1 /* One way encryption based on SHA256 sum.
2 Copyright (C) 2007-2014 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
26 #include <sys/param.h>
29 #include "crypt-private.h"
35 # include <nsslowhash.h>
37 # define sha256_init_ctx(ctxp, nss_ctxp) \
40 if (((nss_ctxp = NSSLOWHASH_NewContext (nss_ictx, HASH_AlgSHA256)) \
43 if (nss_ctx != NULL) \
44 NSSLOWHASH_Destroy (nss_ctx); \
45 if (nss_alt_ctx != NULL) \
46 NSSLOWHASH_Destroy (nss_alt_ctx); \
49 NSSLOWHASH_Begin (nss_ctxp); \
53 # define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
54 NSSLOWHASH_Update (nss_ctxp, (const unsigned char *) buf, len)
56 # define sha256_finish_ctx(ctxp, nss_ctxp, result) \
60 NSSLOWHASH_End (nss_ctxp, result, &ret, sizeof (result)); \
61 assert (ret == sizeof (result)); \
62 NSSLOWHASH_Destroy (nss_ctxp); \
67 # define sha256_init_ctx(ctxp, nss_ctxp) \
68 __sha256_init_ctx (ctxp)
70 # define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
71 __sha256_process_bytes(buf, len, ctxp)
73 # define sha256_finish_ctx(ctxp, nss_ctxp, result) \
74 __sha256_finish_ctx (ctxp, result)
78 /* Define our magic string to mark salt for SHA256 "encryption"
80 static const char sha256_salt_prefix
[] = "$5$";
82 /* Prefix for optional rounds specification. */
83 static const char sha256_rounds_prefix
[] = "rounds=";
85 /* Maximum salt string length. */
86 #define SALT_LEN_MAX 16
87 /* Default number of rounds if not explicitly specified. */
88 #define ROUNDS_DEFAULT 5000
89 /* Minimum number of rounds. */
90 #define ROUNDS_MIN 1000
91 /* Maximum number of rounds. */
92 #define ROUNDS_MAX 999999999
95 /* Prototypes for local functions. */
96 extern char *__sha256_crypt_r (const char *key
, const char *salt
,
97 char *buffer
, int buflen
);
98 extern char *__sha256_crypt (const char *key
, const char *salt
);
102 __sha256_crypt_r (key
, salt
, buffer
, buflen
)
108 unsigned char alt_result
[32]
109 __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
110 unsigned char temp_result
[32]
111 __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
116 char *copied_key
= NULL
;
117 char *copied_salt
= NULL
;
120 /* Default number of rounds. */
121 size_t rounds
= ROUNDS_DEFAULT
;
122 bool rounds_custom
= false;
123 size_t alloca_used
= 0;
124 char *free_key
= NULL
;
125 char *free_pbytes
= NULL
;
127 /* Find beginning of salt string. The prefix should normally always
128 be present. Just in case it is not. */
129 if (strncmp (sha256_salt_prefix
, salt
, sizeof (sha256_salt_prefix
) - 1) == 0)
130 /* Skip salt prefix. */
131 salt
+= sizeof (sha256_salt_prefix
) - 1;
133 if (strncmp (salt
, sha256_rounds_prefix
, sizeof (sha256_rounds_prefix
) - 1)
136 const char *num
= salt
+ sizeof (sha256_rounds_prefix
) - 1;
138 unsigned long int srounds
= strtoul (num
, &endp
, 10);
142 rounds
= MAX (ROUNDS_MIN
, MIN (srounds
, ROUNDS_MAX
));
143 rounds_custom
= true;
147 salt_len
= MIN (strcspn (salt
, "$"), SALT_LEN_MAX
);
148 key_len
= strlen (key
);
150 if ((key
- (char *) 0) % __alignof__ (uint32_t) != 0)
154 if (__libc_use_alloca (alloca_used
+ key_len
+ __alignof__ (uint32_t)))
155 tmp
= alloca_account (key_len
+ __alignof__ (uint32_t), alloca_used
);
158 free_key
= tmp
= (char *) malloc (key_len
+ __alignof__ (uint32_t));
164 memcpy (tmp
+ __alignof__ (uint32_t)
165 - (tmp
- (char *) 0) % __alignof__ (uint32_t),
167 assert ((key
- (char *) 0) % __alignof__ (uint32_t) == 0);
170 if ((salt
- (char *) 0) % __alignof__ (uint32_t) != 0)
172 char *tmp
= (char *) alloca (salt_len
+ __alignof__ (uint32_t));
173 alloca_used
+= salt_len
+ __alignof__ (uint32_t);
175 memcpy (tmp
+ __alignof__ (uint32_t)
176 - (tmp
- (char *) 0) % __alignof__ (uint32_t),
178 assert ((salt
- (char *) 0) % __alignof__ (uint32_t) == 0);
182 /* Initialize libfreebl3. */
183 NSSLOWInitContext
*nss_ictx
= NSSLOW_Init ();
184 if (nss_ictx
== NULL
)
189 NSSLOWHASHContext
*nss_ctx
= NULL
;
190 NSSLOWHASHContext
*nss_alt_ctx
= NULL
;
192 struct sha256_ctx ctx
;
193 struct sha256_ctx alt_ctx
;
196 /* Prepare for the real work. */
197 sha256_init_ctx (&ctx
, nss_ctx
);
199 /* Add the key string. */
200 sha256_process_bytes (key
, key_len
, &ctx
, nss_ctx
);
202 /* The last part is the salt string. This must be at most 16
203 characters and it ends at the first `$' character. */
204 sha256_process_bytes (salt
, salt_len
, &ctx
, nss_ctx
);
207 /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
208 final result will be added to the first context. */
209 sha256_init_ctx (&alt_ctx
, nss_alt_ctx
);
212 sha256_process_bytes (key
, key_len
, &alt_ctx
, nss_alt_ctx
);
215 sha256_process_bytes (salt
, salt_len
, &alt_ctx
, nss_alt_ctx
);
218 sha256_process_bytes (key
, key_len
, &alt_ctx
, nss_alt_ctx
);
220 /* Now get result of this (32 bytes) and add it to the other
222 sha256_finish_ctx (&alt_ctx
, nss_alt_ctx
, alt_result
);
224 /* Add for any character in the key one byte of the alternate sum. */
225 for (cnt
= key_len
; cnt
> 32; cnt
-= 32)
226 sha256_process_bytes (alt_result
, 32, &ctx
, nss_ctx
);
227 sha256_process_bytes (alt_result
, cnt
, &ctx
, nss_ctx
);
229 /* Take the binary representation of the length of the key and for every
230 1 add the alternate sum, for every 0 the key. */
231 for (cnt
= key_len
; cnt
> 0; cnt
>>= 1)
233 sha256_process_bytes (alt_result
, 32, &ctx
, nss_ctx
);
235 sha256_process_bytes (key
, key_len
, &ctx
, nss_ctx
);
237 /* Create intermediate result. */
238 sha256_finish_ctx (&ctx
, nss_ctx
, alt_result
);
240 /* Start computation of P byte sequence. */
241 sha256_init_ctx (&alt_ctx
, nss_alt_ctx
);
243 /* For every character in the password add the entire password. */
244 for (cnt
= 0; cnt
< key_len
; ++cnt
)
245 sha256_process_bytes (key
, key_len
, &alt_ctx
, nss_alt_ctx
);
247 /* Finish the digest. */
248 sha256_finish_ctx (&alt_ctx
, nss_alt_ctx
, temp_result
);
250 /* Create byte sequence P. */
251 if (__libc_use_alloca (alloca_used
+ key_len
))
252 cp
= p_bytes
= (char *) alloca (key_len
);
255 free_pbytes
= cp
= p_bytes
= (char *)malloc (key_len
);
256 if (free_pbytes
== NULL
)
263 for (cnt
= key_len
; cnt
>= 32; cnt
-= 32)
264 cp
= mempcpy (cp
, temp_result
, 32);
265 memcpy (cp
, temp_result
, cnt
);
267 /* Start computation of S byte sequence. */
268 sha256_init_ctx (&alt_ctx
, nss_alt_ctx
);
270 /* For every character in the password add the entire password. */
271 for (cnt
= 0; cnt
< 16 + alt_result
[0]; ++cnt
)
272 sha256_process_bytes (salt
, salt_len
, &alt_ctx
, nss_alt_ctx
);
274 /* Finish the digest. */
275 sha256_finish_ctx (&alt_ctx
, nss_alt_ctx
, temp_result
);
277 /* Create byte sequence S. */
278 cp
= s_bytes
= alloca (salt_len
);
279 for (cnt
= salt_len
; cnt
>= 32; cnt
-= 32)
280 cp
= mempcpy (cp
, temp_result
, 32);
281 memcpy (cp
, temp_result
, cnt
);
283 /* Repeatedly run the collected hash value through SHA256 to burn
285 for (cnt
= 0; cnt
< rounds
; ++cnt
)
288 sha256_init_ctx (&ctx
, nss_ctx
);
290 /* Add key or last result. */
292 sha256_process_bytes (p_bytes
, key_len
, &ctx
, nss_ctx
);
294 sha256_process_bytes (alt_result
, 32, &ctx
, nss_ctx
);
296 /* Add salt for numbers not divisible by 3. */
298 sha256_process_bytes (s_bytes
, salt_len
, &ctx
, nss_ctx
);
300 /* Add key for numbers not divisible by 7. */
302 sha256_process_bytes (p_bytes
, key_len
, &ctx
, nss_ctx
);
304 /* Add key or last result. */
306 sha256_process_bytes (alt_result
, 32, &ctx
, nss_ctx
);
308 sha256_process_bytes (p_bytes
, key_len
, &ctx
, nss_ctx
);
310 /* Create intermediate result. */
311 sha256_finish_ctx (&ctx
, nss_ctx
, alt_result
);
315 /* Free libfreebl3 resources. */
316 NSSLOW_Shutdown (nss_ictx
);
319 /* Now we can construct the result string. It consists of three
321 cp
= __stpncpy (buffer
, sha256_salt_prefix
, MAX (0, buflen
));
322 buflen
-= sizeof (sha256_salt_prefix
) - 1;
326 int n
= snprintf (cp
, MAX (0, buflen
), "%s%zu$",
327 sha256_rounds_prefix
, rounds
);
332 cp
= __stpncpy (cp
, salt
, MIN ((size_t) MAX (0, buflen
), salt_len
));
333 buflen
-= MIN ((size_t) MAX (0, buflen
), salt_len
);
341 __b64_from_24bit (&cp
, &buflen
,
342 alt_result
[0], alt_result
[10], alt_result
[20], 4);
343 __b64_from_24bit (&cp
, &buflen
,
344 alt_result
[21], alt_result
[1], alt_result
[11], 4);
345 __b64_from_24bit (&cp
, &buflen
,
346 alt_result
[12], alt_result
[22], alt_result
[2], 4);
347 __b64_from_24bit (&cp
, &buflen
,
348 alt_result
[3], alt_result
[13], alt_result
[23], 4);
349 __b64_from_24bit (&cp
, &buflen
,
350 alt_result
[24], alt_result
[4], alt_result
[14], 4);
351 __b64_from_24bit (&cp
, &buflen
,
352 alt_result
[15], alt_result
[25], alt_result
[5], 4);
353 __b64_from_24bit (&cp
, &buflen
,
354 alt_result
[6], alt_result
[16], alt_result
[26], 4);
355 __b64_from_24bit (&cp
, &buflen
,
356 alt_result
[27], alt_result
[7], alt_result
[17], 4);
357 __b64_from_24bit (&cp
, &buflen
,
358 alt_result
[18], alt_result
[28], alt_result
[8], 4);
359 __b64_from_24bit (&cp
, &buflen
,
360 alt_result
[9], alt_result
[19], alt_result
[29], 4);
361 __b64_from_24bit (&cp
, &buflen
,
362 0, alt_result
[31], alt_result
[30], 3);
365 __set_errno (ERANGE
);
369 *cp
= '\0'; /* Terminate the string. */
371 /* Clear the buffer for the intermediate result so that people
372 attaching to processes or reading core dumps cannot get any
373 information. We do it in this way to clear correct_words[]
374 inside the SHA256 implementation as well. */
376 __sha256_init_ctx (&ctx
);
377 __sha256_finish_ctx (&ctx
, alt_result
);
378 memset (&ctx
, '\0', sizeof (ctx
));
379 memset (&alt_ctx
, '\0', sizeof (alt_ctx
));
381 memset (temp_result
, '\0', sizeof (temp_result
));
382 memset (p_bytes
, '\0', key_len
);
383 memset (s_bytes
, '\0', salt_len
);
384 if (copied_key
!= NULL
)
385 memset (copied_key
, '\0', key_len
);
386 if (copied_salt
!= NULL
)
387 memset (copied_salt
, '\0', salt_len
);
395 # define libc_freeres_ptr(decl) decl
397 libc_freeres_ptr (static char *buffer
);
399 /* This entry point is equivalent to the `crypt' function in Unix
402 __sha256_crypt (const char *key
, const char *salt
)
404 /* We don't want to have an arbitrary limit in the size of the
405 password. We can compute an upper bound for the size of the
406 result in advance and so we can prepare the buffer we pass to
409 int needed
= (sizeof (sha256_salt_prefix
) - 1
410 + sizeof (sha256_rounds_prefix
) + 9 + 1
411 + strlen (salt
) + 1 + 43 + 1);
415 char *new_buffer
= (char *) realloc (buffer
, needed
);
416 if (new_buffer
== NULL
)
423 return __sha256_crypt_r (key
, salt
, buffer
, buflen
);
428 __attribute__ ((__destructor__
))