliminary declarations
797 as described above and below and save them in a malloc.h file. But
798 there's no compelling reason to bother to do this.)
800 The main declaration needed is the mallinfo struct that is returned
801 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
802 bunch of fields that are not even meaningful in this version of
803 malloc. These fields are are instead filled by mallinfo() with
804 other numbers that might be of interest.
806 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
807 /usr/include/malloc.h file that includes a declaration of struct
808 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
809 version is declared below. These must be precisely the same for
810 mallinfo() to work. The original SVID version of this struct,
811 defined on most systems with mallinfo, declares all fields as
812 ints. But some others define as unsigned long. If your system
813 defines the fields using a type of different width than listed here,
814 you must #include your system version and #define
815 HAVE_USR_INCLUDE_MALLOC_H.
818 /* #define HAVE_USR_INCLUDE_MALLOC_H */
820 #ifdef HAVE_USR_INCLUDE_MALLOC_H
821 #include "/usr/include/malloc.h"
825 /* ---------- description of public routines ------------ */
829 Returns a pointer to a newly allocated chunk of at least n bytes, or null
830 if no space is available. Additionally, on failure, errno is
831 set to ENOMEM on ANSI C systems.
833 If n is zero, malloc returns a minumum-sized chunk. (The minimum
834 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
835 systems.) On most systems, size_t is an unsigned type, so calls
836 with negative arguments are interpreted as requests for huge amounts
837 of space, which will often fail. The maximum supported value of n
838 differs across systems, but is in all cases less than the maximum
839 representable value of a size_t.
842 Void_t
* public_mALLOc(size_t);
844 Void_t
* public_mALLOc();
846 #ifdef libc_hidden_proto
847 libc_hidden_proto (public_mALLOc
)
852 Releases the chunk of memory pointed to by p, that had been previously
853 allocated using malloc or a related routine such as realloc.
854 It has no effect if p is null. It can have arbitrary (i.e., bad!)
855 effects if p has already been freed.
857 Unless disabled (using mallopt), freeing very large spaces will
858 when possible, automatically trigger operations that give
859 back unused memory to the system, thus reducing program footprint.
862 void public_fREe(Void_t
*);
866 #ifdef libc_hidden_proto
867 libc_hidden_proto (public_fREe
)
871 calloc(size_t n_elements, size_t element_size);
872 Returns a pointer to n_elements * element_size bytes, with all locations
876 Void_t
* public_cALLOc(size_t, size_t);
878 Void_t
* public_cALLOc();
882 realloc(Void_t* p, size_t n)
883 Returns a pointer to a chunk of size n that contains the same data
884 as does chunk p up to the minimum of (n, p's size) bytes, or null
885 if no space is available.
887 The returned pointer may or may not be the same as p. The algorithm
888 prefers extending p when possible, otherwise it employs the
889 equivalent of a malloc-copy-free sequence.
891 If p is null, realloc is equivalent to malloc.
893 If space is not available, realloc returns null, errno is set (if on
894 ANSI) and p is NOT freed.
896 if n is for fewer bytes than already held by p, the newly unused
897 space is lopped off and freed if possible. Unless the #define
898 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
899 zero (re)allocates a minimum-sized chunk.
901 Large chunks that were internally obtained via mmap will always
902 be reallocated using malloc-copy-free sequences unless
903 the system supports MREMAP (currently only linux).
905 The old unix realloc convention of allowing the last-free'd chunk
906 to be used as an argument to realloc is not supported.
909 Void_t
* public_rEALLOc(Void_t
*, size_t);
911 Void_t
* public_rEALLOc();
913 #ifdef libc_hidden_proto
914 libc_hidden_proto (public_rEALLOc
)
918 memalign(size_t alignment, size_t n);
919 Returns a pointer to a newly allocated chunk of n bytes, aligned
920 in accord with the alignment argument.
922 The alignment argument should be a power of two. If the argument is
923 not a power of two, the nearest greater power is used.
924 8-byte alignment is guaranteed by normal malloc calls, so don't
925 bother calling memalign with an argument of 8 or less.
927 Overreliance on memalign is a sure way to fragment space.
930 Void_t
* public_mEMALIGn(size_t, size_t);
932 Void_t
* public_mEMALIGn();
934 #ifdef libc_hidden_proto
935 libc_hidden_proto (public_mEMALIGn
)
940 Equivalent to memalign(pagesize, n), where pagesize is the page
941 size of the system. If the pagesize is unknown, 4096 is used.
944 Void_t
* public_vALLOc(size_t);
946 Void_t
* public_vALLOc();
952 mallopt(int parameter_number, int parameter_value)
953 Sets tunable parameters The format is to provide a
954 (parameter-number, parameter-value) pair. mallopt then sets the
955 corresponding parameter to the argument value if it can (i.e., so
956 long as the value is meaningful), and returns 1 if successful else
957 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
958 normally defined in malloc.h. Only one of these (M_MXFAST) is used
959 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
960 so setting them has no effect. But this malloc also supports four
961 other options in mallopt. See below for details. Briefly, supported
962 parameters are as follows (listed defaults are for "typical"
965 Symbol param # default allowed param values
966 M_MXFAST 1 64 0-80 (0 disables fastbins)
967 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
969 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
970 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
973 int public_mALLOPt(int, int);
975 int public_mALLOPt();
981 Returns (by copy) a struct containing various summary statistics:
983 arena: current total non-mmapped bytes allocated from system
984 ordblks: the number of free chunks
985 smblks: the number of fastbin blocks (i.e., small chunks that
986 have been freed but not use resused or consolidated)
987 hblks: current number of mmapped regions
988 hblkhd: total bytes held in mmapped regions
989 usmblks: the maximum total allocated space. This will be greater
990 than current total if trimming has occurred.
991 fsmblks: total bytes held in fastbin blocks
992 uordblks: current total allocated space (normal or mmapped)
993 fordblks: total free space
994 keepcost: the maximum number of bytes that could ideally be released
995 back to system via malloc_trim. ("ideally" means that
996 it ignores page restrictions etc.)
998 Because these fields are ints, but internal bookkeeping may
999 be kept as longs, the reported values may wrap around zero and
1003 struct mallinfo
public_mALLINFo(void);
1005 struct mallinfo
public_mALLINFo();
1010 independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
1012 independent_calloc is similar to calloc, but instead of returning a
1013 single cleared space, it returns an array of pointers to n_elements
1014 independent elements that can hold contents of size elem_size, each
1015 of which starts out cleared, and can be independently freed,
1016 realloc'ed etc. The elements are guaranteed to be adjacently
1017 allocated (this is not guaranteed to occur with multiple callocs or
1018 mallocs), which may also improve cache locality in some
1021 The "chunks" argument is optional (i.e., may be null, which is
1022 probably the most typical usage). If it is null, the returned array
1023 is itself dynamically allocated and should also be freed when it is
1024 no longer needed. Otherwise, the chunks array must be of at least
1025 n_elements in length. It is filled in with the pointers to the
1028 In either case, independent_calloc returns this pointer array, or
1029 null if the allocation failed. If n_elements is zero and "chunks"
1030 is null, it returns a chunk representing an array with zero elements
1031 (which should be freed if not wanted).
1033 Each element must be individually freed when it is no longer
1034 needed. If you'd like to instead be able to free all at once, you
1035 should instead use regular calloc and assign pointers into this
1036 space to represent elements. (In this case though, you cannot
1037 independently free elements.)
1039 independent_calloc simplifies and speeds up implementations of many
1040 kinds of pools. It may also be useful when constructing large data
1041 structures that initially have a fixed number of fixed-sized nodes,
1042 but the number is not known at compile time, and some of the nodes
1043 may later need to be freed. For example:
1045 struct Node { int item; struct Node* next; };
1047 struct Node* build_list() {
1049 int n = read_number_of_nodes_needed();
1050 if (n <= 0) return 0;
1051 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1052 if (pool == 0) die();
1053 // organize into a linked list...
1054 struct Node* first = pool[0];
1055 for (i = 0; i < n-1; ++i)
1056 pool[i]->next = pool[i+1];
1057 free(pool); // Can now free the array (or not, if it is needed later)
1062 Void_t
** public_iCALLOc(size_t, size_t, Void_t
**);
1064 Void_t
** public_iCALLOc();
1068 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
1070 independent_comalloc allocates, all at once, a set of n_elements
1071 chunks with sizes indicated in the "sizes" array. It returns
1072 an array of pointers to these elements, each of which can be
1073 independently freed, realloc'ed etc. The elements are guaranteed to
1074 be adjacently allocated (this is not guaranteed to occur with
1075 multiple callocs or mallocs), which may also improve cache locality
1076 in some applications.
1078 The "chunks" argument is optional (i.e., may be null). If it is null
1079 the returned array is itself dynamically allocated and should also
1080 be freed when it is no longer needed. Otherwise, the chunks array
1081 must be of at least n_elements in length. It is filled in with the
1082 pointers to the chunks.
1084 In either case, independent_comalloc returns this pointer array, or
1085 null if the allocation failed. If n_elements is zero and chunks is
1086 null, it returns a chunk representing an array with zero elements
1087 (which should be freed if not wanted).
1089 Each element must be individually freed when it is no longer
1090 needed. If you'd like to instead be able to free all at once, you
1091 should instead use a single regular malloc, and assign pointers at
1092 particular offsets in the aggregate space. (In this case though, you
1093 cannot independently free elements.)
1095 independent_comallac differs from independent_calloc in that each
1096 element may have a different size, and also that it does not
1097 automatically clear elements.
1099 independent_comalloc can be used to speed up allocation in cases
1100 where several structs or objects must always be allocated at the
1101 same time. For example:
1106 void send_message(char* msg) {
1107 int msglen = strlen(msg);
1108 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1110 if (independent_comalloc(3, sizes, chunks) == 0)
1112 struct Head* head = (struct Head*)(chunks[0]);
1113 char* body = (char*)(chunks[1]);
1114 struct Foot* foot = (struct Foot*)(chunks[2]);
1118 In general though, independent_comalloc is worth using only for
1119 larger values of n_elements. For small values, you probably won't
1120 detect enough difference from series of malloc calls to bother.
1122 Overuse of independent_comalloc can increase overall memory usage,
1123 since it cannot reuse existing noncontiguous small chunks that
1124 might be available for some of the elements.
1127 Void_t
** public_iCOMALLOc(size_t, size_t*, Void_t
**);
1129 Void_t
** public_iCOMALLOc();
1137 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1138 round up n to nearest pagesize.
1141 Void_t
* public_pVALLOc(size_t);
1143 Void_t
* public_pVALLOc();
1148 Equivalent to free(p).
1150 cfree is needed/defined on some systems that pair it with calloc,
1151 for odd historical reasons (such as: cfree is used in example
1152 code in the first edition of K&R).
1155 void public_cFREe(Void_t
*);
1157 void public_cFREe();
1161 malloc_trim(size_t pad);
1163 If possible, gives memory back to the system (via negative
1164 arguments to sbrk) if there is unused memory at the `high' end of
1165 the malloc pool. You can call this after freeing large blocks of
1166 memory to potentially reduce the system-level memory requirements
1167 of a program. However, it cannot guarantee to reduce memory. Under
1168 some allocation patterns, some large free blocks of memory will be
1169 locked between two used chunks, so they cannot be given back to
1172 The `pad' argument to malloc_trim represents the amount of free
1173 trailing space to leave untrimmed. If this argument is zero,
1174 only the minimum amount of memory to maintain internal data
1175 structures will be left (one page or less). Non-zero arguments
1176 can be supplied to maintain enough trailing space to service
1177 future expected allocations without having to re-obtain memory
1180 Malloc_trim returns 1 if it actually released any memory, else 0.
1181 On systems that do not support "negative sbrks", it will always
1185 int public_mTRIm(size_t);
1191 malloc_usable_size(Void_t* p);
1193 Returns the number of bytes you can actually use in
1194 an allocated chunk, which may be more than you requested (although
1195 often not) due to alignment and minimum size constraints.
1196 You can use this many bytes without worrying about
1197 overwriting other allocated objects. This is not a particularly great
1198 programming practice. malloc_usable_size can be more useful in
1199 debugging and assertions, for example:
1202 assert(malloc_usable_size(p) >= 256);
1206 size_t public_mUSABLe(Void_t
*);
1208 size_t public_mUSABLe();
1213 Prints on stderr the amount of space obtained from the system (both
1214 via sbrk and mmap), the maximum amount (which may be more than
1215 current if malloc_trim and/or munmap got called), and the current
1216 number of bytes allocated via malloc (or realloc, etc) but not yet
1217 freed. Note that this is the number of bytes allocated, not the
1218 number requested. It will be larger than the number requested
1219 because of alignment and bookkeeping overhead. Because it includes
1220 alignment wastage as being in use, this figure may be greater than
1221 zero even when no user-level chunks are allocated.
1223 The reported current and maximum system memory can be inaccurate if
1224 a program makes other calls to system memory allocation functions
1225 (normally sbrk) outside of malloc.
1227 malloc_stats prints only the most commonly interesting statistics.
1228 More information can be obtained by calling mallinfo.
1232 void public_mSTATs(void);
1234 void public_mSTATs();
1238 malloc_get_state(void);
1240 Returns the state of all malloc variables in an opaque data
1244 Void_t
* public_gET_STATe(void);
1246 Void_t
* public_gET_STATe();
1250 malloc_set_state(Void_t* state);
1252 Restore the state of all malloc variables from data obtained with
1256 int public_sET_STATe(Void_t
*);
1258 int public_sET_STATe();
1263 posix_memalign(void **memptr, size_t alignment, size_t size);
1265 POSIX wrapper like memalign(), checking for validity of size.
1267 int __posix_memalign(void **, size_t, size_t);
1270 /* mallopt tuning options */
1273 M_MXFAST is the maximum request size used for "fastbins", special bins
1274 that hold returned chunks without consolidating their spaces. This
1275 enables future requests for chunks of the same size to be handled
1276 very quickly, but can increase fragmentation, and thus increase the
1277 overall memory footprint of a program.
1279 This malloc manages fastbins very conservatively yet still
1280 efficiently, so fragmentation is rarely a problem for values less
1281 than or equal to the default. The maximum supported value of MXFAST
1282 is 80. You wouldn't want it any higher than this anyway. Fastbins
1283 are designed especially for use with many small structs, objects or
1284 strings -- the default handles structs/objects/arrays with sizes up
1285 to 8 4byte fields, or small strings representing words, tokens,
1286 etc. Using fastbins for larger objects normally worsens
1287 fragmentation without improving speed.
1289 M_MXFAST is set in REQUEST size units. It is internally used in
1290 chunksize units, which adds padding and alignment. You can reduce
1291 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
1292 algorithm to be a closer approximation of fifo-best-fit in all cases,
1293 not just for larger requests, but will generally cause it to be
1298 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
1303 #ifndef DEFAULT_MXFAST
1304 #define DEFAULT_MXFAST 64
1309 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
1310 to keep before releasing via malloc_trim in free().
1312 Automatic trimming is mainly useful in long-lived programs.
1313 Because trimming via sbrk can be slow on some systems, and can
1314 sometimes be wasteful (in cases where programs immediately
1315 afterward allocate more large chunks) the value should be high
1316 enough so that your overall system performance would improve by
1317 releasing this much memory.
1319 The trim threshold and the mmap control parameters (see below)
1320 can be traded off with one another. Trimming and mmapping are
1321 two different ways of releasing unused memory back to the
1322 system. Between these two, it is often possible to keep
1323 system-level demands of a long-lived program down to a bare
1324 minimum. For example, in one test suite of sessions measuring
1325 the XF86 X server on Linux, using a trim threshold of 128K and a
1326 mmap threshold of 192K led to near-minimal long term resource
1329 If you are using this malloc in a long-lived program, it should
1330 pay to experiment with these values. As a rough guide, you
1331 might set to a value close to the average size of a process
1332 (program) running on your system. Releasing this much memory
1333 would allow such a process to run in memory. Generally, it's
1334 worth it to tune for trimming rather tham memory mapping when a
1335 program undergoes phases where several large chunks are
1336 allocated and released in ways that can reuse each other's
1337 storage, perhaps mixed with phases where there are no such
1338 chunks at all. And in well-behaved long-lived programs,
1339 controlling release of large blocks via trimming versus mapping
1342 However, in most programs, these parameters serve mainly as
1343 protection against the system-level effects of carrying around
1344 massive amounts of unneeded memory. Since frequent calls to
1345 sbrk, mmap, and munmap otherwise degrade performance, the default
1346 parameters are set to relatively high values that serve only as
1349 The trim value It must be greater than page size to have any useful
1350 effect. To disable trimming completely, you can set to
1353 Trim settings interact with fastbin (MXFAST) settings: Unless
1354 TRIM_FASTBINS is defined, automatic trimming never takes place upon
1355 freeing a chunk with size less than or equal to MXFAST. Trimming is
1356 instead delayed until subsequent freeing of larger chunks. However,
1357 you can still force an attempted trim by calling malloc_trim.
1359 Also, trimming is not generally possible in cases where
1360 the main arena is obtained via mmap.
1362 Note that the trick some people use of mallocing a huge space and
1363 then freeing it at program startup, in an attempt to reserve system
1364 memory, doesn't have the intended effect under automatic trimming,
1365 since that memory will immediately be returned to the system.
1368 #define M_TRIM_THRESHOLD -1
1370 #ifndef DEFAULT_TRIM_THRESHOLD
1371 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
1375 M_TOP_PAD is the amount of extra `padding' space to allocate or
1376 retain whenever sbrk is called. It is used in two ways internally:
1378 * When sbrk is called to extend the top of the arena to satisfy
1379 a new malloc request, this much padding is added to the sbrk
1382 * When malloc_trim is called automatically from free(),
1383 it is used as the `pad' argument.
1385 In both cases, the actual amount of padding is rounded
1386 so that the end of the arena is always a system page boundary.
1388 The main reason for using padding is to avoid calling sbrk so
1389 often. Having even a small pad greatly reduces the likelihood
1390 that nearly every malloc request during program start-up (or
1391 after trimming) will invoke sbrk, which needlessly wastes
1394 Automatic rounding-up to page-size units is normally sufficient
1395 to avoid measurable overhead, so the default is 0. However, in
1396 systems where sbrk is relatively slow, it can pay to increase
1397 this value, at the expense of carrying around more memory than
1401 #define M_TOP_PAD -2
1403 #ifndef DEFAULT_TOP_PAD
1404 #define DEFAULT_TOP_PAD (0)
1408 M_MMAP_THRESHOLD is the request size threshold for using mmap()
1409 to service a request. Requests of at least this size that cannot
1410 be allocated using already-existing space will be serviced via mmap.
1411 (If enough normal freed space already exists it is used instead.)
1413 Using mmap segregates relatively large chunks of memory so that
1414 they can be individually obtained and released from the host
1415 system. A request serviced through mmap is never reused by any
1416 other request (at least not directly; the system may just so
1417 happen to remap successive requests to the same locations).
1419 Segregating space in this way has the benefits that:
1421 1. Mmapped space can ALWAYS be individually released back
1422 to the system, which helps keep the system level memory
1423 demands of a long-lived program low.
1424 2. Mapped memory can never become `locked' between
1425 other chunks, as can happen with normally allocated chunks, which
1426 means that even trimming via malloc_trim would not release them.
1427 3. On some systems with "holes" in address spaces, mmap can obtain
1428 memory that sbrk cannot.
1430 However, it has the disadvantages that:
1432 1. The space cannot be reclaimed, consolidated, and then
1433 used to service later requests, as happens with normal chunks.
1434 2. It can lead to more wastage because of mmap page alignment
1436 3. It causes malloc performance to be more dependent on host
1437 system memory management support routines which may vary in
1438 implementation quality and may impose arbitrary
1439 limitations. Generally, servicing a request via normal
1440 malloc steps is faster than going through a system's mmap.
1442 The advantages of mmap nearly always outweigh disadvantages for
1443 "large" chunks, but the value of "large" varies across systems. The
1444 default is an empirically derived value that works well in most
1448 #define M_MMAP_THRESHOLD -3
1450 #ifndef DEFAULT_MMAP_THRESHOLD
1451 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
1455 M_MMAP_MAX is the maximum number of requests to simultaneously
1456 service using mmap. This parameter exists because
1457 some systems have a limited number of internal tables for
1458 use by mmap, and using more than a few of them may degrade
1461 The default is set to a value that serves only as a safeguard.
1462 Setting to 0 disables use of mmap for servicing large requests. If
1463 HAVE_MMAP is not set, the default value is 0, and attempts to set it
1464 to non-zero values in mallopt will fail.
1467 #define M_MMAP_MAX -4
1469 #ifndef DEFAULT_MMAP_MAX
1471 #define DEFAULT_MMAP_MAX (65536)
1473 #define DEFAULT_MMAP_MAX (0)
1478 } /* end of extern "C" */
1484 #define BOUNDED_N(ptr, sz) (ptr)
1486 #ifndef RETURN_ADDRESS
1487 #define RETURN_ADDRESS(X_) (NULL)
1490 /* On some platforms we can compile internal, not exported functions better.
1491 Let the environment provide a macro and define it to be empty if it
1492 is not available. */
1493 #ifndef internal_function
1494 # define internal_function
1497 /* Forward declarations. */
1498 struct malloc_chunk
;
1499 typedef struct malloc_chunk
* mchunkptr
;
1501 /* Internal routines. */
1505 Void_t
* _int_malloc(mstate
, size_t);
1506 void _int_free(mstate
, Void_t
*);
1507 Void_t
* _int_realloc(mstate
, Void_t
*, size_t);
1508 Void_t
* _int_memalign(mstate
, size_t, size_t);
1509 Void_t
* _int_valloc(mstate
, size_t);
1510 static Void_t
* _int_pvalloc(mstate
, size_t);
1511 /*static Void_t* cALLOc(size_t, size_t);*/
1513 static Void_t
** _int_icalloc(mstate
, size_t, size_t, Void_t
**);
1514 static Void_t
** _int_icomalloc(mstate
, size_t, size_t*, Void_t
**);
1516 static int mTRIm(size_t);
1517 static size_t mUSABLe(Void_t
*);
1518 static void mSTATs(void);
1519 static int mALLOPt(int, int);
1520 static struct mallinfo
mALLINFo(mstate
);
1521 static void malloc_printerr(int action
, const char *str
, void *ptr
);
1523 static Void_t
* internal_function
mem2mem_check(Void_t
*p
, size_t sz
);
1524 static int internal_function
top_check(void);
1525 static void internal_function
munmap_chunk(mchunkptr p
);
1527 static mchunkptr internal_function
mremap_chunk(mchunkptr p
, size_t new_size
);
1530 static Void_t
* malloc_check(size_t sz
, const Void_t
*caller
);
1531 static void free_check(Void_t
* mem
, const Void_t
*caller
);
1532 static Void_t
* realloc_check(Void_t
* oldmem
, size_t bytes
,
1533 const Void_t
*caller
);
1534 static Void_t
* memalign_check(size_t alignment
, size_t bytes
,
1535 const Void_t
*caller
);
1538 # if USE___THREAD || (defined USE_TLS && !defined SHARED)
1539 /* These routines are never needed in this configuration. */
1546 static Void_t
* malloc_starter(size_t sz
, const Void_t
*caller
);
1547 static Void_t
* memalign_starter(size_t aln
, size_t sz
, const Void_t
*caller
);
1548 static void free_starter(Void_t
* mem
, const Void_t
*caller
);
1550 static Void_t
* malloc_atfork(size_t sz
, const Void_t
*caller
);
1551 static void free_atfork(Void_t
* mem
, const Void_t
*caller
);
1556 Void_t
* _int_malloc();
1558 Void_t
* _int_realloc();
1559 Void_t
* _int_memalign();
1560 Void_t
* _int_valloc();
1561 Void_t
* _int_pvalloc();
1562 /*static Void_t* cALLOc();*/
1563 static Void_t
** _int_icalloc();
1564 static Void_t
** _int_icomalloc();
1566 static size_t mUSABLe();
1567 static void mSTATs();
1568 static int mALLOPt();
1569 static struct mallinfo
mALLINFo();
1576 /* ------------- Optional versions of memcopy ---------------- */
1582 Note: memcpy is ONLY invoked with non-overlapping regions,
1583 so the (usually slower) memmove is not needed.
1586 #define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
1587 #define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
1589 #else /* !USE_MEMCPY */
1591 /* Use Duff's device for good zeroing/copying performance. */
1593 #define MALLOC_ZERO(charp, nbytes) \
1595 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
1596 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1598 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1600 case 0: for(;;) { *mzp++ = 0; \
1601 case 7: *mzp++ = 0; \
1602 case 6: *mzp++ = 0; \
1603 case 5: *mzp++ = 0; \
1604 case 4: *mzp++ = 0; \
1605 case 3: *mzp++ = 0; \
1606 case 2: *mzp++ = 0; \
1607 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
1611 #define MALLOC_COPY(dest,src,nbytes) \
1613 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
1614 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
1615 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1617 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1619 case 0: for(;;) { *mcdst++ = *mcsrc++; \
1620 case 7: *mcdst++ = *mcsrc++; \
1621 case 6: *mcdst++ = *mcsrc++; \
1622 case 5: *mcdst++ = *mcsrc++; \
1623 case 4: *mcdst++ = *mcsrc++; \
1624 case 3: *mcdst++ = *mcsrc++; \
1625 case 2: *mcdst++ = *mcsrc++; \
1626 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
1632 /* ------------------ MMAP support ------------------ */
1638 #ifndef LACKS_SYS_MMAN_H
1639 #include <sys/mman.h>
1642 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1643 # define MAP_ANONYMOUS MAP_ANON
1645 #if !defined(MAP_FAILED)
1646 # define MAP_FAILED ((char*)-1)
1649 #ifndef MAP_NORESERVE
1650 # ifdef MAP_AUTORESRV
1651 # define MAP_NORESERVE MAP_AUTORESRV
1653 # define MAP_NORESERVE 0
1658 Nearly all versions of mmap support MAP_ANONYMOUS,
1659 so the following is unlikely to be needed, but is
1660 supplied just in case.
1663 #ifndef MAP_ANONYMOUS
1665 static int dev_zero_fd
= -1; /* Cached file descriptor for /dev/zero. */
1667 #define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
1668 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1669 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
1670 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
1674 #define MMAP(addr, size, prot, flags) \
1675 (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
1680 #endif /* HAVE_MMAP */
1684 ----------------------- Chunk representations -----------------------
1689 This struct declaration is misleading (but accurate and necessary).
1690 It declares a "view" into memory allowing access to necessary
1691 fields at known offsets from a given base. See explanation below.
1694 struct malloc_chunk
{
1696 INTERNAL_SIZE_T prev_size
; /* Size of previous chunk (if free). */
1697 INTERNAL_SIZE_T size
; /* Size in bytes, including overhead. */
1699 struct malloc_chunk
* fd
; /* double links -- used only if free. */
1700 struct malloc_chunk
* bk
;
1705 malloc_chunk details:
1707 (The following includes lightly edited explanations by Colin Plumb.)
1709 Chunks of memory are maintained using a `boundary tag' method as
1710 described in e.g., Knuth or Standish. (See the paper by Paul
1711 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1712 survey of such techniques.) Sizes of free chunks are stored both
1713 in the front of each chunk and at the end. This makes
1714 consolidating fragmented chunks into bigger chunks very fast. The
1715 size fields also hold bits representing whether chunks are free or
1718 An allocated chunk looks like this:
1721 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1722 | Size of previous chunk, if allocated | |
1723 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1724 | Size of chunk, in bytes |M|P|
1725 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1726 | User data starts here... .
1728 . (malloc_usable_size() bytes) .
1730 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1732 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1735 Where "chunk" is the front of the chunk for the purpose of most of
1736 the malloc code, but "mem" is the pointer that is returned to the
1737 user. "Nextchunk" is the beginning of the next contiguous chunk.
1739 Chunks always begin on even word boundries, so the mem portion
1740 (which is returned to the user) is also on an even word boundary, and
1741 thus at least double-word aligned.
1743 Free chunks are stored in circular doubly-linked lists, and look like this:
1745 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1746 | Size of previous chunk |
1747 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1748 `head:' | Size of chunk, in bytes |P|
1749 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1750 | Forward pointer to next chunk in list |
1751 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1752 | Back pointer to previous chunk in list |
1753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1754 | Unused space (may be 0 bytes long) .
1757 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1758 `foot:' | Size of chunk, in bytes |
1759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1761 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1762 chunk size (which is always a multiple of two words), is an in-use
1763 bit for the *previous* chunk. If that bit is *clear*, then the
1764 word before the current chunk size contains the previous chunk
1765 size, and can be used to find the front of the previous chunk.
1766 The very first chunk allocated always has this bit set,
1767 preventing access to non-existent (or non-owned) memory. If
1768 prev_inuse is set for any given chunk, then you CANNOT determine
1769 the size of the previous chunk, and might even get a memory
1770 addressing fault when trying to do so.
1772 Note that the `foot' of the current chunk is actually represented
1773 as the prev_size of the NEXT chunk. This makes it easier to
1774 deal with alignments etc but can be very confusing when trying
1775 to extend or adapt this code.
1777 The two exceptions to all this are
1779 1. The special chunk `top' doesn't bother using the
1780 trailing size field since there is no next contiguous chunk
1781 that would have to index off it. After initialization, `top'
1782 is forced to always exist. If it would become less than
1783 MINSIZE bytes long, it is replenished.
1785 2. Chunks allocated via mmap, which have the second-lowest-order
1786 bit M (IS_MMAPPED) set in their size fields. Because they are
1787 allocated one-by-one, each must contain its own trailing size field.
1792 ---------- Size and alignment checks and conversions ----------
1795 /* conversion from malloc headers to user pointers, and back */
1797 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1798 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1800 /* The smallest possible chunk */
1801 #define MIN_CHUNK_SIZE (sizeof(struct malloc_chunk))
1803 /* The smallest size we can malloc is an aligned minimal chunk */
1806 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1808 /* Check if m has acceptable alignment */
1810 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1814 Check if a request is so large that it would wrap around zero when
1815 padded and aligned. To simplify some other code, the bound is made
1816 low enough so that adding MINSIZE will also not wrap around zero.
1819 #define REQUEST_OUT_OF_RANGE(req) \
1820 ((unsigned long)(req) >= \
1821 (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
1823 /* pad request bytes into a usable size -- internal version */
1825 #define request2size(req) \
1826 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1828 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1830 /* Same, except also perform argument check */
1832 #define checked_request2size(req, sz) \
1833 if (REQUEST_OUT_OF_RANGE(req)) { \
1834 MALLOC_FAILURE_ACTION; \
1837 (sz) = request2size(req);
1840 --------------- Physical chunk operations ---------------
1844 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1845 #define PREV_INUSE 0x1
1847 /* extract inuse bit of previous chunk */
1848 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1851 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1852 #define IS_MMAPPED 0x2
1854 /* check for mmap()'ed chunk */
1855 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1858 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1859 from a non-main arena. This is only set immediately before handing
1860 the chunk to the user, if necessary. */
1861 #define NON_MAIN_ARENA 0x4
1863 /* check for chunk from non-main arena */
1864 #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1868 Bits to mask off when extracting size
1870 Note: IS_MMAPPED is intentionally not masked off from size field in
1871 macros for which mmapped chunks should never be seen. This should
1872 cause helpful core dumps to occur if it is tried by accident by
1873 people extending or adapting this malloc.
1875 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
1877 /* Get size, ignoring use bits */
1878 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1881 /* Ptr to next physical malloc_chunk. */
1882 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~SIZE_BITS) ))
1884 /* Ptr to previous physical malloc_chunk */
1885 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1887 /* Treat space at ptr + offset as a chunk */
1888 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1890 /* extract p's inuse bit */
1892 ((((mchunkptr)(((char*)(p))+((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
1894 /* set/clear chunk as being inuse without otherwise disturbing */
1895 #define set_inuse(p)\
1896 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
1898 #define clear_inuse(p)\
1899 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
1902 /* check/set/clear inuse bits in known places */
1903 #define inuse_bit_at_offset(p, s)\
1904 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1906 #define set_inuse_bit_at_offset(p, s)\
1907 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1909 #define clear_inuse_bit_at_offset(p, s)\
1910 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1913 /* Set size at head, without disturbing its use bit */
1914 #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
1916 /* Set size/use field */
1917 #define set_head(p, s) ((p)->size = (s))
1919 /* Set size at footer (only when chunk is not in use) */
1920 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1924 -------------------- Internal data structures --------------------
1926 All internal state is held in an instance of malloc_state defined
1927 below. There are no other static variables, except in two optional
1929 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1930 * If HAVE_MMAP is true, but mmap doesn't support
1931 MAP_ANONYMOUS, a dummy file descriptor for mmap.
1933 Beware of lots of tricks that minimize the total bookkeeping space
1934 requirements. The result is a little over 1K bytes (for 4byte
1935 pointers and size_t.)
1941 An array of bin headers for free chunks. Each bin is doubly
1942 linked. The bins are approximately proportionally (log) spaced.
1943 There are a lot of these bins (128). This may look excessive, but
1944 works very well in practice. Most bins hold sizes that are
1945 unusual as malloc request sizes, but are more usual for fragments
1946 and consolidated sets of chunks, which is what these bins hold, so
1947 they can be found quickly. All procedures maintain the invariant
1948 that no consolidated chunk physically borders another one, so each
1949 chunk in a list is known to be preceeded and followed by either
1950 inuse chunks or the ends of memory.
1952 Chunks in bins are kept in size order, with ties going to the
1953 approximately least recently used chunk. Ordering isn't needed
1954 for the small bins, which all contain the same-sized chunks, but
1955 facilitates best-fit allocation for larger chunks. These lists
1956 are just sequential. Keeping them in order almost never requires
1957 enough traversal to warrant using fancier ordered data
1960 Chunks of the same size are linked with the most
1961 recently freed at the front, and allocations are taken from the
1962 back. This results in LRU (FIFO) allocation order, which tends
1963 to give each chunk an equal opportunity to be consolidated with
1964 adjacent freed chunks, resulting in larger free chunks and less
1967 To simplify use in double-linked lists, each bin header acts
1968 as a malloc_chunk. This avoids special-casing for headers.
1969 But to conserve space and improve locality, we allocate
1970 only the fd/bk pointers of bins, and then use repositioning tricks
1971 to treat these as the fields of a malloc_chunk*.
1974 typedef struct malloc_chunk
* mbinptr
;
1976 /* addressing -- note that bin_at(0) does not exist */
1977 #define bin_at(m, i) ((mbinptr)((char*)&((m)->bins[(i)<<1]) - (SIZE_SZ<<1)))
1979 /* analog of ++bin */
1980 #define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
1982 /* Reminders about list directionality within bins */
1983 #define first(b) ((b)->fd)
1984 #define last(b) ((b)->bk)
1986 /* Take a chunk off a bin list */
1987 #define unlink(P, BK, FD) { \
1990 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1991 malloc_printerr (check_action, "corrupted double-linked list", P); \
2001 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
2002 8 bytes apart. Larger bins are approximately logarithmically spaced:
2008 4 bins of size 32768
2009 2 bins of size 262144
2010 1 bin of size what's left
2012 There is actually a little bit of slop in the numbers in bin_index
2013 for the sake of speed. This makes no difference elsewhere.
2015 The bins top out around 1MB because we expect to service large
2020 #define NSMALLBINS 64
2021 #define SMALLBIN_WIDTH 8
2022 #define MIN_LARGE_SIZE 512
2024 #define in_smallbin_range(sz) \
2025 ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
2027 #define smallbin_index(sz) (((unsigned)(sz)) >> 3)
2029 #define largebin_index(sz) \
2030 (((((unsigned long)(sz)) >> 6) <= 32)? 56 + (((unsigned long)(sz)) >> 6): \
2031 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
2032 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
2033 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
2034 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
2037 #define bin_index(sz) \
2038 ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
2044 All remainders from chunk splits, as well as all returned chunks,
2045 are first placed in the "unsorted" bin. They are then placed
2046 in regular bins after malloc gives them ONE chance to be used before
2047 binning. So, basically, the unsorted_chunks list acts as a queue,
2048 with chunks being placed on it in free (and malloc_consolidate),
2049 and taken off (to be either used or placed in bins) in malloc.
2051 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
2052 does not have to be taken into account in size comparisons.
2055 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
2056 #define unsorted_chunks(M) (bin_at(M, 1))
2061 The top-most available chunk (i.e., the one bordering the end of
2062 available memory) is treated specially. It is never included in
2063 any bin, is used only if no other chunk is available, and is
2064 released back to the system if it is very large (see
2065 M_TRIM_THRESHOLD). Because top initially
2066 points to its own bin with initial zero size, thus forcing
2067 extension on the first malloc request, we avoid having any special
2068 code in malloc to check whether it even exists yet. But we still
2069 need to do so when getting memory from system, so we make
2070 initial_top treat the bin as a legal but unusable chunk during the
2071 interval between initialization and the first call to
2072 sYSMALLOc. (This is somewhat delicate, since it relies on
2073 the 2 preceding words to be zero during this interval as well.)
2076 /* Conveniently, the unsorted bin can be used as dummy top on first call */
2077 #define initial_top(M) (unsorted_chunks(M))
2082 To help compensate for the large number of bins, a one-level index
2083 structure is used for bin-by-bin searching. `binmap' is a
2084 bitvector recording whether bins are definitely empty so they can
2085 be skipped over during during traversals. The bits are NOT always
2086 cleared as soon as bins are empty, but instead only
2087 when they are noticed to be empty during traversal in malloc.
2090 /* Conservatively use 32 bits per map word, even if on 64bit system */
2091 #define BINMAPSHIFT 5
2092 #define BITSPERMAP (1U << BINMAPSHIFT)
2093 #define BINMAPSIZE (NBINS / BITSPERMAP)
2095 #define idx2block(i) ((i) >> BINMAPSHIFT)
2096 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
2098 #define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
2099 #define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
2100 #define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
2105 An array of lists holding recently freed small chunks. Fastbins
2106 are not doubly linked. It is faster to single-link them, and
2107 since chunks are never removed from the middles of these lists,
2108 double linking is not necessary. Also, unlike regular bins, they
2109 are not even processed in FIFO order (they use faster LIFO) since
2110 ordering doesn't much matter in the transient contexts in which
2111 fastbins are normally used.
2113 Chunks in fastbins keep their inuse bit set, so they cannot
2114 be consolidated with other free chunks. malloc_consolidate
2115 releases all chunks in fastbins and consolidates them with
2119 typedef struct malloc_chunk
* mfastbinptr
;
2121 /* offset 2 to use otherwise unindexable first 2 bins */
2122 #define fastbin_index(sz) ((((unsigned int)(sz)) >> 3) - 2)
2124 /* The maximum fastbin request size we support */
2125 #define MAX_FAST_SIZE 80
2127 #define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
2130 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
2131 that triggers automatic consolidation of possibly-surrounding
2132 fastbin chunks. This is a heuristic, so the exact value should not
2133 matter too much. It is defined at half the default trim threshold as a
2134 compromise heuristic to only attempt consolidation if it is likely
2135 to lead to trimming. However, it is not dynamically tunable, since
2136 consolidation reduces fragmentation surrounding large chunks even
2137 if trimming is not used.
2140 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
2143 Since the lowest 2 bits in max_fast don't matter in size comparisons,
2144 they are used as flags.
2148 FASTCHUNKS_BIT held in max_fast indicates that there are probably
2149 some fastbin chunks. It is set true on entering a chunk into any
2150 fastbin, and cleared only in malloc_consolidate.
2152 The truth value is inverted so that have_fastchunks will be true
2153 upon startup (since statics are zero-filled), simplifying
2154 initialization checks.
2157 #define FASTCHUNKS_BIT (1U)
2159 #define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
2160 #define clear_fastchunks(M) ((M)->flags |= FASTCHUNKS_BIT)
2161 #define set_fastchunks(M) ((M)->flags &= ~FASTCHUNKS_BIT)
2164 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
2165 regions. Otherwise, contiguity is exploited in merging together,
2166 when possible, results from consecutive MORECORE calls.
2168 The initial value comes from MORECORE_CONTIGUOUS, but is
2169 changed dynamically if mmap is ever used as an sbrk substitute.
2172 #define NONCONTIGUOUS_BIT (2U)
2174 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
2175 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
2176 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
2177 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
2180 Set value of max_fast.
2181 Use impossibly small value if 0.
2182 Precondition: there are no existing fastbin chunks.
2183 Setting the value clears fastchunk bit but preserves noncontiguous bit.
2186 #define set_max_fast(s) \
2187 global_max_fast = ((s) == 0)? SMALLBIN_WIDTH: request2size(s)
2188 #define get_max_fast() global_max_fast
2192 ----------- Internal state representation and initialization -----------
2195 struct malloc_state
{
2196 /* Serialize access. */
2199 /* Flags (formerly in max_fast). */
2203 /* Statistics for locking. Only used if THREAD_STATS is defined. */
2204 long stat_lock_direct
, stat_lock_loop
, stat_lock_wait
;
2208 mfastbinptr fastbins
[NFASTBINS
];
2210 /* Base of the topmost chunk -- not otherwise kept in a bin */
2213 /* The remainder from the most recent split of a small request */
2214 mchunkptr last_remainder
;
2216 /* Normal bins packed as described above */
2217 mchunkptr bins
[NBINS
* 2];
2219 /* Bitmap of bins */
2220 unsigned int binmap
[BINMAPSIZE
];
2223 struct malloc_state
*next
;
2225 /* Memory allocated from the system in this arena. */
2226 INTERNAL_SIZE_T system_mem
;
2227 INTERNAL_SIZE_T max_system_mem
;
2231 /* Tunable parameters */
2232 unsigned long trim_threshold
;
2233 INTERNAL_SIZE_T top_pad
;
2234 INTERNAL_SIZE_T mmap_threshold
;
2236 /* Memory map support */
2241 /* Cache malloc_getpagesize */
2242 unsigned int pagesize
;
2245 INTERNAL_SIZE_T mmapped_mem
;
2246 /*INTERNAL_SIZE_T sbrked_mem;*/
2247 /*INTERNAL_SIZE_T max_sbrked_mem;*/
2248 INTERNAL_SIZE_T max_mmapped_mem
;
2249 INTERNAL_SIZE_T max_total_mem
; /* only kept for NO_THREADS */
2251 /* First address handed out by MORECORE/sbrk. */
2255 /* There are several instances of this struct ("arenas") in this
2256 malloc. If you are adapting this malloc in a way that does NOT use
2257 a static or mmapped malloc_state, you MUST explicitly zero-fill it
2258 before using. This malloc relies on the property that malloc_state
2259 is initialized to all zeroes (as is true of C statics). */
2261 static struct malloc_state main_arena
;
2263 /* There is only one instance of the malloc parameters. */
2265 static struct malloc_par mp_
;
2268 /* Maximum size of memory handled in fastbins. */
2269 static INTERNAL_SIZE_T global_max_fast
;
2272 Initialize a malloc_state struct.
2274 This is called only from within malloc_consolidate, which needs
2275 be called in the same contexts anyway. It is never called directly
2276 outside of malloc_consolidate because some optimizing compilers try
2277 to inline it at all call points, which turns out not to be an
2278 optimization at all. (Inlining it in malloc_consolidate is fine though.)
2282 static void malloc_init_state(mstate av
)
2284 static void malloc_init_state(av
) mstate av
;
2290 /* Establish circular links for normal bins */
2291 for (i
= 1; i
< NBINS
; ++i
) {
2293 bin
->fd
= bin
->bk
= bin
;
2296 #if MORECORE_CONTIGUOUS
2297 if (av
!= &main_arena
)
2299 set_noncontiguous(av
);
2300 if (av
== &main_arena
)
2301 set_max_fast(DEFAULT_MXFAST
);
2302 av
->flags
|= FASTCHUNKS_BIT
;
2304 av
->top
= initial_top(av
);
2308 Other internal utilities operating on mstates
2312 static Void_t
* sYSMALLOc(INTERNAL_SIZE_T
, mstate
);
2313 static int sYSTRIm(size_t, mstate
);
2314 static void malloc_consolidate(mstate
);
2316 static Void_t
** iALLOc(mstate
, size_t, size_t*, int, Void_t
**);
2319 static Void_t
* sYSMALLOc();
2320 static int sYSTRIm();
2321 static void malloc_consolidate();
2322 static Void_t
** iALLOc();
2326 /* -------------- Early definitions for debugging hooks ---------------- */
2328 /* Define and initialize the hook variables. These weak definitions must
2329 appear before any use of the variables in a function (arena.c uses one). */
2330 #ifndef weak_variable
2332 #define weak_variable /**/
2334 /* In GNU libc we want the hook variables to be weak definitions to
2335 avoid a problem with Emacs. */
2336 #define weak_variable weak_function
2340 /* Forward declarations. */
2341 static Void_t
* malloc_hook_ini
__MALLOC_P ((size_t sz
,
2342 const __malloc_ptr_t caller
));
2343 static Void_t
* realloc_hook_ini
__MALLOC_P ((Void_t
* ptr
, size_t sz
,
2344 const __malloc_ptr_t caller
));
2345 static Void_t
* memalign_hook_ini
__MALLOC_P ((size_t alignment
, size_t sz
,
2346 const __malloc_ptr_t caller
));
2348 void weak_variable (*__malloc_initialize_hook
) (void) = NULL
;
2349 void weak_variable (*__free_hook
) (__malloc_ptr_t __ptr
,
2350 const __malloc_ptr_t
) = NULL
;
2351 __malloc_ptr_t
weak_variable (*__malloc_hook
)
2352 (size_t __size
, const __malloc_ptr_t
) = malloc_hook_ini
;
2353 __malloc_ptr_t
weak_variable (*__realloc_hook
)
2354 (__malloc_ptr_t __ptr
, size_t __size
, const __malloc_ptr_t
)
2356 __malloc_ptr_t
weak_variable (*__memalign_hook
)
2357 (size_t __alignment
, size_t __size
, const __malloc_ptr_t
)
2358 = memalign_hook_ini
;
2359 void weak_variable (*__after_morecore_hook
) (void) = NULL
;
2362 /* ---------------- Error behavior ------------------------------------ */
2364 #ifndef DEFAULT_CHECK_ACTION
2365 #define DEFAULT_CHECK_ACTION 3
2368 static int check_action
= DEFAULT_CHECK_ACTION
;
2371 /* ------------------ Testing support ----------------------------------*/
2373 static int perturb_byte
;
2375 #define alloc_perturb(p, n) memset (p, (perturb_byte ^ 0xff) & 0xff, n)
2376 #define free_perturb(p, n) memset (p, perturb_byte & 0xff, n)
2379 /* ------------------- Support for multiple arenas -------------------- */
2385 These routines make a number of assertions about the states
2386 of data structures that should be true at all times. If any
2387 are not true, it's very likely that a user program has somehow
2388 trashed memory. (It's also possible that there is a coding error
2389 in malloc. In which case, please report it!)
2394 #define check_chunk(A,P)
2395 #define check_free_chunk(A,P)
2396 #define check_inuse_chunk(A,P)
2397 #define check_remalloced_chunk(A,P,N)
2398 #define check_malloced_chunk(A,P,N)
2399 #define check_malloc_state(A)
2403 #define check_chunk(A,P) do_check_chunk(A,P)
2404 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
2405 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
2406 #define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
2407 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
2408 #define check_malloc_state(A) do_check_malloc_state(A)
2411 Properties of all chunks
2415 static void do_check_chunk(mstate av
, mchunkptr p
)
2417 static void do_check_chunk(av
, p
) mstate av
; mchunkptr p
;
2420 unsigned long sz
= chunksize(p
);
2421 /* min and max possible addresses assuming contiguous allocation */
2422 char* max_address
= (char*)(av
->top
) + chunksize(av
->top
);
2423 char* min_address
= max_address
- av
->system_mem
;
2425 if (!chunk_is_mmapped(p
)) {
2427 /* Has legal address ... */
2429 if (contiguous(av
)) {
2430 assert(((char*)p
) >= min_address
);
2431 assert(((char*)p
+ sz
) <= ((char*)(av
->top
)));
2435 /* top size is always at least MINSIZE */
2436 assert((unsigned long)(sz
) >= MINSIZE
);
2437 /* top predecessor always marked inuse */
2438 assert(prev_inuse(p
));
2444 /* address is outside main heap */
2445 if (contiguous(av
) && av
->top
!= initial_top(av
)) {
2446 assert(((char*)p
) < min_address
|| ((char*)p
) > max_address
);
2448 /* chunk is page-aligned */
2449 assert(((p
->prev_size
+ sz
) & (mp_
.pagesize
-1)) == 0);
2450 /* mem is aligned */
2451 assert(aligned_OK(chunk2mem(p
)));
2453 /* force an appropriate assert violation if debug set */
2454 assert(!chunk_is_mmapped(p
));
2460 Properties of free chunks
2464 static void do_check_free_chunk(mstate av
, mchunkptr p
)
2466 static void do_check_free_chunk(av
, p
) mstate av
; mchunkptr p
;
2469 INTERNAL_SIZE_T sz
= p
->size
& ~(PREV_INUSE
|NON_MAIN_ARENA
);
2470 mchunkptr next
= chunk_at_offset(p
, sz
);
2472 do_check_chunk(av
, p
);
2474 /* Chunk must claim to be free ... */
2476 assert (!chunk_is_mmapped(p
));
2478 /* Unless a special marker, must have OK fields */
2479 if ((unsigned long)(sz
) >= MINSIZE
)
2481 assert((sz
& MALLOC_ALIGN_MASK
) == 0);
2482 assert(aligned_OK(chunk2mem(p
)));
2483 /* ... matching footer field */
2484 assert(next
->prev_size
== sz
);
2485 /* ... and is fully consolidated */
2486 assert(prev_inuse(p
));
2487 assert (next
== av
->top
|| inuse(next
));
2489 /* ... and has minimally sane links */
2490 assert(p
->fd
->bk
== p
);
2491 assert(p
->bk
->fd
== p
);
2493 else /* markers are always of size SIZE_SZ */
2494 assert(sz
== SIZE_SZ
);
2498 Properties of inuse chunks
2502 static void do_check_inuse_chunk(mstate av
, mchunkptr p
)
2504 static void do_check_inuse_chunk(av
, p
) mstate av
; mchunkptr p
;
2509 do_check_chunk(av
, p
);
2511 if (chunk_is_mmapped(p
))
2512 return; /* mmapped chunks have no next/prev */
2514 /* Check whether it claims to be in use ... */
2517 next
= next_chunk(p
);
2519 /* ... and is surrounded by OK chunks.
2520 Since more things can be checked with free chunks than inuse ones,
2521 if an inuse chunk borders them and debug is on, it's worth doing them.
2523 if (!prev_inuse(p
)) {
2524 /* Note that we cannot even look at prev unless it is not inuse */
2525 mchunkptr prv
= prev_chunk(p
);
2526 assert(next_chunk(prv
) == p
);
2527 do_check_free_chunk(av
, prv
);
2530 if (next
== av
->top
) {
2531 assert(prev_inuse(next
));
2532 assert(chunksize(next
) >= MINSIZE
);
2534 else if (!inuse(next
))
2535 do_check_free_chunk(av
, next
);
2539 Properties of chunks recycled from fastbins
2543 static void do_check_remalloced_chunk(mstate av
, mchunkptr p
, INTERNAL_SIZE_T s
)
2545 static void do_check_remalloced_chunk(av
, p
, s
)
2546 mstate av
; mchunkptr p
; INTERNAL_SIZE_T s
;
2549 INTERNAL_SIZE_T sz
= p
->size
& ~(PREV_INUSE
|NON_MAIN_ARENA
);
2551 if (!chunk_is_mmapped(p
)) {
2552 assert(av
== arena_for_chunk(p
));
2553 if (chunk_non_main_arena(p
))
2554 assert(av
!= &main_arena
);
2556 assert(av
== &main_arena
);
2559 do_check_inuse_chunk(av
, p
);
2561 /* Legal size ... */
2562 assert((sz
& MALLOC_ALIGN_MASK
) == 0);
2563 assert((unsigned long)(sz
) >= MINSIZE
);
2564 /* ... and alignment */
2565 assert(aligned_OK(chunk2mem(p
)));
2566 /* chunk is less than MINSIZE more than request */
2567 assert((long)(sz
) - (long)(s
) >= 0);
2568 assert((long)(sz
) - (long)(s
+ MINSIZE
) < 0);
2572 Properties of nonrecycled chunks at the point they are malloced
2576 static void do_check_malloced_chunk(mstate av
, mchunkptr p
, INTERNAL_SIZE_T s
)
2578 static void do_check_malloced_chunk(av
, p
, s
)
2579 mstate av
; mchunkptr p
; INTERNAL_SIZE_T s
;
2582 /* same as recycled case ... */
2583 do_check_remalloced_chunk(av
, p
, s
);
2586 ... plus, must obey implementation invariant that prev_inuse is
2587 always true of any allocated chunk; i.e., that each allocated
2588 chunk borders either a previously allocated and still in-use
2589 chunk, or the base of its memory arena. This is ensured
2590 by making all allocations from the the `lowest' part of any found
2591 chunk. This does not necessarily hold however for chunks
2592 recycled via fastbins.
2595 assert(prev_inuse(p
));
2600 Properties of malloc_state.
2602 This may be useful for debugging malloc, as well as detecting user
2603 programmer errors that somehow write into malloc_state.
2605 If you are extending or experimenting with this malloc, you can
2606 probably figure out how to hack this routine to print out or
2607 display chunk addresses, sizes, bins, and other instrumentation.
2610 static void do_check_malloc_state(mstate av
)
2616 unsigned int binbit
;
2619 INTERNAL_SIZE_T size
;
2620 unsigned long total
= 0;
2623 /* internal size_t must be no wider than pointer type */
2624 assert(sizeof(INTERNAL_SIZE_T
) <= sizeof(char*));
2626 /* alignment is a power of 2 */
2627 assert((MALLOC_ALIGNMENT
& (MALLOC_ALIGNMENT
-1)) == 0);
2629 /* cannot run remaining checks until fully initialized */
2630 if (av
->top
== 0 || av
->top
== initial_top(av
))
2633 /* pagesize is a power of 2 */
2634 assert((mp_
.pagesize
& (mp_
.pagesize
-1)) == 0);
2636 /* A contiguous main_arena is consistent with sbrk_base. */
2637 if (av
== &main_arena
&& contiguous(av
))
2638 assert((char*)mp_
.sbrk_base
+ av
->system_mem
==
2639 (char*)av
->top
+ chunksize(av
->top
));
2641 /* properties of fastbins */
2643 /* max_fast is in allowed range */
2644 assert((get_max_fast () & ~1) <= request2size(MAX_FAST_SIZE
));
2646 max_fast_bin
= fastbin_index(get_max_fast ());
2648 for (i
= 0; i
< NFASTBINS
; ++i
) {
2649 p
= av
->fastbins
[i
];
2651 /* all bins past max_fast are empty */
2652 if (i
> max_fast_bin
)
2656 /* each chunk claims to be inuse */
2657 do_check_inuse_chunk(av
, p
);
2658 total
+= chunksize(p
);
2659 /* chunk belongs in this bin */
2660 assert(fastbin_index(chunksize(p
)) == i
);
2666 assert(have_fastchunks(av
));
2667 else if (!have_fastchunks(av
))
2670 /* check normal bins */
2671 for (i
= 1; i
< NBINS
; ++i
) {
2674 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2676 binbit
= get_binmap(av
,i
);
2677 empty
= last(b
) == b
;
2684 for (p
= last(b
); p
!= b
; p
= p
->bk
) {
2685 /* each chunk claims to be free */
2686 do_check_free_chunk(av
, p
);
2687 size
= chunksize(p
);
2690 /* chunk belongs in bin */
2691 idx
= bin_index(size
);
2693 /* lists are sorted */
2694 assert(p
->bk
== b
||
2695 (unsigned long)chunksize(p
->bk
) >= (unsigned long)chunksize(p
));
2697 /* chunk is followed by a legal chain of inuse chunks */
2698 for (q
= next_chunk(p
);
2699 (q
!= av
->top
&& inuse(q
) &&
2700 (unsigned long)(chunksize(q
)) >= MINSIZE
);
2702 do_check_inuse_chunk(av
, q
);
2706 /* top chunk is OK */
2707 check_chunk(av
, av
->top
);
2709 /* sanity checks for statistics */
2712 assert(total
<= (unsigned long)(mp_
.max_total_mem
));
2713 assert(mp_
.n_mmaps
>= 0);
2715 assert(mp_
.n_mmaps
<= mp_
.n_mmaps_max
);
2716 assert(mp_
.n_mmaps
<= mp_
.max_n_mmaps
);
2718 assert((unsigned long)(av
->system_mem
) <=
2719 (unsigned long)(av
->max_system_mem
));
2721 assert((unsigned long)(mp_
.mmapped_mem
) <=
2722 (unsigned long)(mp_
.max_mmapped_mem
));
2725 assert((unsigned long)(mp_
.max_total_mem
) >=
2726 (unsigned long)(mp_
.mmapped_mem
) + (unsigned long)(av
->system_mem
));
2732 /* ----------------- Support for debugging hooks -------------------- */
2736 /* ----------- Routines dealing with system allocation -------------- */
2739 sysmalloc handles malloc cases requiring more memory from the system.
2740 On entry, it is assumed that av->top does not have enough
2741 space to service request for nb bytes, thus requiring that av->top
2742 be extended or replaced.
2746 static Void_t
* sYSMALLOc(INTERNAL_SIZE_T nb
, mstate av
)
2748 static Void_t
* sYSMALLOc(nb
, av
) INTERNAL_SIZE_T nb
; mstate av
;
2751 mchunkptr old_top
; /* incoming value of av->top */
2752 INTERNAL_SIZE_T old_size
; /* its size */
2753 char* old_end
; /* its end address */
2755 long size
; /* arg to first MORECORE or mmap call */
2756 char* brk
; /* return value from MORECORE */
2758 long correction
; /* arg to 2nd MORECORE call */
2759 char* snd_brk
; /* 2nd return val */
2761 INTERNAL_SIZE_T front_misalign
; /* unusable bytes at front of new space */
2762 INTERNAL_SIZE_T end_misalign
; /* partial page left at end of new space */
2763 char* aligned_brk
; /* aligned offset into brk */
2765 mchunkptr p
; /* the allocated/returned chunk */
2766 mchunkptr remainder
; /* remainder from allocation */
2767 unsigned long remainder_size
; /* its size */
2769 unsigned long sum
; /* for updating stats */
2771 size_t pagemask
= mp_
.pagesize
- 1;
2777 If have mmap, and the request size meets the mmap threshold, and
2778 the system supports mmap, and there are few enough currently
2779 allocated mmapped regions, try to directly map this request
2780 rather than expanding top.
2783 if ((unsigned long)(nb
) >= (unsigned long)(mp_
.mmap_threshold
) &&
2784 (mp_
.n_mmaps
< mp_
.n_mmaps_max
)) {
2786 char* mm
; /* return value from mmap call*/
2789 Round up size to nearest page. For mmapped chunks, the overhead
2790 is one SIZE_SZ unit larger than for normal chunks, because there
2791 is no following chunk whose prev_size field could be used.
2793 size
= (nb
+ SIZE_SZ
+ MALLOC_ALIGN_MASK
+ pagemask
) & ~pagemask
;
2795 /* Don't try if size wraps around 0 */
2796 if ((unsigned long)(size
) > (unsigned long)(nb
)) {
2798 mm
= (char*)(MMAP(0, size
, PROT_READ
|PROT_WRITE
, MAP_PRIVATE
));
2800 if (mm
!= MAP_FAILED
) {
2803 The offset to the start of the mmapped region is stored
2804 in the prev_size field of the chunk. This allows us to adjust
2805 returned start address to meet alignment requirements here
2806 and in memalign(), and still be able to compute proper
2807 address argument for later munmap in free() and realloc().
2810 front_misalign
= (INTERNAL_SIZE_T
)chunk2mem(mm
) & MALLOC_ALIGN_MASK
;
2811 if (front_misalign
> 0) {
2812 correction
= MALLOC_ALIGNMENT
- front_misalign
;
2813 p
= (mchunkptr
)(mm
+ correction
);
2814 p
->prev_size
= correction
;
2815 set_head(p
, (size
- correction
) |IS_MMAPPED
);
2819 set_head(p
, size
|IS_MMAPPED
);
2822 /* update statistics */
2824 if (++mp_
.n_mmaps
> mp_
.max_n_mmaps
)
2825 mp_
.max_n_mmaps
= mp_
.n_mmaps
;
2827 sum
= mp_
.mmapped_mem
+= size
;
2828 if (sum
> (unsigned long)(mp_
.max_mmapped_mem
))
2829 mp_
.max_mmapped_mem
= sum
;
2831 sum
+= av
->system_mem
;
2832 if (sum
> (unsigned long)(mp_
.max_total_mem
))
2833 mp_
.max_total_mem
= sum
;
2838 return chunk2mem(p
);
2844 /* Record incoming configuration of top */
2847 old_size
= chunksize(old_top
);
2848 old_end
= (char*)(chunk_at_offset(old_top
, old_size
));
2850 brk
= snd_brk
= (char*)(MORECORE_FAILURE
);
2853 If not the first time through, we require old_size to be
2854 at least MINSIZE and to have prev_inuse set.
2857 assert((old_top
== initial_top(av
) && old_size
== 0) ||
2858 ((unsigned long) (old_size
) >= MINSIZE
&&
2859 prev_inuse(old_top
) &&
2860 ((unsigned long)old_end
& pagemask
) == 0));
2862 /* Precondition: not enough current space to satisfy nb request */
2863 assert((unsigned long)(old_size
) < (unsigned long)(nb
+ MINSIZE
));
2865 /* Precondition: all fastbins are consolidated */
2866 assert(!have_fastchunks(av
));
2869 if (av
!= &main_arena
) {
2871 heap_info
*old_heap
, *heap
;
2872 size_t old_heap_size
;
2874 /* First try to extend the current heap. */
2875 old_heap
= heap_for_ptr(old_top
);
2876 old_heap_size
= old_heap
->size
;
2877 if (grow_heap(old_heap
, MINSIZE
+ nb
- old_size
) == 0) {
2878 av
->system_mem
+= old_heap
->size
- old_heap_size
;
2879 arena_mem
+= old_heap
->size
- old_heap_size
;
2881 if(mmapped_mem
+ arena_mem
+ sbrked_mem
> max_total_mem
)
2882 max_total_mem
= mmapped_mem
+ arena_mem
+ sbrked_mem
;
2884 set_head(old_top
, (((char *)old_heap
+ old_heap
->size
) - (char *)old_top
)
2887 else if ((heap
= new_heap(nb
+ (MINSIZE
+ sizeof(*heap
)), mp_
.top_pad
))) {
2888 /* Use a newly allocated heap. */
2890 heap
->prev
= old_heap
;
2891 av
->system_mem
+= heap
->size
;
2892 arena_mem
+= heap
->size
;
2894 if((unsigned long)(mmapped_mem
+ arena_mem
+ sbrked_mem
) > max_total_mem
)
2895 max_total_mem
= mmapped_mem
+ arena_mem
+ sbrked_mem
;
2897 /* Set up the new top. */
2898 top(av
) = chunk_at_offset(heap
, sizeof(*heap
));
2899 set_head(top(av
), (heap
->size
- sizeof(*heap
)) | PREV_INUSE
);
2901 /* Setup fencepost and free the old top chunk. */
2902 /* The fencepost takes at least MINSIZE bytes, because it might
2903 become the top chunk again later. Note that a footer is set
2904 up, too, although the chunk is marked in use. */
2905 old_size
-= MINSIZE
;
2906 set_head(chunk_at_offset(old_top
, old_size
+ 2*SIZE_SZ
), 0|PREV_INUSE
);
2907 if (old_size
>= MINSIZE
) {
2908 set_head(chunk_at_offset(old_top
, old_size
), (2*SIZE_SZ
)|PREV_INUSE
);
2909 set_foot(chunk_at_offset(old_top
, old_size
), (2*SIZE_SZ
));
2910 set_head(old_top
, old_size
|PREV_INUSE
|NON_MAIN_ARENA
);
2911 _int_free(av
, chunk2mem(old_top
));
2913 set_head(old_top
, (old_size
+ 2*SIZE_SZ
)|PREV_INUSE
);
2914 set_foot(old_top
, (old_size
+ 2*SIZE_SZ
));
2918 } else { /* av == main_arena */
2921 /* Request enough space for nb + pad + overhead */
2923 size
= nb
+ mp_
.top_pad
+ MINSIZE
;
2926 If contiguous, we can subtract out existing space that we hope to
2927 combine with new space. We add it back later only if
2928 we don't actually get contiguous space.
2935 Round to a multiple of page size.
2936 If MORECORE is not contiguous, this ensures that we only call it
2937 with whole-page arguments. And if MORECORE is contiguous and
2938 this is not first time through, this preserves page-alignment of
2939 previous calls. Otherwise, we correct to page-align below.
2942 size
= (size
+ pagemask
) & ~pagemask
;
2945 Don't try to call MORECORE if argument is so big as to appear
2946 negative. Note that since mmap takes size_t arg, it may succeed
2947 below even if we cannot call MORECORE.
2951 brk
= (char*)(MORECORE(size
));
2953 if (brk
!= (char*)(MORECORE_FAILURE
)) {
2954 /* Call the `morecore' hook if necessary. */
2955 if (__after_morecore_hook
)
2956 (*__after_morecore_hook
) ();
2959 If have mmap, try using it as a backup when MORECORE fails or
2960 cannot be used. This is worth doing on systems that have "holes" in
2961 address space, so sbrk cannot extend to give contiguous space, but
2962 space is available elsewhere. Note that we ignore mmap max count
2963 and threshold limits, since the space will not be used as a
2964 segregated mmap region.
2968 /* Cannot merge with old top, so add its size back in */
2970 size
= (size
+ old_size
+ pagemask
) & ~pagemask
;
2972 /* If we are relying on mmap as backup, then use larger units */
2973 if ((unsigned long)(size
) < (unsigned long)(MMAP_AS_MORECORE_SIZE
))
2974 size
= MMAP_AS_MORECORE_SIZE
;
2976 /* Don't try if size wraps around 0 */
2977 if ((unsigned long)(size
) > (unsigned long)(nb
)) {
2979 char *mbrk
= (char*)(MMAP(0, size
, PROT_READ
|PROT_WRITE
, MAP_PRIVATE
));
2981 if (mbrk
!= MAP_FAILED
) {
2983 /* We do not need, and cannot use, another sbrk call to find end */
2985 snd_brk
= brk
+ size
;
2988 Record that we no longer have a contiguous sbrk region.
2989 After the first time mmap is used as backup, we do not
2990 ever rely on contiguous space since this could incorrectly
2993 set_noncontiguous(av
);
2999 if (brk
!= (char*)(MORECORE_FAILURE
)) {
3000 if (mp_
.sbrk_base
== 0)
3001 mp_
.sbrk_base
= brk
;
3002 av
->system_mem
+= size
;
3005 If MORECORE extends previous space, we can likewise extend top size.
3008 if (brk
== old_end
&& snd_brk
== (char*)(MORECORE_FAILURE
))
3009 set_head(old_top
, (size
+ old_size
) | PREV_INUSE
);
3011 else if (contiguous(av
) && old_size
&& brk
< old_end
) {
3012 /* Oops! Someone else killed our space.. Can't touch anything. */
3017 Otherwise, make adjustments:
3019 * If the first time through or noncontiguous, we need to call sbrk
3020 just to find out where the end of memory lies.
3022 * We need to ensure that all returned chunks from malloc will meet
3025 * If there was an intervening foreign sbrk, we need to adjust sbrk
3026 request size to account for fact that we will not be able to
3027 combine new space with existing space in old_top.
3029 * Almost all systems internally allocate whole pages at a time, in
3030 which case we might as well use the whole last page of request.
3031 So we allocate enough more memory to hit a page boundary now,
3032 which in turn causes future contiguous calls to page-align.
3041 /* handle contiguous cases */
3042 if (contiguous(av
)) {
3044 /* Count foreign sbrk as system_mem. */
3046 av
->system_mem
+= brk
- old_end
;
3048 /* Guarantee alignment of first new chunk made from this space */
3050 front_misalign
= (INTERNAL_SIZE_T
)chunk2mem(brk
) & MALLOC_ALIGN_MASK
;
3051 if (front_misalign
> 0) {
3054 Skip over some bytes to arrive at an aligned position.
3055 We don't need to specially mark these wasted front bytes.
3056 They will never be accessed anyway because
3057 prev_inuse of av->top (and any chunk created from its start)
3058 is always true after initialization.
3061 correction
= MALLOC_ALIGNMENT
- front_misalign
;
3062 aligned_brk
+= correction
;
3066 If this isn't adjacent to existing space, then we will not
3067 be able to merge with old_top space, so must add to 2nd request.
3070 correction
+= old_size
;
3072 /* Extend the end address to hit a page boundary */
3073 end_misalign
= (INTERNAL_SIZE_T
)(brk
+ size
+ correction
);
3074 correction
+= ((end_misalign
+ pagemask
) & ~pagemask
) - end_misalign
;
3076 assert(correction
>= 0);
3077 snd_brk
= (char*)(MORECORE(correction
));
3080 If can't allocate correction, try to at least find out current
3081 brk. It might be enough to proceed without failing.
3083 Note that if second sbrk did NOT fail, we assume that space
3084 is contiguous with first sbrk. This is a safe assumption unless
3085 program is multithreaded but doesn't use locks and a foreign sbrk
3086 occurred between our first and second calls.
3089 if (snd_brk
== (char*)(MORECORE_FAILURE
)) {
3091 snd_brk
= (char*)(MORECORE(0));
3093 /* Call the `morecore' hook if necessary. */
3094 if (__after_morecore_hook
)
3095 (*__after_morecore_hook
) ();
3098 /* handle non-contiguous cases */
3100 /* MORECORE/mmap must correctly align */
3101 assert(((unsigned long)chunk2mem(brk
) & MALLOC_ALIGN_MASK
) == 0);
3103 /* Find out current end of memory */
3104 if (snd_brk
== (char*)(MORECORE_FAILURE
)) {
3105 snd_brk
= (char*)(MORECORE(0));
3109 /* Adjust top based on results of second sbrk */
3110 if (snd_brk
!= (char*)(MORECORE_FAILURE
)) {
3111 av
->top
= (mchunkptr
)aligned_brk
;
3112 set_head(av
->top
, (snd_brk
- aligned_brk
+ correction
) | PREV_INUSE
);
3113 av
->system_mem
+= correction
;
3116 If not the first time through, we either have a
3117 gap due to foreign sbrk or a non-contiguous region. Insert a
3118 double fencepost at old_top to prevent consolidation with space
3119 we don't own. These fenceposts are artificial chunks that are
3120 marked as inuse and are in any case too small to use. We need
3121 two to make sizes and alignments work out.
3124 if (old_size
!= 0) {
3126 Shrink old_top to insert fenceposts, keeping size a
3127 multiple of MALLOC_ALIGNMENT. We know there is at least
3128 enough space in old_top to do this.
3130 old_size
= (old_size
- 4*SIZE_SZ
) & ~MALLOC_ALIGN_MASK
;
3131 set_head(old_top
, old_size
| PREV_INUSE
);
3134 Note that the following assignments completely overwrite
3135 old_top when old_size was previously MINSIZE. This is
3136 intentional. We need the fencepost, even if old_top otherwise gets
3139 chunk_at_offset(old_top
, old_size
)->size
=
3140 (2*SIZE_SZ
)|PREV_INUSE
;
3142 chunk_at_offset(old_top
, old_size
+ 2*SIZE_SZ
)->size
=
3143 (2*SIZE_SZ
)|PREV_INUSE
;
3145 /* If possible, release the rest. */
3146 if (old_size
>= MINSIZE
) {
3147 _int_free(av
, chunk2mem(old_top
));
3154 /* Update statistics */
3156 sum
= av
->system_mem
+ mp_
.mmapped_mem
;
3157 if (sum
> (unsigned long)(mp_
.max_total_mem
))
3158 mp_
.max_total_mem
= sum
;
3163 } /* if (av != &main_arena) */
3165 if ((unsigned long)av
->system_mem
> (unsigned long)(av
->max_system_mem
))
3166 av
->max_system_mem
= av
->system_mem
;
3167 check_malloc_state(av
);
3169 /* finally, do the allocation */
3171 size
= chunksize(p
);
3173 /* check that one of the above allocation paths succeeded */
3174 if ((unsigned long)(size
) >= (unsigned long)(nb
+ MINSIZE
)) {
3175 remainder_size
= size
- nb
;
3176 remainder
= chunk_at_offset(p
, nb
);
3177 av
->top
= remainder
;
3178 set_head(p
, nb
| PREV_INUSE
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
3179 set_head(remainder
, remainder_size
| PREV_INUSE
);
3180 check_malloced_chunk(av
, p
, nb
);
3181 return chunk2mem(p
);
3184 /* catch all failure paths */
3185 MALLOC_FAILURE_ACTION
;
3191 sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back
3192 to the system (via negative arguments to sbrk) if there is unused
3193 memory at the `high' end of the malloc pool. It is called
3194 automatically by free() when top space exceeds the trim
3195 threshold. It is also called by the public malloc_trim routine. It
3196 returns 1 if it actually released any memory, else 0.
3200 static int sYSTRIm(size_t pad
, mstate av
)
3202 static int sYSTRIm(pad
, av
) size_t pad
; mstate av
;
3205 long top_size
; /* Amount of top-most memory */
3206 long extra
; /* Amount to release */
3207 long released
; /* Amount actually released */
3208 char* current_brk
; /* address returned by pre-check sbrk call */
3209 char* new_brk
; /* address returned by post-check sbrk call */
3212 pagesz
= mp_
.pagesize
;
3213 top_size
= chunksize(av
->top
);
3215 /* Release in pagesize units, keeping at least one page */
3216 extra
= ((top_size
- pad
- MINSIZE
+ (pagesz
-1)) / pagesz
- 1) * pagesz
;
3221 Only proceed if end of memory is where we last set it.
3222 This avoids problems if there were foreign sbrk calls.
3224 current_brk
= (char*)(MORECORE(0));
3225 if (current_brk
== (char*)(av
->top
) + top_size
) {
3228 Attempt to release memory. We ignore MORECORE return value,
3229 and instead call again to find out where new end of memory is.
3230 This avoids problems if first call releases less than we asked,
3231 of if failure somehow altered brk value. (We could still
3232 encounter problems if it altered brk in some very bad way,
3233 but the only thing we can do is adjust anyway, which will cause
3234 some downstream failure.)
3238 /* Call the `morecore' hook if necessary. */
3239 if (__after_morecore_hook
)
3240 (*__after_morecore_hook
) ();
3241 new_brk
= (char*)(MORECORE(0));
3243 if (new_brk
!= (char*)MORECORE_FAILURE
) {
3244 released
= (long)(current_brk
- new_brk
);
3246 if (released
!= 0) {
3247 /* Success. Adjust top. */
3248 av
->system_mem
-= released
;
3249 set_head(av
->top
, (top_size
- released
) | PREV_INUSE
);
3250 check_malloc_state(av
);
3264 munmap_chunk(mchunkptr p
)
3266 munmap_chunk(p
) mchunkptr p
;
3269 INTERNAL_SIZE_T size
= chunksize(p
);
3271 assert (chunk_is_mmapped(p
));
3273 assert(! ((char*)p
>= mp_
.sbrk_base
&& (char*)p
< mp_
.sbrk_base
+ mp_
.sbrked_mem
));
3274 assert((mp_
.n_mmaps
> 0));
3277 uintptr_t block
= (uintptr_t) p
- p
->prev_size
;
3278 size_t total_size
= p
->prev_size
+ size
;
3279 /* Unfortunately we have to do the compilers job by hand here. Normally
3280 we would test BLOCK and TOTAL-SIZE separately for compliance with the
3281 page size. But gcc does not recognize the optimization possibility
3282 (in the moment at least) so we combine the two values into one before
3284 if (__builtin_expect (((block
| total_size
) & (mp_
.pagesize
- 1)) != 0, 0))
3286 malloc_printerr (check_action
, "munmap_chunk(): invalid pointer",
3292 mp_
.mmapped_mem
-= total_size
;
3294 int ret
__attribute__ ((unused
)) = munmap((char *)block
, total_size
);
3296 /* munmap returns non-zero on failure */
3305 mremap_chunk(mchunkptr p
, size_t new_size
)
3307 mremap_chunk(p
, new_size
) mchunkptr p
; size_t new_size
;
3310 size_t page_mask
= mp_
.pagesize
- 1;
3311 INTERNAL_SIZE_T offset
= p
->prev_size
;
3312 INTERNAL_SIZE_T size
= chunksize(p
);
3315 assert (chunk_is_mmapped(p
));
3317 assert(! ((char*)p
>= mp_
.sbrk_base
&& (char*)p
< mp_
.sbrk_base
+ mp_
.sbrked_mem
));
3318 assert((mp_
.n_mmaps
> 0));
3320 assert(((size
+ offset
) & (mp_
.pagesize
-1)) == 0);
3322 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
3323 new_size
= (new_size
+ offset
+ SIZE_SZ
+ page_mask
) & ~page_mask
;
3325 cp
= (char *)mremap((char *)p
- offset
, size
+ offset
, new_size
,
3328 if (cp
== MAP_FAILED
) return 0;
3330 p
= (mchunkptr
)(cp
+ offset
);
3332 assert(aligned_OK(chunk2mem(p
)));
3334 assert((p
->prev_size
== offset
));
3335 set_head(p
, (new_size
- offset
)|IS_MMAPPED
);
3337 mp_
.mmapped_mem
-= size
+ offset
;
3338 mp_
.mmapped_mem
+= new_size
;
3339 if ((unsigned long)mp_
.mmapped_mem
> (unsigned long)mp_
.max_mmapped_mem
)
3340 mp_
.max_mmapped_mem
= mp_
.mmapped_mem
;
3342 if ((unsigned long)(mp_
.mmapped_mem
+ arena_mem
+ main_arena
.system_mem
) >
3344 mp_
.max_total_mem
= mp_
.mmapped_mem
+ arena_mem
+ main_arena
.system_mem
;
3349 #endif /* HAVE_MREMAP */
3351 #endif /* HAVE_MMAP */
3353 /*------------------------ Public wrappers. --------------------------------*/
3356 public_mALLOc(size_t bytes
)
3361 __malloc_ptr_t (*hook
) (size_t, __const __malloc_ptr_t
) = __malloc_hook
;
3363 return (*hook
)(bytes
, RETURN_ADDRESS (0));
3365 arena_get(ar_ptr
, bytes
);
3368 victim
= _int_malloc(ar_ptr
, bytes
);
3370 /* Maybe the failure is due to running out of mmapped areas. */
3371 if(ar_ptr
!= &main_arena
) {
3372 (void)mutex_unlock(&ar_ptr
->mutex
);
3373 (void)mutex_lock(&main_arena
.mutex
);
3374 victim
= _int_malloc(&main_arena
, bytes
);
3375 (void)mutex_unlock(&main_arena
.mutex
);
3378 /* ... or sbrk() has failed and there is still a chance to mmap() */
3379 ar_ptr
= arena_get2(ar_ptr
->next
? ar_ptr
: 0, bytes
);
3380 (void)mutex_unlock(&main_arena
.mutex
);
3382 victim
= _int_malloc(ar_ptr
, bytes
);
3383 (void)mutex_unlock(&ar_ptr
->mutex
);
3388 (void)mutex_unlock(&ar_ptr
->mutex
);
3389 assert(!victim
|| chunk_is_mmapped(mem2chunk(victim
)) ||
3390 ar_ptr
== arena_for_chunk(mem2chunk(victim
)));
3393 #ifdef libc_hidden_def
3394 libc_hidden_def(public_mALLOc
)
3398 public_fREe(Void_t
* mem
)
3401 mchunkptr p
; /* chunk corresponding to mem */
3403 void (*hook
) (__malloc_ptr_t
, __const __malloc_ptr_t
) = __free_hook
;
3405 (*hook
)(mem
, RETURN_ADDRESS (0));
3409 if (mem
== 0) /* free(0) has no effect */
3415 if (chunk_is_mmapped(p
)) /* release mmapped memory. */
3422 ar_ptr
= arena_for_chunk(p
);
3424 if(!mutex_trylock(&ar_ptr
->mutex
))
3425 ++(ar_ptr
->stat_lock_direct
);
3427 (void)mutex_lock(&ar_ptr
->mutex
);
3428 ++(ar_ptr
->stat_lock_wait
);
3431 (void)mutex_lock(&ar_ptr
->mutex
);
3433 _int_free(ar_ptr
, mem
);
3434 (void)mutex_unlock(&ar_ptr
->mutex
);
3436 #ifdef libc_hidden_def
3437 libc_hidden_def (public_fREe
)
3441 public_rEALLOc(Void_t
* oldmem
, size_t bytes
)
3444 INTERNAL_SIZE_T nb
; /* padded request size */
3446 mchunkptr oldp
; /* chunk corresponding to oldmem */
3447 INTERNAL_SIZE_T oldsize
; /* its size */
3449 Void_t
* newp
; /* chunk to return */
3451 __malloc_ptr_t (*hook
) (__malloc_ptr_t
, size_t, __const __malloc_ptr_t
) =
3454 return (*hook
)(oldmem
, bytes
, RETURN_ADDRESS (0));
3456 #if REALLOC_ZERO_BYTES_FREES
3457 if (bytes
== 0 && oldmem
!= NULL
) { public_fREe(oldmem
); return 0; }
3460 /* realloc of null is supposed to be same as malloc */
3461 if (oldmem
== 0) return public_mALLOc(bytes
);
3463 oldp
= mem2chunk(oldmem
);
3464 oldsize
= chunksize(oldp
);
3466 /* Little security check which won't hurt performance: the
3467 allocator never wrapps around at the end of the address space.
3468 Therefore we can exclude some size values which might appear
3469 here by accident or by "design" from some intruder. */
3470 if (__builtin_expect ((uintptr_t) oldp
> (uintptr_t) -oldsize
, 0)
3471 || __builtin_expect ((uintptr_t) oldp
& MALLOC_ALIGN_MASK
, 0))
3473 malloc_printerr (check_action
, "realloc(): invalid pointer", oldmem
);
3477 checked_request2size(bytes
, nb
);
3480 if (chunk_is_mmapped(oldp
))
3485 newp
= mremap_chunk(oldp
, nb
);
3486 if(newp
) return chunk2mem(newp
);
3488 /* Note the extra SIZE_SZ overhead. */
3489 if(oldsize
- SIZE_SZ
>= nb
) return oldmem
; /* do nothing */
3490 /* Must alloc, copy, free. */
3491 newmem
= public_mALLOc(bytes
);
3492 if (newmem
== 0) return 0; /* propagate failure */
3493 MALLOC_COPY(newmem
, oldmem
, oldsize
- 2*SIZE_SZ
);
3499 ar_ptr
= arena_for_chunk(oldp
);
3501 if(!mutex_trylock(&ar_ptr
->mutex
))
3502 ++(ar_ptr
->stat_lock_direct
);
3504 (void)mutex_lock(&ar_ptr
->mutex
);
3505 ++(ar_ptr
->stat_lock_wait
);
3508 (void)mutex_lock(&ar_ptr
->mutex
);
3512 /* As in malloc(), remember this arena for the next allocation. */
3513 tsd_setspecific(arena_key
, (Void_t
*)ar_ptr
);
3516 newp
= _int_realloc(ar_ptr
, oldmem
, bytes
);
3518 (void)mutex_unlock(&ar_ptr
->mutex
);
3519 assert(!newp
|| chunk_is_mmapped(mem2chunk(newp
)) ||
3520 ar_ptr
== arena_for_chunk(mem2chunk(newp
)));
3523 #ifdef libc_hidden_def
3524 libc_hidden_def (public_rEALLOc
)
3528 public_mEMALIGn(size_t alignment
, size_t bytes
)
3533 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, size_t,
3534 __const __malloc_ptr_t
)) =
3537 return (*hook
)(alignment
, bytes
, RETURN_ADDRESS (0));
3539 /* If need less alignment than we give anyway, just relay to malloc */
3540 if (alignment
<= MALLOC_ALIGNMENT
) return public_mALLOc(bytes
);
3542 /* Otherwise, ensure that it is at least a minimum chunk size */
3543 if (alignment
< MINSIZE
) alignment
= MINSIZE
;
3545 arena_get(ar_ptr
, bytes
+ alignment
+ MINSIZE
);
3548 p
= _int_memalign(ar_ptr
, alignment
, bytes
);
3549 (void)mutex_unlock(&ar_ptr
->mutex
);
3551 /* Maybe the failure is due to running out of mmapped areas. */
3552 if(ar_ptr
!= &main_arena
) {
3553 (void)mutex_lock(&main_arena
.mutex
);
3554 p
= _int_memalign(&main_arena
, alignment
, bytes
);
3555 (void)mutex_unlock(&main_arena
.mutex
);
3558 /* ... or sbrk() has failed and there is still a chance to mmap() */
3559 ar_ptr
= arena_get2(ar_ptr
->next
? ar_ptr
: 0, bytes
);
3561 p
= _int_memalign(ar_ptr
, alignment
, bytes
);
3562 (void)mutex_unlock(&ar_ptr
->mutex
);
3567 assert(!p
|| chunk_is_mmapped(mem2chunk(p
)) ||
3568 ar_ptr
== arena_for_chunk(mem2chunk(p
)));
3571 #ifdef libc_hidden_def
3572 libc_hidden_def (public_mEMALIGn
)
3576 public_vALLOc(size_t bytes
)
3581 if(__malloc_initialized
< 0)
3584 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, size_t,
3585 __const __malloc_ptr_t
)) =
3588 return (*hook
)(mp_
.pagesize
, bytes
, RETURN_ADDRESS (0));
3590 arena_get(ar_ptr
, bytes
+ mp_
.pagesize
+ MINSIZE
);
3593 p
= _int_valloc(ar_ptr
, bytes
);
3594 (void)mutex_unlock(&ar_ptr
->mutex
);
3599 public_pVALLOc(size_t bytes
)
3604 if(__malloc_initialized
< 0)
3607 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, size_t,
3608 __const __malloc_ptr_t
)) =
3611 return (*hook
)(mp_
.pagesize
,
3612 (bytes
+ mp_
.pagesize
- 1) & ~(mp_
.pagesize
- 1),
3613 RETURN_ADDRESS (0));
3615 arena_get(ar_ptr
, bytes
+ 2*mp_
.pagesize
+ MINSIZE
);
3616 p
= _int_pvalloc(ar_ptr
, bytes
);
3617 (void)mutex_unlock(&ar_ptr
->mutex
);
3622 public_cALLOc(size_t n
, size_t elem_size
)
3625 mchunkptr oldtop
, p
;
3626 INTERNAL_SIZE_T bytes
, sz
, csz
, oldtopsize
;
3628 unsigned long clearsize
;
3629 unsigned long nclears
;
3631 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, __const __malloc_ptr_t
)) =
3634 /* size_t is unsigned so the behavior on overflow is defined. */
3635 bytes
= n
* elem_size
;
3636 #define HALF_INTERNAL_SIZE_T \
3637 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3638 if (__builtin_expect ((n
| elem_size
) >= HALF_INTERNAL_SIZE_T
, 0)) {
3639 if (elem_size
!= 0 && bytes
/ elem_size
!= n
) {
3640 MALLOC_FAILURE_ACTION
;
3647 mem
= (*hook
)(sz
, RETURN_ADDRESS (0));
3651 return memset(mem
, 0, sz
);
3653 while(sz
> 0) ((char*)mem
)[--sz
] = 0; /* rather inefficient */
3664 /* Check if we hand out the top chunk, in which case there may be no
3668 oldtopsize
= chunksize(top(av
));
3669 #if MORECORE_CLEARS < 2
3670 /* Only newly allocated memory is guaranteed to be cleared. */
3671 if (av
== &main_arena
&&
3672 oldtopsize
< mp_
.sbrk_base
+ av
->max_system_mem
- (char *)oldtop
)
3673 oldtopsize
= (mp_
.sbrk_base
+ av
->max_system_mem
- (char *)oldtop
);
3676 mem
= _int_malloc(av
, sz
);
3678 /* Only clearing follows, so we can unlock early. */
3679 (void)mutex_unlock(&av
->mutex
);
3681 assert(!mem
|| chunk_is_mmapped(mem2chunk(mem
)) ||
3682 av
== arena_for_chunk(mem2chunk(mem
)));
3685 /* Maybe the failure is due to running out of mmapped areas. */
3686 if(av
!= &main_arena
) {
3687 (void)mutex_lock(&main_arena
.mutex
);
3688 mem
= _int_malloc(&main_arena
, sz
);
3689 (void)mutex_unlock(&main_arena
.mutex
);
3692 /* ... or sbrk() has failed and there is still a chance to mmap() */
3693 (void)mutex_lock(&main_arena
.mutex
);
3694 av
= arena_get2(av
->next
? av
: 0, sz
);
3695 (void)mutex_unlock(&main_arena
.mutex
);
3697 mem
= _int_malloc(av
, sz
);
3698 (void)mutex_unlock(&av
->mutex
);
3702 if (mem
== 0) return 0;
3706 /* Two optional cases in which clearing not necessary */
3708 if (chunk_is_mmapped (p
))
3710 if (__builtin_expect (perturb_byte
, 0))
3711 MALLOC_ZERO (mem
, sz
);
3719 if (perturb_byte
== 0 && (p
== oldtop
&& csz
> oldtopsize
)) {
3720 /* clear only the bytes from non-freshly-sbrked memory */
3725 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3726 contents have an odd number of INTERNAL_SIZE_T-sized words;
3728 d
= (INTERNAL_SIZE_T
*)mem
;
3729 clearsize
= csz
- SIZE_SZ
;
3730 nclears
= clearsize
/ sizeof(INTERNAL_SIZE_T
);
3731 assert(nclears
>= 3);
3734 MALLOC_ZERO(d
, clearsize
);
3760 public_iCALLOc(size_t n
, size_t elem_size
, Void_t
** chunks
)
3765 arena_get(ar_ptr
, n
*elem_size
);
3769 m
= _int_icalloc(ar_ptr
, n
, elem_size
, chunks
);
3770 (void)mutex_unlock(&ar_ptr
->mutex
);
3775 public_iCOMALLOc(size_t n
, size_t sizes
[], Void_t
** chunks
)
3780 arena_get(ar_ptr
, 0);
3784 m
= _int_icomalloc(ar_ptr
, n
, sizes
, chunks
);
3785 (void)mutex_unlock(&ar_ptr
->mutex
);
3790 public_cFREe(Void_t
* m
)
3798 public_mTRIm(size_t s
)
3802 if(__malloc_initialized
< 0)
3804 (void)mutex_lock(&main_arena
.mutex
);
3806 (void)mutex_unlock(&main_arena
.mutex
);
3811 public_mUSABLe(Void_t
* m
)
3815 result
= mUSABLe(m
);
3825 struct mallinfo
public_mALLINFo()
3829 if(__malloc_initialized
< 0)
3831 (void)mutex_lock(&main_arena
.mutex
);
3832 m
= mALLINFo(&main_arena
);
3833 (void)mutex_unlock(&main_arena
.mutex
);
3838 public_mALLOPt(int p
, int v
)
3841 result
= mALLOPt(p
, v
);
3846 ------------------------------ malloc ------------------------------
3850 _int_malloc(mstate av
, size_t bytes
)
3852 INTERNAL_SIZE_T nb
; /* normalized request size */
3853 unsigned int idx
; /* associated bin index */
3854 mbinptr bin
; /* associated bin */
3855 mfastbinptr
* fb
; /* associated fastbin */
3857 mchunkptr victim
; /* inspected/selected chunk */
3858 INTERNAL_SIZE_T size
; /* its size */
3859 int victim_index
; /* its bin index */
3861 mchunkptr remainder
; /* remainder from a split */
3862 unsigned long remainder_size
; /* its size */
3864 unsigned int block
; /* bit map traverser */
3865 unsigned int bit
; /* bit map traverser */
3866 unsigned int map
; /* current word of binmap */
3868 mchunkptr fwd
; /* misc temp for linking */
3869 mchunkptr bck
; /* misc temp for linking */
3872 Convert request size to internal form by adding SIZE_SZ bytes
3873 overhead plus possibly more to obtain necessary alignment and/or
3874 to obtain a size of at least MINSIZE, the smallest allocatable
3875 size. Also, checked_request2size traps (returning 0) request sizes
3876 that are so large that they wrap around zero when padded and
3880 checked_request2size(bytes
, nb
);
3883 If the size qualifies as a fastbin, first check corresponding bin.
3884 This code is safe to execute even if av is not yet initialized, so we
3885 can try it without checking, which saves some time on this fast path.
3888 if ((unsigned long)(nb
) <= (unsigned long)(get_max_fast ())) {
3889 long int idx
= fastbin_index(nb
);
3890 fb
= &(av
->fastbins
[idx
]);
3891 if ( (victim
= *fb
) != 0) {
3892 if (__builtin_expect (fastbin_index (chunksize (victim
)) != idx
, 0))
3893 malloc_printerr (check_action
, "malloc(): memory corruption (fast)",
3894 chunk2mem (victim
));
3896 check_remalloced_chunk(av
, victim
, nb
);
3897 void *p
= chunk2mem(victim
);
3898 if (__builtin_expect (perturb_byte
, 0))
3899 alloc_perturb (p
, bytes
);
3905 If a small request, check regular bin. Since these "smallbins"
3906 hold one size each, no searching within bins is necessary.
3907 (For a large request, we need to wait until unsorted chunks are
3908 processed to find best fit. But for small ones, fits are exact
3909 anyway, so we can check now, which is faster.)
3912 if (in_smallbin_range(nb
)) {
3913 idx
= smallbin_index(nb
);
3914 bin
= bin_at(av
,idx
);
3916 if ( (victim
= last(bin
)) != bin
) {
3917 if (victim
== 0) /* initialization check */
3918 malloc_consolidate(av
);
3921 set_inuse_bit_at_offset(victim
, nb
);
3925 if (av
!= &main_arena
)
3926 victim
->size
|= NON_MAIN_ARENA
;
3927 check_malloced_chunk(av
, victim
, nb
);
3928 void *p
= chunk2mem(victim
);
3929 if (__builtin_expect (perturb_byte
, 0))
3930 alloc_perturb (p
, bytes
);
3937 If this is a large request, consolidate fastbins before continuing.
3938 While it might look excessive to kill all fastbins before
3939 even seeing if there is space available, this avoids
3940 fragmentation problems normally associated with fastbins.
3941 Also, in practice, programs tend to have runs of either small or
3942 large requests, but less often mixtures, so consolidation is not
3943 invoked all that often in most programs. And the programs that
3944 it is called frequently in otherwise tend to fragment.
3948 idx
= largebin_index(nb
);
3949 if (have_fastchunks(av
))
3950 malloc_consolidate(av
);
3954 Process recently freed or remaindered chunks, taking one only if
3955 it is exact fit, or, if this a small request, the chunk is remainder from
3956 the most recent non-exact fit. Place other traversed chunks in
3957 bins. Note that this step is the only place in any routine where
3958 chunks are placed in bins.
3960 The outer loop here is needed because we might not realize until
3961 near the end of malloc that we should have consolidated, so must
3962 do so and retry. This happens at most once, and only when we would
3963 otherwise need to expand memory to service a "small" request.
3968 while ( (victim
= unsorted_chunks(av
)->bk
) != unsorted_chunks(av
)) {
3970 if (__builtin_expect (victim
->size
<= 2 * SIZE_SZ
, 0)
3971 || __builtin_expect (victim
->size
> av
->system_mem
, 0))
3972 malloc_printerr (check_action
, "malloc(): memory corruption",
3973 chunk2mem (victim
));
3974 size
= chunksize(victim
);
3977 If a small request, try to use last remainder if it is the
3978 only chunk in unsorted bin. This helps promote locality for
3979 runs of consecutive small requests. This is the only
3980 exception to best-fit, and applies only when there is
3981 no exact fit for a small chunk.
3984 if (in_smallbin_range(nb
) &&
3985 bck
== unsorted_chunks(av
) &&
3986 victim
== av
->last_remainder
&&
3987 (unsigned long)(size
) > (unsigned long)(nb
+ MINSIZE
)) {
3989 /* split and reattach remainder */
3990 remainder_size
= size
- nb
;
3991 remainder
= chunk_at_offset(victim
, nb
);
3992 unsorted_chunks(av
)->bk
= unsorted_chunks(av
)->fd
= remainder
;
3993 av
->last_remainder
= remainder
;
3994 remainder
->bk
= remainder
->fd
= unsorted_chunks(av
);
3996 set_head(victim
, nb
| PREV_INUSE
|
3997 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
3998 set_head(remainder
, remainder_size
| PREV_INUSE
);
3999 set_foot(remainder
, remainder_size
);
4001 check_malloced_chunk(av
, victim
, nb
);
4002 void *p
= chunk2mem(victim
);
4003 if (__builtin_expect (perturb_byte
, 0))
4004 alloc_perturb (p
, bytes
);
4008 /* remove from unsorted list */
4009 unsorted_chunks(av
)->bk
= bck
;
4010 bck
->fd
= unsorted_chunks(av
);
4012 /* Take now instead of binning if exact fit */
4015 set_inuse_bit_at_offset(victim
, size
);
4016 if (av
!= &main_arena
)
4017 victim
->size
|= NON_MAIN_ARENA
;
4018 check_malloced_chunk(av
, victim
, nb
);
4019 void *p
= chunk2mem(victim
);
4020 if (__builtin_expect (perturb_byte
, 0))
4021 alloc_perturb (p
, bytes
);
4025 /* place chunk in bin */
4027 if (in_smallbin_range(size
)) {
4028 victim_index
= smallbin_index(size
);
4029 bck
= bin_at(av
, victim_index
);
4033 victim_index
= largebin_index(size
);
4034 bck
= bin_at(av
, victim_index
);
4037 /* maintain large bins in sorted order */
4039 /* Or with inuse bit to speed comparisons */
4041 /* if smaller than smallest, bypass loop below */
4042 assert((bck
->bk
->size
& NON_MAIN_ARENA
) == 0);
4043 if ((unsigned long)(size
) <= (unsigned long)(bck
->bk
->size
)) {
4048 assert((fwd
->size
& NON_MAIN_ARENA
) == 0);
4049 while ((unsigned long)(size
) < (unsigned long)(fwd
->size
)) {
4051 assert((fwd
->size
& NON_MAIN_ARENA
) == 0);
4058 mark_bin(av
, victim_index
);
4066 If a large request, scan through the chunks of current bin in
4067 sorted order to find smallest that fits. This is the only step
4068 where an unbounded number of chunks might be scanned without doing
4069 anything useful with them. However the lists tend to be short.
4072 if (!in_smallbin_range(nb
)) {
4073 bin
= bin_at(av
, idx
);
4075 /* skip scan if empty or largest chunk is too small */
4076 if ((victim
= last(bin
)) != bin
&&
4077 (unsigned long)(first(bin
)->size
) >= (unsigned long)(nb
)) {
4079 while (((unsigned long)(size
= chunksize(victim
)) <
4080 (unsigned long)(nb
)))
4081 victim
= victim
->bk
;
4083 remainder_size
= size
- nb
;
4084 unlink(victim
, bck
, fwd
);
4087 if (remainder_size
< MINSIZE
) {
4088 set_inuse_bit_at_offset(victim
, size
);
4089 if (av
!= &main_arena
)
4090 victim
->size
|= NON_MAIN_ARENA
;
4094 remainder
= chunk_at_offset(victim
, nb
);
4095 unsorted_chunks(av
)->bk
= unsorted_chunks(av
)->fd
= remainder
;
4096 remainder
->bk
= remainder
->fd
= unsorted_chunks(av
);
4097 set_head(victim
, nb
| PREV_INUSE
|
4098 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4099 set_head(remainder
, remainder_size
| PREV_INUSE
);
4100 set_foot(remainder
, remainder_size
);
4102 check_malloced_chunk(av
, victim
, nb
);
4103 void *p
= chunk2mem(victim
);
4104 if (__builtin_expect (perturb_byte
, 0))
4105 alloc_perturb (p
, bytes
);
4111 Search for a chunk by scanning bins, starting with next largest
4112 bin. This search is strictly by best-fit; i.e., the smallest
4113 (with ties going to approximately the least recently used) chunk
4114 that fits is selected.
4116 The bitmap avoids needing to check that most blocks are nonempty.
4117 The particular case of skipping all bins during warm-up phases
4118 when no chunks have been returned yet is faster than it might look.
4122 bin
= bin_at(av
,idx
);
4123 block
= idx2block(idx
);
4124 map
= av
->binmap
[block
];
4129 /* Skip rest of block if there are no more set bits in this block. */
4130 if (bit
> map
|| bit
== 0) {
4132 if (++block
>= BINMAPSIZE
) /* out of bins */
4134 } while ( (map
= av
->binmap
[block
]) == 0);
4136 bin
= bin_at(av
, (block
<< BINMAPSHIFT
));
4140 /* Advance to bin with set bit. There must be one. */
4141 while ((bit
& map
) == 0) {
4142 bin
= next_bin(bin
);
4147 /* Inspect the bin. It is likely to be non-empty */
4150 /* If a false alarm (empty bin), clear the bit. */
4151 if (victim
== bin
) {
4152 av
->binmap
[block
] = map
&= ~bit
; /* Write through */
4153 bin
= next_bin(bin
);
4158 size
= chunksize(victim
);
4160 /* We know the first chunk in this bin is big enough to use. */
4161 assert((unsigned long)(size
) >= (unsigned long)(nb
));
4163 remainder_size
= size
- nb
;
4171 if (remainder_size
< MINSIZE
) {
4172 set_inuse_bit_at_offset(victim
, size
);
4173 if (av
!= &main_arena
)
4174 victim
->size
|= NON_MAIN_ARENA
;
4179 remainder
= chunk_at_offset(victim
, nb
);
4181 unsorted_chunks(av
)->bk
= unsorted_chunks(av
)->fd
= remainder
;
4182 remainder
->bk
= remainder
->fd
= unsorted_chunks(av
);
4183 /* advertise as last remainder */
4184 if (in_smallbin_range(nb
))
4185 av
->last_remainder
= remainder
;
4187 set_head(victim
, nb
| PREV_INUSE
|
4188 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4189 set_head(remainder
, remainder_size
| PREV_INUSE
);
4190 set_foot(remainder
, remainder_size
);
4192 check_malloced_chunk(av
, victim
, nb
);
4193 void *p
= chunk2mem(victim
);
4194 if (__builtin_expect (perturb_byte
, 0))
4195 alloc_perturb (p
, bytes
);
4202 If large enough, split off the chunk bordering the end of memory
4203 (held in av->top). Note that this is in accord with the best-fit
4204 search rule. In effect, av->top is treated as larger (and thus
4205 less well fitting) than any other available chunk since it can
4206 be extended to be as large as necessary (up to system
4209 We require that av->top always exists (i.e., has size >=
4210 MINSIZE) after initialization, so if it would otherwise be
4211 exhuasted by current request, it is replenished. (The main
4212 reason for ensuring it exists is that we may need MINSIZE space
4213 to put in fenceposts in sysmalloc.)
4217 size
= chunksize(victim
);
4219 if ((unsigned long)(size
) >= (unsigned long)(nb
+ MINSIZE
)) {
4220 remainder_size
= size
- nb
;
4221 remainder
= chunk_at_offset(victim
, nb
);
4222 av
->top
= remainder
;
4223 set_head(victim
, nb
| PREV_INUSE
|
4224 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4225 set_head(remainder
, remainder_size
| PREV_INUSE
);
4227 check_malloced_chunk(av
, victim
, nb
);
4228 void *p
= chunk2mem(victim
);
4229 if (__builtin_expect (perturb_byte
, 0))
4230 alloc_perturb (p
, bytes
);
4235 If there is space available in fastbins, consolidate and retry,
4236 to possibly avoid expanding memory. This can occur only if nb is
4237 in smallbin range so we didn't consolidate upon entry.
4240 else if (have_fastchunks(av
)) {
4241 assert(in_smallbin_range(nb
));
4242 malloc_consolidate(av
);
4243 idx
= smallbin_index(nb
); /* restore original bin index */
4247 Otherwise, relay to handle system-dependent cases
4250 void *p
= sYSMALLOc(nb
, av
);
4251 if (__builtin_expect (perturb_byte
, 0))
4252 alloc_perturb (p
, bytes
);
4259 ------------------------------ free ------------------------------
4263 _int_free(mstate av
, Void_t
* mem
)
4265 mchunkptr p
; /* chunk corresponding to mem */
4266 INTERNAL_SIZE_T size
; /* its size */
4267 mfastbinptr
* fb
; /* associated fastbin */
4268 mchunkptr nextchunk
; /* next contiguous chunk */
4269 INTERNAL_SIZE_T nextsize
; /* its size */
4270 int nextinuse
; /* true if nextchunk is used */
4271 INTERNAL_SIZE_T prevsize
; /* size of previous contiguous chunk */
4272 mchunkptr bck
; /* misc temp for linking */
4273 mchunkptr fwd
; /* misc temp for linking */
4275 const char *errstr
= NULL
;
4278 size
= chunksize(p
);
4280 /* Little security check which won't hurt performance: the
4281 allocator never wrapps around at the end of the address space.
4282 Therefore we can exclude some size values which might appear
4283 here by accident or by "design" from some intruder. */
4284 if (__builtin_expect ((uintptr_t) p
> (uintptr_t) -size
, 0)
4285 || __builtin_expect ((uintptr_t) p
& MALLOC_ALIGN_MASK
, 0))
4287 errstr
= "free(): invalid pointer";
4289 malloc_printerr (check_action
, errstr
, mem
);
4292 /* We know that each chunk is at least MINSIZE bytes in size. */
4293 if (__builtin_expect (size
< MINSIZE
, 0))
4295 errstr
= "free(): invalid size";
4299 check_inuse_chunk(av
, p
);
4302 If eligible, place chunk on a fastbin so it can be found
4303 and used quickly in malloc.
4306 if ((unsigned long)(size
) <= (unsigned long)(get_max_fast ())
4310 If TRIM_FASTBINS set, don't place chunks
4311 bordering top into fastbins
4313 && (chunk_at_offset(p
, size
) != av
->top
)
4317 if (__builtin_expect (chunk_at_offset (p
, size
)->size
<= 2 * SIZE_SZ
, 0)
4318 || __builtin_expect (chunksize (chunk_at_offset (p
, size
))
4319 >= av
->system_mem
, 0))
4321 errstr
= "free(): invalid next size (fast)";
4326 fb
= &(av
->fastbins
[fastbin_index(size
)]);
4327 /* Another simple check: make sure the top of the bin is not the
4328 record we are going to add (i.e., double free). */
4329 if (__builtin_expect (*fb
== p
, 0))
4331 errstr
= "double free or corruption (fasttop)";
4335 if (__builtin_expect (perturb_byte
, 0))
4336 free_perturb (mem
, size
- SIZE_SZ
);
4343 Consolidate other non-mmapped chunks as they arrive.
4346 else if (!chunk_is_mmapped(p
)) {
4347 nextchunk
= chunk_at_offset(p
, size
);
4349 /* Lightweight tests: check whether the block is already the
4351 if (__builtin_expect (p
== av
->top
, 0))
4353 errstr
= "double free or corruption (top)";
4356 /* Or whether the next chunk is beyond the boundaries of the arena. */
4357 if (__builtin_expect (contiguous (av
)
4358 && (char *) nextchunk
4359 >= ((char *) av
->top
+ chunksize(av
->top
)), 0))
4361 errstr
= "double free or corruption (out)";
4364 /* Or whether the block is actually not marked used. */
4365 if (__builtin_expect (!prev_inuse(nextchunk
), 0))
4367 errstr
= "double free or corruption (!prev)";
4371 nextsize
= chunksize(nextchunk
);
4372 if (__builtin_expect (nextchunk
->size
<= 2 * SIZE_SZ
, 0)
4373 || __builtin_expect (nextsize
>= av
->system_mem
, 0))
4375 errstr
= "free(): invalid next size (normal)";
4379 if (__builtin_expect (perturb_byte
, 0))
4380 free_perturb (mem
, size
- SIZE_SZ
);
4382 /* consolidate backward */
4383 if (!prev_inuse(p
)) {
4384 prevsize
= p
->prev_size
;
4386 p
= chunk_at_offset(p
, -((long) prevsize
));
4387 unlink(p
, bck
, fwd
);
4390 if (nextchunk
!= av
->top
) {
4391 /* get and clear inuse bit */
4392 nextinuse
= inuse_bit_at_offset(nextchunk
, nextsize
);
4394 /* consolidate forward */
4396 unlink(nextchunk
, bck
, fwd
);
4399 clear_inuse_bit_at_offset(nextchunk
, 0);
4402 Place the chunk in unsorted chunk list. Chunks are
4403 not placed into regular bins until after they have
4404 been given one chance to be used in malloc.
4407 bck
= unsorted_chunks(av
);
4414 set_head(p
, size
| PREV_INUSE
);
4417 check_free_chunk(av
, p
);
4421 If the chunk borders the current high end of memory,
4422 consolidate into top
4427 set_head(p
, size
| PREV_INUSE
);
4433 If freeing a large space, consolidate possibly-surrounding
4434 chunks. Then, if the total unused topmost memory exceeds trim
4435 threshold, ask malloc_trim to reduce top.
4437 Unless max_fast is 0, we don't know if there are fastbins
4438 bordering top, so we cannot tell for sure whether threshold
4439 has been reached unless fastbins are consolidated. But we
4440 don't want to consolidate on each free. As a compromise,
4441 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4445 if ((unsigned long)(size
) >= FASTBIN_CONSOLIDATION_THRESHOLD
) {
4446 if (have_fastchunks(av
))
4447 malloc_consolidate(av
);
4449 if (av
== &main_arena
) {
4450 #ifndef MORECORE_CANNOT_TRIM
4451 if ((unsigned long)(chunksize(av
->top
)) >=
4452 (unsigned long)(mp_
.trim_threshold
))
4453 sYSTRIm(mp_
.top_pad
, av
);
4456 /* Always try heap_trim(), even if the top chunk is not
4457 large, because the corresponding heap might go away. */
4458 heap_info
*heap
= heap_for_ptr(top(av
));
4460 assert(heap
->ar_ptr
== av
);
4461 heap_trim(heap
, mp_
.top_pad
);
4467 If the chunk was allocated via mmap, release via munmap(). Note
4468 that if HAVE_MMAP is false but chunk_is_mmapped is true, then
4469 user must have overwritten memory. There's nothing we can do to
4470 catch this error unless MALLOC_DEBUG is set, in which case
4471 check_inuse_chunk (above) will have triggered error.
4482 ------------------------- malloc_consolidate -------------------------
4484 malloc_consolidate is a specialized version of free() that tears
4485 down chunks held in fastbins. Free itself cannot be used for this
4486 purpose since, among other things, it might place chunks back onto
4487 fastbins. So, instead, we need to use a minor variant of the same
4490 Also, because this routine needs to be called the first time through
4491 malloc anyway, it turns out to be the perfect place to trigger
4492 initialization code.
4496 static void malloc_consolidate(mstate av
)
4498 static void malloc_consolidate(av
) mstate av
;
4501 mfastbinptr
* fb
; /* current fastbin being consolidated */
4502 mfastbinptr
* maxfb
; /* last fastbin (for loop control) */
4503 mchunkptr p
; /* current chunk being consolidated */
4504 mchunkptr nextp
; /* next chunk to consolidate */
4505 mchunkptr unsorted_bin
; /* bin header */
4506 mchunkptr first_unsorted
; /* chunk to link to */
4508 /* These have same use as in free() */
4509 mchunkptr nextchunk
;
4510 INTERNAL_SIZE_T size
;
4511 INTERNAL_SIZE_T nextsize
;
4512 INTERNAL_SIZE_T prevsize
;
4518 If max_fast is 0, we know that av hasn't
4519 yet been initialized, in which case do so below
4522 if (get_max_fast () != 0) {
4523 clear_fastchunks(av
);
4525 unsorted_bin
= unsorted_chunks(av
);
4528 Remove each chunk from fast bin and consolidate it, placing it
4529 then in unsorted bin. Among other reasons for doing this,
4530 placing in unsorted bin avoids needing to calculate actual bins
4531 until malloc is sure that chunks aren't immediately going to be
4535 maxfb
= &(av
->fastbins
[fastbin_index(get_max_fast ())]);
4536 fb
= &(av
->fastbins
[0]);
4538 if ( (p
= *fb
) != 0) {
4542 check_inuse_chunk(av
, p
);
4545 /* Slightly streamlined version of consolidation code in free() */
4546 size
= p
->size
& ~(PREV_INUSE
|NON_MAIN_ARENA
);
4547 nextchunk
= chunk_at_offset(p
, size
);
4548 nextsize
= chunksize(nextchunk
);
4550 if (!prev_inuse(p
)) {
4551 prevsize
= p
->prev_size
;
4553 p
= chunk_at_offset(p
, -((long) prevsize
));
4554 unlink(p
, bck
, fwd
);
4557 if (nextchunk
!= av
->top
) {
4558 nextinuse
= inuse_bit_at_offset(nextchunk
, nextsize
);
4562 unlink(nextchunk
, bck
, fwd
);
4564 clear_inuse_bit_at_offset(nextchunk
, 0);
4566 first_unsorted
= unsorted_bin
->fd
;
4567 unsorted_bin
->fd
= p
;
4568 first_unsorted
->bk
= p
;
4570 set_head(p
, size
| PREV_INUSE
);
4571 p
->bk
= unsorted_bin
;
4572 p
->fd
= first_unsorted
;
4578 set_head(p
, size
| PREV_INUSE
);
4582 } while ( (p
= nextp
) != 0);
4585 } while (fb
++ != maxfb
);
4588 malloc_init_state(av
);
4589 check_malloc_state(av
);
4594 ------------------------------ realloc ------------------------------
4598 _int_realloc(mstate av
, Void_t
* oldmem
, size_t bytes
)
4600 INTERNAL_SIZE_T nb
; /* padded request size */
4602 mchunkptr oldp
; /* chunk corresponding to oldmem */
4603 INTERNAL_SIZE_T oldsize
; /* its size */
4605 mchunkptr newp
; /* chunk to return */
4606 INTERNAL_SIZE_T newsize
; /* its size */
4607 Void_t
* newmem
; /* corresponding user mem */
4609 mchunkptr next
; /* next contiguous chunk after oldp */
4611 mchunkptr remainder
; /* extra space at end of newp */
4612 unsigned long remainder_size
; /* its size */
4614 mchunkptr bck
; /* misc temp for linking */
4615 mchunkptr fwd
; /* misc temp for linking */
4617 unsigned long copysize
; /* bytes to copy */
4618 unsigned int ncopies
; /* INTERNAL_SIZE_T words to copy */
4619 INTERNAL_SIZE_T
* s
; /* copy source */
4620 INTERNAL_SIZE_T
* d
; /* copy destination */
4622 const char *errstr
= NULL
;
4625 checked_request2size(bytes
, nb
);
4627 oldp
= mem2chunk(oldmem
);
4628 oldsize
= chunksize(oldp
);
4630 /* Simple tests for old block integrity. */
4631 if (__builtin_expect ((uintptr_t) oldp
& MALLOC_ALIGN_MASK
, 0))
4633 errstr
= "realloc(): invalid pointer";
4635 malloc_printerr (check_action
, errstr
, oldmem
);
4638 if (__builtin_expect (oldp
->size
<= 2 * SIZE_SZ
, 0)
4639 || __builtin_expect (oldsize
>= av
->system_mem
, 0))
4641 errstr
= "realloc(): invalid old size";
4645 check_inuse_chunk(av
, oldp
);
4647 if (!chunk_is_mmapped(oldp
)) {
4649 next
= chunk_at_offset(oldp
, oldsize
);
4650 INTERNAL_SIZE_T nextsize
= chunksize(next
);
4651 if (__builtin_expect (next
->size
<= 2 * SIZE_SZ
, 0)
4652 || __builtin_expect (nextsize
>= av
->system_mem
, 0))
4654 errstr
= "realloc(): invalid next size";
4658 if ((unsigned long)(oldsize
) >= (unsigned long)(nb
)) {
4659 /* already big enough; split below */
4665 /* Try to expand forward into top */
4666 if (next
== av
->top
&&
4667 (unsigned long)(newsize
= oldsize
+ nextsize
) >=
4668 (unsigned long)(nb
+ MINSIZE
)) {
4669 set_head_size(oldp
, nb
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4670 av
->top
= chunk_at_offset(oldp
, nb
);
4671 set_head(av
->top
, (newsize
- nb
) | PREV_INUSE
);
4672 check_inuse_chunk(av
, oldp
);
4673 return chunk2mem(oldp
);
4676 /* Try to expand forward into next chunk; split off remainder below */
4677 else if (next
!= av
->top
&&
4679 (unsigned long)(newsize
= oldsize
+ nextsize
) >=
4680 (unsigned long)(nb
)) {
4682 unlink(next
, bck
, fwd
);
4685 /* allocate, copy, free */
4687 newmem
= _int_malloc(av
, nb
- MALLOC_ALIGN_MASK
);
4689 return 0; /* propagate failure */
4691 newp
= mem2chunk(newmem
);
4692 newsize
= chunksize(newp
);
4695 Avoid copy if newp is next chunk after oldp.
4703 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4704 We know that contents have an odd number of
4705 INTERNAL_SIZE_T-sized words; minimally 3.
4708 copysize
= oldsize
- SIZE_SZ
;
4709 s
= (INTERNAL_SIZE_T
*)(oldmem
);
4710 d
= (INTERNAL_SIZE_T
*)(newmem
);
4711 ncopies
= copysize
/ sizeof(INTERNAL_SIZE_T
);
4712 assert(ncopies
>= 3);
4715 MALLOC_COPY(d
, s
, copysize
);
4735 _int_free(av
, oldmem
);
4736 check_inuse_chunk(av
, newp
);
4737 return chunk2mem(newp
);
4742 /* If possible, free extra space in old or extended chunk */
4744 assert((unsigned long)(newsize
) >= (unsigned long)(nb
));
4746 remainder_size
= newsize
- nb
;
4748 if (remainder_size
< MINSIZE
) { /* not enough extra to split off */
4749 set_head_size(newp
, newsize
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4750 set_inuse_bit_at_offset(newp
, newsize
);
4752 else { /* split remainder */
4753 remainder
= chunk_at_offset(newp
, nb
);
4754 set_head_size(newp
, nb
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4755 set_head(remainder
, remainder_size
| PREV_INUSE
|
4756 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4757 /* Mark remainder as inuse so free() won't complain */
4758 set_inuse_bit_at_offset(remainder
, remainder_size
);
4759 _int_free(av
, chunk2mem(remainder
));
4762 check_inuse_chunk(av
, newp
);
4763 return chunk2mem(newp
);
4774 INTERNAL_SIZE_T offset
= oldp
->prev_size
;
4775 size_t pagemask
= mp_
.pagesize
- 1;
4779 /* Note the extra SIZE_SZ overhead */
4780 newsize
= (nb
+ offset
+ SIZE_SZ
+ pagemask
) & ~pagemask
;
4782 /* don't need to remap if still within same page */
4783 if (oldsize
== newsize
- offset
)
4786 cp
= (char*)mremap((char*)oldp
- offset
, oldsize
+ offset
, newsize
, 1);
4788 if (cp
!= MAP_FAILED
) {
4790 newp
= (mchunkptr
)(cp
+ offset
);
4791 set_head(newp
, (newsize
- offset
)|IS_MMAPPED
);
4793 assert(aligned_OK(chunk2mem(newp
)));
4794 assert((newp
->prev_size
== offset
));
4796 /* update statistics */
4797 sum
= mp_
.mmapped_mem
+= newsize
- oldsize
;
4798 if (sum
> (unsigned long)(mp_
.max_mmapped_mem
))
4799 mp_
.max_mmapped_mem
= sum
;
4801 sum
+= main_arena
.system_mem
;
4802 if (sum
> (unsigned long)(mp_
.max_total_mem
))
4803 mp_
.max_total_mem
= sum
;
4806 return chunk2mem(newp
);
4810 /* Note the extra SIZE_SZ overhead. */
4811 if ((unsigned long)(oldsize
) >= (unsigned long)(nb
+ SIZE_SZ
))
4812 newmem
= oldmem
; /* do nothing */
4814 /* Must alloc, copy, free. */
4815 newmem
= _int_malloc(av
, nb
- MALLOC_ALIGN_MASK
);
4817 MALLOC_COPY(newmem
, oldmem
, oldsize
- 2*SIZE_SZ
);
4818 _int_free(av
, oldmem
);
4824 /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
4825 check_malloc_state(av
);
4826 MALLOC_FAILURE_ACTION
;
4833 ------------------------------ memalign ------------------------------
4837 _int_memalign(mstate av
, size_t alignment
, size_t bytes
)
4839 INTERNAL_SIZE_T nb
; /* padded request size */
4840 char* m
; /* memory returned by malloc call */
4841 mchunkptr p
; /* corresponding chunk */
4842 char* brk
; /* alignment point within p */
4843 mchunkptr newp
; /* chunk to return */
4844 INTERNAL_SIZE_T newsize
; /* its size */
4845 INTERNAL_SIZE_T leadsize
; /* leading space before alignment point */
4846 mchunkptr remainder
; /* spare room at end to split off */
4847 unsigned long remainder_size
; /* its size */
4848 INTERNAL_SIZE_T size
;
4850 /* If need less alignment than we give anyway, just relay to malloc */
4852 if (alignment
<= MALLOC_ALIGNMENT
) return _int_malloc(av
, bytes
);
4854 /* Otherwise, ensure that it is at least a minimum chunk size */
4856 if (alignment
< MINSIZE
) alignment
= MINSIZE
;
4858 /* Make sure alignment is power of 2 (in case MINSIZE is not). */
4859 if ((alignment
& (alignment
- 1)) != 0) {
4860 size_t a
= MALLOC_ALIGNMENT
* 2;
4861 while ((unsigned long)a
< (unsigned long)alignment
) a
<<= 1;
4865 checked_request2size(bytes
, nb
);
4868 Strategy: find a spot within that chunk that meets the alignment
4869 request, and then possibly free the leading and trailing space.
4873 /* Call malloc with worst case padding to hit alignment. */
4875 m
= (char*)(_int_malloc(av
, nb
+ alignment
+ MINSIZE
));
4877 if (m
== 0) return 0; /* propagate failure */
4881 if ((((unsigned long)(m
)) % alignment
) != 0) { /* misaligned */
4884 Find an aligned spot inside chunk. Since we need to give back
4885 leading space in a chunk of at least MINSIZE, if the first
4886 calculation places us at a spot with less than MINSIZE leader,
4887 we can move to the next aligned spot -- we've allocated enough
4888 total room so that this is always possible.
4891 brk
= (char*)mem2chunk(((unsigned long)(m
+ alignment
- 1)) &
4892 -((signed long) alignment
));
4893 if ((unsigned long)(brk
- (char*)(p
)) < MINSIZE
)
4896 newp
= (mchunkptr
)brk
;
4897 leadsize
= brk
- (char*)(p
);
4898 newsize
= chunksize(p
) - leadsize
;
4900 /* For mmapped chunks, just adjust offset */
4901 if (chunk_is_mmapped(p
)) {
4902 newp
->prev_size
= p
->prev_size
+ leadsize
;
4903 set_head(newp
, newsize
|IS_MMAPPED
);
4904 return chunk2mem(newp
);
4907 /* Otherwise, give back leader, use the rest */
4908 set_head(newp
, newsize
| PREV_INUSE
|
4909 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4910 set_inuse_bit_at_offset(newp
, newsize
);
4911 set_head_size(p
, leadsize
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4912 _int_free(av
, chunk2mem(p
));
4915 assert (newsize
>= nb
&&
4916 (((unsigned long)(chunk2mem(p
))) % alignment
) == 0);
4919 /* Also give back spare room at the end */
4920 if (!chunk_is_mmapped(p
)) {
4921 size
= chunksize(p
);
4922 if ((unsigned long)(size
) > (unsigned long)(nb
+ MINSIZE
)) {
4923 remainder_size
= size
- nb
;
4924 remainder
= chunk_at_offset(p
, nb
);
4925 set_head(remainder
, remainder_size
| PREV_INUSE
|
4926 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4927 set_head_size(p
, nb
);
4928 _int_free(av
, chunk2mem(remainder
));
4932 check_inuse_chunk(av
, p
);
4933 return chunk2mem(p
);
4938 ------------------------------ calloc ------------------------------
4942 Void_t
* cALLOc(size_t n_elements
, size_t elem_size
)
4944 Void_t
* cALLOc(n_elements
, elem_size
) size_t n_elements
; size_t elem_size
;
4948 unsigned long clearsize
;
4949 unsigned long nclears
;
4952 Void_t
* mem
= mALLOc(n_elements
* elem_size
);
4958 if (!chunk_is_mmapped(p
)) /* don't need to clear mmapped space */
4962 Unroll clear of <= 36 bytes (72 if 8byte sizes)
4963 We know that contents have an odd number of
4964 INTERNAL_SIZE_T-sized words; minimally 3.
4967 d
= (INTERNAL_SIZE_T
*)mem
;
4968 clearsize
= chunksize(p
) - SIZE_SZ
;
4969 nclears
= clearsize
/ sizeof(INTERNAL_SIZE_T
);
4970 assert(nclears
>= 3);
4973 MALLOC_ZERO(d
, clearsize
);
5000 ------------------------- independent_calloc -------------------------
5005 _int_icalloc(mstate av
, size_t n_elements
, size_t elem_size
, Void_t
* chunks
[])
5007 _int_icalloc(av
, n_elements
, elem_size
, chunks
)
5008 mstate av
; size_t n_elements
; size_t elem_size
; Void_t
* chunks
[];
5011 size_t sz
= elem_size
; /* serves as 1-element array */
5012 /* opts arg of 3 means all elements are same size, and should be cleared */
5013 return iALLOc(av
, n_elements
, &sz
, 3, chunks
);
5017 ------------------------- independent_comalloc -------------------------
5022 _int_icomalloc(mstate av
, size_t n_elements
, size_t sizes
[], Void_t
* chunks
[])
5024 _int_icomalloc(av
, n_elements
, sizes
, chunks
)
5025 mstate av
; size_t n_elements
; size_t sizes
[]; Void_t
* chunks
[];
5028 return iALLOc(av
, n_elements
, sizes
, 0, chunks
);
5033 ------------------------------ ialloc ------------------------------
5034 ialloc provides common support for independent_X routines, handling all of
5035 the combinations that can result.
5038 bit 0 set if all elements are same size (using sizes[0])
5039 bit 1 set if elements should be zeroed
5045 iALLOc(mstate av
, size_t n_elements
, size_t* sizes
, int opts
, Void_t
* chunks
[])
5047 iALLOc(av
, n_elements
, sizes
, opts
, chunks
)
5048 mstate av
; size_t n_elements
; size_t* sizes
; int opts
; Void_t
* chunks
[];
5051 INTERNAL_SIZE_T element_size
; /* chunksize of each element, if all same */
5052 INTERNAL_SIZE_T contents_size
; /* total size of elements */
5053 INTERNAL_SIZE_T array_size
; /* request size of pointer array */
5054 Void_t
* mem
; /* malloced aggregate space */
5055 mchunkptr p
; /* corresponding chunk */
5056 INTERNAL_SIZE_T remainder_size
; /* remaining bytes while splitting */
5057 Void_t
** marray
; /* either "chunks" or malloced ptr array */
5058 mchunkptr array_chunk
; /* chunk for malloced ptr array */
5059 int mmx
; /* to disable mmap */
5060 INTERNAL_SIZE_T size
;
5061 INTERNAL_SIZE_T size_flags
;
5064 /* Ensure initialization/consolidation */
5065 if (have_fastchunks(av
)) malloc_consolidate(av
);
5067 /* compute array length, if needed */
5069 if (n_elements
== 0)
5070 return chunks
; /* nothing to do */
5075 /* if empty req, must still return chunk representing empty array */
5076 if (n_elements
== 0)
5077 return (Void_t
**) _int_malloc(av
, 0);
5079 array_size
= request2size(n_elements
* (sizeof(Void_t
*)));
5082 /* compute total element size */
5083 if (opts
& 0x1) { /* all-same-size */
5084 element_size
= request2size(*sizes
);
5085 contents_size
= n_elements
* element_size
;
5087 else { /* add up all the sizes */
5090 for (i
= 0; i
!= n_elements
; ++i
)
5091 contents_size
+= request2size(sizes
[i
]);
5094 /* subtract out alignment bytes from total to minimize overallocation */
5095 size
= contents_size
+ array_size
- MALLOC_ALIGN_MASK
;
5098 Allocate the aggregate chunk.
5099 But first disable mmap so malloc won't use it, since
5100 we would not be able to later free/realloc space internal
5101 to a segregated mmap region.
5103 mmx
= mp_
.n_mmaps_max
; /* disable mmap */
5104 mp_
.n_mmaps_max
= 0;
5105 mem
= _int_malloc(av
, size
);
5106 mp_
.n_mmaps_max
= mmx
; /* reset mmap */
5111 assert(!chunk_is_mmapped(p
));
5112 remainder_size
= chunksize(p
);
5114 if (opts
& 0x2) { /* optionally clear the elements */
5115 MALLOC_ZERO(mem
, remainder_size
- SIZE_SZ
- array_size
);
5118 size_flags
= PREV_INUSE
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0);
5120 /* If not provided, allocate the pointer array as final part of chunk */
5122 array_chunk
= chunk_at_offset(p
, contents_size
);
5123 marray
= (Void_t
**) (chunk2mem(array_chunk
));
5124 set_head(array_chunk
, (remainder_size
- contents_size
) | size_flags
);
5125 remainder_size
= contents_size
;
5128 /* split out elements */
5129 for (i
= 0; ; ++i
) {
5130 marray
[i
] = chunk2mem(p
);
5131 if (i
!= n_elements
-1) {
5132 if (element_size
!= 0)
5133 size
= element_size
;
5135 size
= request2size(sizes
[i
]);
5136 remainder_size
-= size
;
5137 set_head(p
, size
| size_flags
);
5138 p
= chunk_at_offset(p
, size
);
5140 else { /* the final element absorbs any overallocation slop */
5141 set_head(p
, remainder_size
| size_flags
);
5147 if (marray
!= chunks
) {
5148 /* final element must have exactly exhausted chunk */
5149 if (element_size
!= 0)
5150 assert(remainder_size
== element_size
);
5152 assert(remainder_size
== request2size(sizes
[i
]));
5153 check_inuse_chunk(av
, mem2chunk(marray
));
5156 for (i
= 0; i
!= n_elements
; ++i
)
5157 check_inuse_chunk(av
, mem2chunk(marray
[i
]));
5166 ------------------------------ valloc ------------------------------
5171 _int_valloc(mstate av
, size_t bytes
)
5173 _int_valloc(av
, bytes
) mstate av
; size_t bytes
;
5176 /* Ensure initialization/consolidation */
5177 if (have_fastchunks(av
)) malloc_consolidate(av
);
5178 return _int_memalign(av
, mp_
.pagesize
, bytes
);
5182 ------------------------------ pvalloc ------------------------------
5188 _int_pvalloc(mstate av
, size_t bytes
)
5190 _int_pvalloc(av
, bytes
) mstate av
, size_t bytes
;
5195 /* Ensure initialization/consolidation */
5196 if (have_fastchunks(av
)) malloc_consolidate(av
);
5197 pagesz
= mp_
.pagesize
;
5198 return _int_memalign(av
, pagesz
, (bytes
+ pagesz
- 1) & ~(pagesz
- 1));
5203 ------------------------------ malloc_trim ------------------------------
5207 int mTRIm(size_t pad
)
5209 int mTRIm(pad
) size_t pad
;
5212 mstate av
= &main_arena
; /* already locked */
5214 /* Ensure initialization/consolidation */
5215 malloc_consolidate(av
);
5217 #ifndef MORECORE_CANNOT_TRIM
5218 return sYSTRIm(pad
, av
);
5226 ------------------------- malloc_usable_size -------------------------
5230 size_t mUSABLe(Void_t
* mem
)
5232 size_t mUSABLe(mem
) Void_t
* mem
;
5238 if (chunk_is_mmapped(p
))
5239 return chunksize(p
) - 2*SIZE_SZ
;
5241 return chunksize(p
) - SIZE_SZ
;
5247 ------------------------------ mallinfo ------------------------------
5250 struct mallinfo
mALLINFo(mstate av
)
5256 INTERNAL_SIZE_T avail
;
5257 INTERNAL_SIZE_T fastavail
;
5261 /* Ensure initialization */
5262 if (av
->top
== 0) malloc_consolidate(av
);
5264 check_malloc_state(av
);
5266 /* Account for top */
5267 avail
= chunksize(av
->top
);
5268 nblocks
= 1; /* top always exists */
5270 /* traverse fastbins */
5274 for (i
= 0; i
< NFASTBINS
; ++i
) {
5275 for (p
= av
->fastbins
[i
]; p
!= 0; p
= p
->fd
) {
5277 fastavail
+= chunksize(p
);
5283 /* traverse regular bins */
5284 for (i
= 1; i
< NBINS
; ++i
) {
5286 for (p
= last(b
); p
!= b
; p
= p
->bk
) {
5288 avail
+= chunksize(p
);
5292 mi
.smblks
= nfastblocks
;
5293 mi
.ordblks
= nblocks
;
5294 mi
.fordblks
= avail
;
5295 mi
.uordblks
= av
->system_mem
- avail
;
5296 mi
.arena
= av
->system_mem
;
5297 mi
.hblks
= mp_
.n_mmaps
;
5298 mi
.hblkhd
= mp_
.mmapped_mem
;
5299 mi
.fsmblks
= fastavail
;
5300 mi
.keepcost
= chunksize(av
->top
);
5301 mi
.usmblks
= mp_
.max_total_mem
;
5306 ------------------------------ malloc_stats ------------------------------
5314 unsigned int in_use_b
= mp_
.mmapped_mem
, system_b
= in_use_b
;
5316 long stat_lock_direct
= 0, stat_lock_loop
= 0, stat_lock_wait
= 0;
5319 if(__malloc_initialized
< 0)
5322 _IO_flockfile (stderr
);
5323 int old_flags2
= ((_IO_FILE
*) stderr
)->_flags2
;
5324 ((_IO_FILE
*) stderr
)->_flags2
|= _IO_FLAGS2_NOTCANCEL
;
5326 for (i
=0, ar_ptr
= &main_arena
;; i
++) {
5327 (void)mutex_lock(&ar_ptr
->mutex
);
5328 mi
= mALLINFo(ar_ptr
);
5329 fprintf(stderr
, "Arena %d:\n", i
);
5330 fprintf(stderr
, "system bytes = %10u\n", (unsigned int)mi
.arena
);
5331 fprintf(stderr
, "in use bytes = %10u\n", (unsigned int)mi
.uordblks
);
5332 #if MALLOC_DEBUG > 1
5334 dump_heap(heap_for_ptr(top(ar_ptr
)));
5336 system_b
+= mi
.arena
;
5337 in_use_b
+= mi
.uordblks
;
5339 stat_lock_direct
+= ar_ptr
->stat_lock_direct
;
5340 stat_lock_loop
+= ar_ptr
->stat_lock_loop
;
5341 stat_lock_wait
+= ar_ptr
->stat_lock_wait
;
5343 (void)mutex_unlock(&ar_ptr
->mutex
);
5344 ar_ptr
= ar_ptr
->next
;
5345 if(ar_ptr
== &main_arena
) break;
5348 fprintf(stderr
, "Total (incl. mmap):\n");
5350 fprintf(stderr
, "Total:\n");
5352 fprintf(stderr
, "system bytes = %10u\n", system_b
);
5353 fprintf(stderr
, "in use bytes = %10u\n", in_use_b
);
5355 fprintf(stderr
, "max system bytes = %10u\n", (unsigned int)mp_
.max_total_mem
);
5358 fprintf(stderr
, "max mmap regions = %10u\n", (unsigned int)mp_
.max_n_mmaps
);
5359 fprintf(stderr
, "max mmap bytes = %10lu\n",
5360 (unsigned long)mp_
.max_mmapped_mem
);
5363 fprintf(stderr
, "heaps created = %10d\n", stat_n_heaps
);
5364 fprintf(stderr
, "locked directly = %10ld\n", stat_lock_direct
);
5365 fprintf(stderr
, "locked in loop = %10ld\n", stat_lock_loop
);
5366 fprintf(stderr
, "locked waiting = %10ld\n", stat_lock_wait
);
5367 fprintf(stderr
, "locked total = %10ld\n",
5368 stat_lock_direct
+ stat_lock_loop
+ stat_lock_wait
);
5371 ((_IO_FILE
*) stderr
)->_flags2
|= old_flags2
;
5372 _IO_funlockfile (stderr
);
5378 ------------------------------ mallopt ------------------------------
5382 int mALLOPt(int param_number
, int value
)
5384 int mALLOPt(param_number
, value
) int param_number
; int value
;
5387 mstate av
= &main_arena
;
5390 if(__malloc_initialized
< 0)
5392 (void)mutex_lock(&av
->mutex
);
5393 /* Ensure initialization/consolidation */
5394 malloc_consolidate(av
);
5396 switch(param_number
) {
5398 if (value
>= 0 && value
<= MAX_FAST_SIZE
) {
5399 set_max_fast(value
);
5405 case M_TRIM_THRESHOLD
:
5406 mp_
.trim_threshold
= value
;
5410 mp_
.top_pad
= value
;
5413 case M_MMAP_THRESHOLD
:
5415 /* Forbid setting the threshold too high. */
5416 if((unsigned long)value
> HEAP_MAX_SIZE
/2)
5420 mp_
.mmap_threshold
= value
;
5429 mp_
.n_mmaps_max
= value
;
5432 case M_CHECK_ACTION
:
5433 check_action
= value
;
5437 perturb_byte
= value
;
5440 (void)mutex_unlock(&av
->mutex
);
5446 -------------------- Alternative MORECORE functions --------------------
5451 General Requirements for MORECORE.
5453 The MORECORE function must have the following properties:
5455 If MORECORE_CONTIGUOUS is false:
5457 * MORECORE must allocate in multiples of pagesize. It will
5458 only be called with arguments that are multiples of pagesize.
5460 * MORECORE(0) must return an address that is at least
5461 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5463 else (i.e. If MORECORE_CONTIGUOUS is true):
5465 * Consecutive calls to MORECORE with positive arguments
5466 return increasing addresses, indicating that space has been
5467 contiguously extended.
5469 * MORECORE need not allocate in multiples of pagesize.
5470 Calls to MORECORE need not have args of multiples of pagesize.
5472 * MORECORE need not page-align.
5476 * MORECORE may allocate more memory than requested. (Or even less,
5477 but this will generally result in a malloc failure.)
5479 * MORECORE must not allocate memory when given argument zero, but
5480 instead return one past the end address of memory from previous
5481 nonzero call. This malloc does NOT call MORECORE(0)
5482 until at least one call with positive arguments is made, so
5483 the initial value returned is not important.
5485 * Even though consecutive calls to MORECORE need not return contiguous
5486 addresses, it must be OK for malloc'ed chunks to span multiple
5487 regions in those cases where they do happen to be contiguous.
5489 * MORECORE need not handle negative arguments -- it may instead
5490 just return MORECORE_FAILURE when given negative arguments.
5491 Negative arguments are always multiples of pagesize. MORECORE
5492 must not misinterpret negative args as large positive unsigned
5493 args. You can suppress all such calls from even occurring by defining
5494 MORECORE_CANNOT_TRIM,
5496 There is some variation across systems about the type of the
5497 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5498 actually be size_t, because sbrk supports negative args, so it is
5499 normally the signed type of the same width as size_t (sometimes
5500 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5501 matter though. Internally, we use "long" as arguments, which should
5502 work across all reasonable possibilities.
5504 Additionally, if MORECORE ever returns failure for a positive
5505 request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
5506 system allocator. This is a useful backup strategy for systems with
5507 holes in address spaces -- in this case sbrk cannot contiguously
5508 expand the heap, but mmap may be able to map noncontiguous space.
5510 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5511 a function that always returns MORECORE_FAILURE.
5513 If you are using this malloc with something other than sbrk (or its
5514 emulation) to supply memory regions, you probably want to set
5515 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5516 allocator kindly contributed for pre-OSX macOS. It uses virtually
5517 but not necessarily physically contiguous non-paged memory (locked
5518 in, present and won't get swapped out). You can use it by
5519 uncommenting this section, adding some #includes, and setting up the
5520 appropriate defines above:
5522 #define MORECORE osMoreCore
5523 #define MORECORE_CONTIGUOUS 0
5525 There is also a shutdown routine that should somehow be called for
5526 cleanup upon program exit.
5528 #define MAX_POOL_ENTRIES 100
5529 #define MINIMUM_MORECORE_SIZE (64 * 1024)
5530 static int next_os_pool;
5531 void *our_os_pools[MAX_POOL_ENTRIES];
5533 void *osMoreCore(int size)
5536 static void *sbrk_top = 0;
5540 if (size < MINIMUM_MORECORE_SIZE)
5541 size = MINIMUM_MORECORE_SIZE;
5542 if (CurrentExecutionLevel() == kTaskLevel)
5543 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5546 return (void *) MORECORE_FAILURE;
5548 // save ptrs so they can be freed during cleanup
5549 our_os_pools[next_os_pool] = ptr;
5551 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5552 sbrk_top = (char *) ptr + size;
5557 // we don't currently support shrink behavior
5558 return (void *) MORECORE_FAILURE;
5566 // cleanup any allocated memory pools
5567 // called as last thing before shutting down driver
5569 void osCleanupMem(void)
5573 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5576 PoolDeallocate(*ptr);
5586 extern char **__libc_argv attribute_hidden
;
5589 malloc_printerr(int action
, const char *str
, void *ptr
)
5591 if ((action
& 5) == 5)
5592 __libc_message (action
& 2, "%s\n", str
);
5593 else if (action
& 1)
5595 char buf
[2 * sizeof (uintptr_t) + 1];
5597 buf
[sizeof (buf
) - 1] = '\0';
5598 char *cp
= _itoa_word ((uintptr_t) ptr
, &buf
[sizeof (buf
) - 1], 16, 0);
5602 __libc_message (action
& 2,
5603 "*** glibc detected *** %s: %s: 0x%s ***\n",
5604 __libc_argv
[0] ?: "<unknown>", str
, cp
);
5606 else if (action
& 2)
5611 # include <sys/param.h>
5613 /* We need a wrapper function for one of the additions of POSIX. */
5615 __posix_memalign (void **memptr
, size_t alignment
, size_t size
)
5618 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, size_t,
5619 __const __malloc_ptr_t
)) =
5622 /* Test whether the SIZE argument is valid. It must be a power of
5623 two multiple of sizeof (void *). */
5624 if (alignment
% sizeof (void *) != 0
5625 || !powerof2 (alignment
/ sizeof (void *)) != 0
5629 /* Call the hook here, so that caller is posix_memalign's caller
5630 and not posix_memalign itself. */
5632 mem
= (*hook
)(alignment
, size
, RETURN_ADDRESS (0));
5634 mem
= public_mEMALIGn (alignment
, size
);
5643 weak_alias (__posix_memalign
, posix_memalign
)
5645 strong_alias (__libc_calloc
, __calloc
) weak_alias (__libc_calloc
, calloc
)
5646 strong_alias (__libc_free
, __cfree
) weak_alias (__libc_free
, cfree
)
5647 strong_alias (__libc_free
, __free
) strong_alias (__libc_free
, free
)
5648 strong_alias (__libc_malloc
, __malloc
) strong_alias (__libc_malloc
, malloc
)
5649 strong_alias (__libc_memalign
, __memalign
)
5650 weak_alias (__libc_memalign
, memalign
)
5651 strong_alias (__libc_realloc
, __realloc
) strong_alias (__libc_realloc
, realloc
)
5652 strong_alias (__libc_valloc
, __valloc
) weak_alias (__libc_valloc
, valloc
)
5653 strong_alias (__libc_pvalloc
, __pvalloc
) weak_alias (__libc_pvalloc
, pvalloc
)
5654 strong_alias (__libc_mallinfo
, __mallinfo
)
5655 weak_alias (__libc_mallinfo
, mallinfo
)
5656 strong_alias (__libc_mallopt
, __mallopt
) weak_alias (__libc_mallopt
, mallopt
)
5658 weak_alias (__malloc_stats
, malloc_stats
)
5659 weak_alias (__malloc_usable_size
, malloc_usable_size
)
5660 weak_alias (__malloc_trim
, malloc_trim
)
5661 weak_alias (__malloc_get_state
, malloc_get_state
)
5662 weak_alias (__malloc_set_state
, malloc_set_state
)
5666 /* ------------------------------------------------------------
5669 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]