Fix IA-32 strstr in multiarch configuration as well.
[glibc.git] / stdio-common / printf_fp.c
blobcd3ada64416334ad2eb6dedfcad9bbadefd43c44
1 /* Floating point output for `printf'.
2 Copyright (C) 1995-2003, 2006, 2007, 2008 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
22 /* The gmp headers need some configuration frobs. */
23 #define HAVE_ALLOCA 1
25 #include <libioP.h>
26 #include <alloca.h>
27 #include <ctype.h>
28 #include <float.h>
29 #include <gmp-mparam.h>
30 #include <gmp.h>
31 #include <ieee754.h>
32 #include <stdlib/gmp-impl.h>
33 #include <stdlib/longlong.h>
34 #include <stdlib/fpioconst.h>
35 #include <locale/localeinfo.h>
36 #include <limits.h>
37 #include <math.h>
38 #include <printf.h>
39 #include <string.h>
40 #include <unistd.h>
41 #include <stdlib.h>
42 #include <wchar.h>
44 #ifdef COMPILE_WPRINTF
45 # define CHAR_T wchar_t
46 #else
47 # define CHAR_T char
48 #endif
50 #include "_i18n_number.h"
52 #ifndef NDEBUG
53 # define NDEBUG /* Undefine this for debugging assertions. */
54 #endif
55 #include <assert.h>
57 /* This defines make it possible to use the same code for GNU C library and
58 the GNU I/O library. */
59 #define PUT(f, s, n) _IO_sputn (f, s, n)
60 #define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : INTUSE(_IO_padn) (f, c, n))
61 /* We use this file GNU C library and GNU I/O library. So make
62 names equal. */
63 #undef putc
64 #define putc(c, f) (wide \
65 ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
66 #define size_t _IO_size_t
67 #define FILE _IO_FILE
69 /* Macros for doing the actual output. */
71 #define outchar(ch) \
72 do \
73 { \
74 register const int outc = (ch); \
75 if (putc (outc, fp) == EOF) \
76 { \
77 if (buffer_malloced) \
78 free (wbuffer); \
79 return -1; \
80 } \
81 ++done; \
82 } while (0)
84 #define PRINT(ptr, wptr, len) \
85 do \
86 { \
87 register size_t outlen = (len); \
88 if (len > 20) \
89 { \
90 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
91 { \
92 if (buffer_malloced) \
93 free (wbuffer); \
94 return -1; \
95 } \
96 ptr += outlen; \
97 done += outlen; \
98 } \
99 else \
101 if (wide) \
102 while (outlen-- > 0) \
103 outchar (*wptr++); \
104 else \
105 while (outlen-- > 0) \
106 outchar (*ptr++); \
108 } while (0)
110 #define PADN(ch, len) \
111 do \
113 if (PAD (fp, ch, len) != len) \
115 if (buffer_malloced) \
116 free (wbuffer); \
117 return -1; \
119 done += len; \
121 while (0)
123 /* We use the GNU MP library to handle large numbers.
125 An MP variable occupies a varying number of entries in its array. We keep
126 track of this number for efficiency reasons. Otherwise we would always
127 have to process the whole array. */
128 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
130 #define MPN_ASSIGN(dst,src) \
131 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
132 #define MPN_GE(u,v) \
133 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
135 extern int __isinfl_internal (long double) attribute_hidden;
136 extern int __isnanl_internal (long double) attribute_hidden;
138 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
139 int *expt, int *is_neg,
140 double value);
141 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
142 int *expt, int *is_neg,
143 long double value);
144 extern unsigned int __guess_grouping (unsigned int intdig_max,
145 const char *grouping);
148 static wchar_t *group_number (wchar_t *buf, wchar_t *bufend,
149 unsigned int intdig_no, const char *grouping,
150 wchar_t thousands_sep, int ngroups)
151 internal_function;
155 ___printf_fp (FILE *fp,
156 const struct printf_info *info,
157 const void *const *args)
159 /* The floating-point value to output. */
160 union
162 double dbl;
163 __long_double_t ldbl;
165 fpnum;
167 /* Locale-dependent representation of decimal point. */
168 const char *decimal;
169 wchar_t decimalwc;
171 /* Locale-dependent thousands separator and grouping specification. */
172 const char *thousands_sep = NULL;
173 wchar_t thousands_sepwc = 0;
174 const char *grouping;
176 /* "NaN" or "Inf" for the special cases. */
177 const char *special = NULL;
178 const wchar_t *wspecial = NULL;
180 /* We need just a few limbs for the input before shifting to the right
181 position. */
182 mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
183 /* We need to shift the contents of fp_input by this amount of bits. */
184 int to_shift = 0;
186 /* The fraction of the floting-point value in question */
187 MPN_VAR(frac);
188 /* and the exponent. */
189 int exponent;
190 /* Sign of the exponent. */
191 int expsign = 0;
192 /* Sign of float number. */
193 int is_neg = 0;
195 /* Scaling factor. */
196 MPN_VAR(scale);
198 /* Temporary bignum value. */
199 MPN_VAR(tmp);
201 /* Digit which is result of last hack_digit() call. */
202 wchar_t digit;
204 /* The type of output format that will be used: 'e'/'E' or 'f'. */
205 int type;
207 /* Counter for number of written characters. */
208 int done = 0;
210 /* General helper (carry limb). */
211 mp_limb_t cy;
213 /* Nonzero if this is output on a wide character stream. */
214 int wide = info->wide;
216 /* Buffer in which we produce the output. */
217 wchar_t *wbuffer = NULL;
218 /* Flag whether wbuffer is malloc'ed or not. */
219 int buffer_malloced = 0;
221 auto wchar_t hack_digit (void);
223 wchar_t hack_digit (void)
225 mp_limb_t hi;
227 if (expsign != 0 && type == 'f' && exponent-- > 0)
228 hi = 0;
229 else if (scalesize == 0)
231 hi = frac[fracsize - 1];
232 frac[fracsize - 1] = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
234 else
236 if (fracsize < scalesize)
237 hi = 0;
238 else
240 hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
241 tmp[fracsize - scalesize] = hi;
242 hi = tmp[0];
244 fracsize = scalesize;
245 while (fracsize != 0 && frac[fracsize - 1] == 0)
246 --fracsize;
247 if (fracsize == 0)
249 /* We're not prepared for an mpn variable with zero
250 limbs. */
251 fracsize = 1;
252 return L'0' + hi;
256 mp_limb_t _cy = __mpn_mul_1 (frac, frac, fracsize, 10);
257 if (_cy != 0)
258 frac[fracsize++] = _cy;
261 return L'0' + hi;
265 /* Figure out the decimal point character. */
266 if (info->extra == 0)
268 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
269 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
271 else
273 decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
274 if (*decimal == '\0')
275 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
276 decimalwc = _NL_CURRENT_WORD (LC_MONETARY,
277 _NL_MONETARY_DECIMAL_POINT_WC);
278 if (decimalwc == L'\0')
279 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC,
280 _NL_NUMERIC_DECIMAL_POINT_WC);
282 /* The decimal point character must not be zero. */
283 assert (*decimal != '\0');
284 assert (decimalwc != L'\0');
286 if (info->group)
288 if (info->extra == 0)
289 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
290 else
291 grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
293 if (*grouping <= 0 || *grouping == CHAR_MAX)
294 grouping = NULL;
295 else
297 /* Figure out the thousands separator character. */
298 if (wide)
300 if (info->extra == 0)
301 thousands_sepwc =
302 _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC);
303 else
304 thousands_sepwc =
305 _NL_CURRENT_WORD (LC_MONETARY,
306 _NL_MONETARY_THOUSANDS_SEP_WC);
308 else
310 if (info->extra == 0)
311 thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
312 else
313 thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP);
316 if ((wide && thousands_sepwc == L'\0')
317 || (! wide && *thousands_sep == '\0'))
318 grouping = NULL;
319 else if (thousands_sepwc == L'\0')
320 /* If we are printing multibyte characters and there is a
321 multibyte representation for the thousands separator,
322 we must ensure the wide character thousands separator
323 is available, even if it is fake. */
324 thousands_sepwc = 0xfffffffe;
327 else
328 grouping = NULL;
330 /* Fetch the argument value. */
331 #ifndef __NO_LONG_DOUBLE_MATH
332 if (info->is_long_double && sizeof (long double) > sizeof (double))
334 fpnum.ldbl = *(const long double *) args[0];
336 /* Check for special values: not a number or infinity. */
337 if (__isnanl (fpnum.ldbl))
339 union ieee854_long_double u = { .d = fpnum.ldbl };
340 is_neg = u.ieee.negative != 0;
341 if (isupper (info->spec))
343 special = "NAN";
344 wspecial = L"NAN";
346 else
348 special = "nan";
349 wspecial = L"nan";
352 else if (__isinfl (fpnum.ldbl))
354 is_neg = fpnum.ldbl < 0;
355 if (isupper (info->spec))
357 special = "INF";
358 wspecial = L"INF";
360 else
362 special = "inf";
363 wspecial = L"inf";
366 else
368 fracsize = __mpn_extract_long_double (fp_input,
369 (sizeof (fp_input) /
370 sizeof (fp_input[0])),
371 &exponent, &is_neg,
372 fpnum.ldbl);
373 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
376 else
377 #endif /* no long double */
379 fpnum.dbl = *(const double *) args[0];
381 /* Check for special values: not a number or infinity. */
382 if (__isnan (fpnum.dbl))
384 union ieee754_double u = { .d = fpnum.dbl };
385 is_neg = u.ieee.negative != 0;
386 if (isupper (info->spec))
388 special = "NAN";
389 wspecial = L"NAN";
391 else
393 special = "nan";
394 wspecial = L"nan";
397 else if (__isinf (fpnum.dbl))
399 is_neg = fpnum.dbl < 0;
400 if (isupper (info->spec))
402 special = "INF";
403 wspecial = L"INF";
405 else
407 special = "inf";
408 wspecial = L"inf";
411 else
413 fracsize = __mpn_extract_double (fp_input,
414 (sizeof (fp_input)
415 / sizeof (fp_input[0])),
416 &exponent, &is_neg, fpnum.dbl);
417 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
421 if (special)
423 int width = info->width;
425 if (is_neg || info->showsign || info->space)
426 --width;
427 width -= 3;
429 if (!info->left && width > 0)
430 PADN (' ', width);
432 if (is_neg)
433 outchar ('-');
434 else if (info->showsign)
435 outchar ('+');
436 else if (info->space)
437 outchar (' ');
439 PRINT (special, wspecial, 3);
441 if (info->left && width > 0)
442 PADN (' ', width);
444 return done;
448 /* We need three multiprecision variables. Now that we have the exponent
449 of the number we can allocate the needed memory. It would be more
450 efficient to use variables of the fixed maximum size but because this
451 would be really big it could lead to memory problems. */
453 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
454 / BITS_PER_MP_LIMB
455 + (LDBL_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4))
456 * sizeof (mp_limb_t);
457 frac = (mp_limb_t *) alloca (bignum_size);
458 tmp = (mp_limb_t *) alloca (bignum_size);
459 scale = (mp_limb_t *) alloca (bignum_size);
462 /* We now have to distinguish between numbers with positive and negative
463 exponents because the method used for the one is not applicable/efficient
464 for the other. */
465 scalesize = 0;
466 if (exponent > 2)
468 /* |FP| >= 8.0. */
469 int scaleexpo = 0;
470 int explog = LDBL_MAX_10_EXP_LOG;
471 int exp10 = 0;
472 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
473 int cnt_h, cnt_l, i;
475 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
477 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
478 fp_input, fracsize);
479 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
481 else
483 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
484 fp_input, fracsize,
485 (exponent + to_shift) % BITS_PER_MP_LIMB);
486 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
487 if (cy)
488 frac[fracsize++] = cy;
490 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
492 assert (powers > &_fpioconst_pow10[0]);
495 --powers;
497 /* The number of the product of two binary numbers with n and m
498 bits respectively has m+n or m+n-1 bits. */
499 if (exponent >= scaleexpo + powers->p_expo - 1)
501 if (scalesize == 0)
503 #ifndef __NO_LONG_DOUBLE_MATH
504 if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB
505 && info->is_long_double)
507 #define _FPIO_CONST_SHIFT \
508 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
509 - _FPIO_CONST_OFFSET)
510 /* 64bit const offset is not enough for
511 IEEE quad long double. */
512 tmpsize = powers->arraysize + _FPIO_CONST_SHIFT;
513 memcpy (tmp + _FPIO_CONST_SHIFT,
514 &__tens[powers->arrayoff],
515 tmpsize * sizeof (mp_limb_t));
516 MPN_ZERO (tmp, _FPIO_CONST_SHIFT);
517 /* Adjust exponent, as scaleexpo will be this much
518 bigger too. */
519 exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB;
521 else
522 #endif
524 tmpsize = powers->arraysize;
525 memcpy (tmp, &__tens[powers->arrayoff],
526 tmpsize * sizeof (mp_limb_t));
529 else
531 cy = __mpn_mul (tmp, scale, scalesize,
532 &__tens[powers->arrayoff
533 + _FPIO_CONST_OFFSET],
534 powers->arraysize - _FPIO_CONST_OFFSET);
535 tmpsize = scalesize + powers->arraysize - _FPIO_CONST_OFFSET;
536 if (cy == 0)
537 --tmpsize;
540 if (MPN_GE (frac, tmp))
542 int cnt;
543 MPN_ASSIGN (scale, tmp);
544 count_leading_zeros (cnt, scale[scalesize - 1]);
545 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
546 exp10 |= 1 << explog;
549 --explog;
551 while (powers > &_fpioconst_pow10[0]);
552 exponent = exp10;
554 /* Optimize number representations. We want to represent the numbers
555 with the lowest number of bytes possible without losing any
556 bytes. Also the highest bit in the scaling factor has to be set
557 (this is a requirement of the MPN division routines). */
558 if (scalesize > 0)
560 /* Determine minimum number of zero bits at the end of
561 both numbers. */
562 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
565 /* Determine number of bits the scaling factor is misplaced. */
566 count_leading_zeros (cnt_h, scale[scalesize - 1]);
568 if (cnt_h == 0)
570 /* The highest bit of the scaling factor is already set. So
571 we only have to remove the trailing empty limbs. */
572 if (i > 0)
574 MPN_COPY_INCR (scale, scale + i, scalesize - i);
575 scalesize -= i;
576 MPN_COPY_INCR (frac, frac + i, fracsize - i);
577 fracsize -= i;
580 else
582 if (scale[i] != 0)
584 count_trailing_zeros (cnt_l, scale[i]);
585 if (frac[i] != 0)
587 int cnt_l2;
588 count_trailing_zeros (cnt_l2, frac[i]);
589 if (cnt_l2 < cnt_l)
590 cnt_l = cnt_l2;
593 else
594 count_trailing_zeros (cnt_l, frac[i]);
596 /* Now shift the numbers to their optimal position. */
597 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
599 /* We cannot save any memory. So just roll both numbers
600 so that the scaling factor has its highest bit set. */
602 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
603 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
604 if (cy != 0)
605 frac[fracsize++] = cy;
607 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
609 /* We can save memory by removing the trailing zero limbs
610 and by packing the non-zero limbs which gain another
611 free one. */
613 (void) __mpn_rshift (scale, scale + i, scalesize - i,
614 BITS_PER_MP_LIMB - cnt_h);
615 scalesize -= i + 1;
616 (void) __mpn_rshift (frac, frac + i, fracsize - i,
617 BITS_PER_MP_LIMB - cnt_h);
618 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
620 else
622 /* We can only save the memory of the limbs which are zero.
623 The non-zero parts occupy the same number of limbs. */
625 (void) __mpn_rshift (scale, scale + (i - 1),
626 scalesize - (i - 1),
627 BITS_PER_MP_LIMB - cnt_h);
628 scalesize -= i;
629 (void) __mpn_rshift (frac, frac + (i - 1),
630 fracsize - (i - 1),
631 BITS_PER_MP_LIMB - cnt_h);
632 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
637 else if (exponent < 0)
639 /* |FP| < 1.0. */
640 int exp10 = 0;
641 int explog = LDBL_MAX_10_EXP_LOG;
642 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
643 mp_size_t used_limbs = fracsize - 1;
645 /* Now shift the input value to its right place. */
646 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
647 frac[fracsize++] = cy;
648 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
650 expsign = 1;
651 exponent = -exponent;
653 assert (powers != &_fpioconst_pow10[0]);
656 --powers;
658 if (exponent >= powers->m_expo)
660 int i, incr, cnt_h, cnt_l;
661 mp_limb_t topval[2];
663 /* The __mpn_mul function expects the first argument to be
664 bigger than the second. */
665 if (fracsize < powers->arraysize - _FPIO_CONST_OFFSET)
666 cy = __mpn_mul (tmp, &__tens[powers->arrayoff
667 + _FPIO_CONST_OFFSET],
668 powers->arraysize - _FPIO_CONST_OFFSET,
669 frac, fracsize);
670 else
671 cy = __mpn_mul (tmp, frac, fracsize,
672 &__tens[powers->arrayoff + _FPIO_CONST_OFFSET],
673 powers->arraysize - _FPIO_CONST_OFFSET);
674 tmpsize = fracsize + powers->arraysize - _FPIO_CONST_OFFSET;
675 if (cy == 0)
676 --tmpsize;
678 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
679 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
680 + BITS_PER_MP_LIMB - 1 - cnt_h;
682 assert (incr <= powers->p_expo);
684 /* If we increased the exponent by exactly 3 we have to test
685 for overflow. This is done by comparing with 10 shifted
686 to the right position. */
687 if (incr == exponent + 3)
689 if (cnt_h <= BITS_PER_MP_LIMB - 4)
691 topval[0] = 0;
692 topval[1]
693 = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
695 else
697 topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
698 topval[1] = 0;
699 (void) __mpn_lshift (topval, topval, 2,
700 BITS_PER_MP_LIMB - cnt_h);
704 /* We have to be careful when multiplying the last factor.
705 If the result is greater than 1.0 be have to test it
706 against 10.0. If it is greater or equal to 10.0 the
707 multiplication was not valid. This is because we cannot
708 determine the number of bits in the result in advance. */
709 if (incr < exponent + 3
710 || (incr == exponent + 3 &&
711 (tmp[tmpsize - 1] < topval[1]
712 || (tmp[tmpsize - 1] == topval[1]
713 && tmp[tmpsize - 2] < topval[0]))))
715 /* The factor is right. Adapt binary and decimal
716 exponents. */
717 exponent -= incr;
718 exp10 |= 1 << explog;
720 /* If this factor yields a number greater or equal to
721 1.0, we must not shift the non-fractional digits down. */
722 if (exponent < 0)
723 cnt_h += -exponent;
725 /* Now we optimize the number representation. */
726 for (i = 0; tmp[i] == 0; ++i);
727 if (cnt_h == BITS_PER_MP_LIMB - 1)
729 MPN_COPY (frac, tmp + i, tmpsize - i);
730 fracsize = tmpsize - i;
732 else
734 count_trailing_zeros (cnt_l, tmp[i]);
736 /* Now shift the numbers to their optimal position. */
737 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
739 /* We cannot save any memory. Just roll the
740 number so that the leading digit is in a
741 separate limb. */
743 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
744 fracsize = tmpsize + 1;
745 frac[fracsize - 1] = cy;
747 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
749 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
750 BITS_PER_MP_LIMB - 1 - cnt_h);
751 fracsize = tmpsize - i;
753 else
755 /* We can only save the memory of the limbs which
756 are zero. The non-zero parts occupy the same
757 number of limbs. */
759 (void) __mpn_rshift (frac, tmp + (i - 1),
760 tmpsize - (i - 1),
761 BITS_PER_MP_LIMB - 1 - cnt_h);
762 fracsize = tmpsize - (i - 1);
765 used_limbs = fracsize - 1;
768 --explog;
770 while (powers != &_fpioconst_pow10[1] && exponent > 0);
771 /* All factors but 10^-1 are tested now. */
772 if (exponent > 0)
774 int cnt_l;
776 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
777 tmpsize = fracsize;
778 assert (cy == 0 || tmp[tmpsize - 1] < 20);
780 count_trailing_zeros (cnt_l, tmp[0]);
781 if (cnt_l < MIN (4, exponent))
783 cy = __mpn_lshift (frac, tmp, tmpsize,
784 BITS_PER_MP_LIMB - MIN (4, exponent));
785 if (cy != 0)
786 frac[tmpsize++] = cy;
788 else
789 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
790 fracsize = tmpsize;
791 exp10 |= 1;
792 assert (frac[fracsize - 1] < 10);
794 exponent = exp10;
796 else
798 /* This is a special case. We don't need a factor because the
799 numbers are in the range of 1.0 <= |fp| < 8.0. We simply
800 shift it to the right place and divide it by 1.0 to get the
801 leading digit. (Of course this division is not really made.) */
802 assert (0 <= exponent && exponent < 3 &&
803 exponent + to_shift < BITS_PER_MP_LIMB);
805 /* Now shift the input value to its right place. */
806 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
807 frac[fracsize++] = cy;
808 exponent = 0;
812 int width = info->width;
813 wchar_t *wstartp, *wcp;
814 size_t chars_needed;
815 int expscale;
816 int intdig_max, intdig_no = 0;
817 int fracdig_min;
818 int fracdig_max;
819 int dig_max;
820 int significant;
821 int ngroups = 0;
822 char spec = _tolower (info->spec);
824 if (spec == 'e')
826 type = info->spec;
827 intdig_max = 1;
828 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
829 chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
830 /* d . ddd e +- ddd */
831 dig_max = INT_MAX; /* Unlimited. */
832 significant = 1; /* Does not matter here. */
834 else if (spec == 'f')
836 type = 'f';
837 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
838 dig_max = INT_MAX; /* Unlimited. */
839 significant = 1; /* Does not matter here. */
840 if (expsign == 0)
842 intdig_max = exponent + 1;
843 /* This can be really big! */ /* XXX Maybe malloc if too big? */
844 chars_needed = (size_t) exponent + 1 + 1 + (size_t) fracdig_max;
846 else
848 intdig_max = 1;
849 chars_needed = 1 + 1 + (size_t) fracdig_max;
852 else
854 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
855 if ((expsign == 0 && exponent >= dig_max)
856 || (expsign != 0 && exponent > 4))
858 if ('g' - 'G' == 'e' - 'E')
859 type = 'E' + (info->spec - 'G');
860 else
861 type = isupper (info->spec) ? 'E' : 'e';
862 fracdig_max = dig_max - 1;
863 intdig_max = 1;
864 chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
866 else
868 type = 'f';
869 intdig_max = expsign == 0 ? exponent + 1 : 0;
870 fracdig_max = dig_max - intdig_max;
871 /* We need space for the significant digits and perhaps
872 for leading zeros when < 1.0. The number of leading
873 zeros can be as many as would be required for
874 exponential notation with a negative two-digit
875 exponent, which is 4. */
876 chars_needed = (size_t) dig_max + 1 + 4;
878 fracdig_min = info->alt ? fracdig_max : 0;
879 significant = 0; /* We count significant digits. */
882 if (grouping)
884 /* Guess the number of groups we will make, and thus how
885 many spaces we need for separator characters. */
886 ngroups = __guess_grouping (intdig_max, grouping);
887 chars_needed += ngroups;
890 /* Allocate buffer for output. We need two more because while rounding
891 it is possible that we need two more characters in front of all the
892 other output. If the amount of memory we have to allocate is too
893 large use `malloc' instead of `alloca'. */
894 size_t wbuffer_to_alloc = (2 + (size_t) chars_needed) * sizeof (wchar_t);
895 buffer_malloced = ! __libc_use_alloca (chars_needed * 2 * sizeof (wchar_t));
896 if (__builtin_expect (buffer_malloced, 0))
898 wbuffer = (wchar_t *) malloc (wbuffer_to_alloc);
899 if (wbuffer == NULL)
900 /* Signal an error to the caller. */
901 return -1;
903 else
904 wbuffer = (wchar_t *) alloca (wbuffer_to_alloc);
905 wcp = wstartp = wbuffer + 2; /* Let room for rounding. */
907 /* Do the real work: put digits in allocated buffer. */
908 if (expsign == 0 || type != 'f')
910 assert (expsign == 0 || intdig_max == 1);
911 while (intdig_no < intdig_max)
913 ++intdig_no;
914 *wcp++ = hack_digit ();
916 significant = 1;
917 if (info->alt
918 || fracdig_min > 0
919 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
920 *wcp++ = decimalwc;
922 else
924 /* |fp| < 1.0 and the selected type is 'f', so put "0."
925 in the buffer. */
926 *wcp++ = L'0';
927 --exponent;
928 *wcp++ = decimalwc;
931 /* Generate the needed number of fractional digits. */
932 int fracdig_no = 0;
933 int added_zeros = 0;
934 while (fracdig_no < fracdig_min + added_zeros
935 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
937 ++fracdig_no;
938 *wcp = hack_digit ();
939 if (*wcp++ != L'0')
940 significant = 1;
941 else if (significant == 0)
943 ++fracdig_max;
944 if (fracdig_min > 0)
945 ++added_zeros;
949 /* Do rounding. */
950 digit = hack_digit ();
951 if (digit > L'4')
953 wchar_t *wtp = wcp;
955 if (digit == L'5'
956 && ((*(wcp - 1) != decimalwc && (*(wcp - 1) & 1) == 0)
957 || ((*(wcp - 1) == decimalwc && (*(wcp - 2) & 1) == 0))))
959 /* This is the critical case. */
960 if (fracsize == 1 && frac[0] == 0)
961 /* Rest of the number is zero -> round to even.
962 (IEEE 754-1985 4.1 says this is the default rounding.) */
963 goto do_expo;
964 else if (scalesize == 0)
966 /* Here we have to see whether all limbs are zero since no
967 normalization happened. */
968 size_t lcnt = fracsize;
969 while (lcnt >= 1 && frac[lcnt - 1] == 0)
970 --lcnt;
971 if (lcnt == 0)
972 /* Rest of the number is zero -> round to even.
973 (IEEE 754-1985 4.1 says this is the default rounding.) */
974 goto do_expo;
978 if (fracdig_no > 0)
980 /* Process fractional digits. Terminate if not rounded or
981 radix character is reached. */
982 int removed = 0;
983 while (*--wtp != decimalwc && *wtp == L'9')
985 *wtp = L'0';
986 ++removed;
988 if (removed == fracdig_min && added_zeros > 0)
989 --added_zeros;
990 if (*wtp != decimalwc)
991 /* Round up. */
992 (*wtp)++;
993 else if (__builtin_expect (spec == 'g' && type == 'f' && info->alt
994 && wtp == wstartp + 1
995 && wstartp[0] == L'0',
997 /* This is a special case: the rounded number is 1.0,
998 the format is 'g' or 'G', and the alternative format
999 is selected. This means the result must be "1.". */
1000 --added_zeros;
1003 if (fracdig_no == 0 || *wtp == decimalwc)
1005 /* Round the integer digits. */
1006 if (*(wtp - 1) == decimalwc)
1007 --wtp;
1009 while (--wtp >= wstartp && *wtp == L'9')
1010 *wtp = L'0';
1012 if (wtp >= wstartp)
1013 /* Round up. */
1014 (*wtp)++;
1015 else
1016 /* It is more critical. All digits were 9's. */
1018 if (type != 'f')
1020 *wstartp = '1';
1021 exponent += expsign == 0 ? 1 : -1;
1023 /* The above exponent adjustment could lead to 1.0e-00,
1024 e.g. for 0.999999999. Make sure exponent 0 always
1025 uses + sign. */
1026 if (exponent == 0)
1027 expsign = 0;
1029 else if (intdig_no == dig_max)
1031 /* This is the case where for type %g the number fits
1032 really in the range for %f output but after rounding
1033 the number of digits is too big. */
1034 *--wstartp = decimalwc;
1035 *--wstartp = L'1';
1037 if (info->alt || fracdig_no > 0)
1039 /* Overwrite the old radix character. */
1040 wstartp[intdig_no + 2] = L'0';
1041 ++fracdig_no;
1044 fracdig_no += intdig_no;
1045 intdig_no = 1;
1046 fracdig_max = intdig_max - intdig_no;
1047 ++exponent;
1048 /* Now we must print the exponent. */
1049 type = isupper (info->spec) ? 'E' : 'e';
1051 else
1053 /* We can simply add another another digit before the
1054 radix. */
1055 *--wstartp = L'1';
1056 ++intdig_no;
1059 /* While rounding the number of digits can change.
1060 If the number now exceeds the limits remove some
1061 fractional digits. */
1062 if (intdig_no + fracdig_no > dig_max)
1064 wcp -= intdig_no + fracdig_no - dig_max;
1065 fracdig_no -= intdig_no + fracdig_no - dig_max;
1071 do_expo:
1072 /* Now remove unnecessary '0' at the end of the string. */
1073 while (fracdig_no > fracdig_min + added_zeros && *(wcp - 1) == L'0')
1075 --wcp;
1076 --fracdig_no;
1078 /* If we eliminate all fractional digits we perhaps also can remove
1079 the radix character. */
1080 if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc)
1081 --wcp;
1083 if (grouping)
1084 /* Add in separator characters, overwriting the same buffer. */
1085 wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc,
1086 ngroups);
1088 /* Write the exponent if it is needed. */
1089 if (type != 'f')
1091 if (__builtin_expect (expsign != 0 && exponent == 4 && spec == 'g', 0))
1093 /* This is another special case. The exponent of the number is
1094 really smaller than -4, which requires the 'e'/'E' format.
1095 But after rounding the number has an exponent of -4. */
1096 assert (wcp >= wstartp + 1);
1097 assert (wstartp[0] == L'1');
1098 __wmemcpy (wstartp, L"0.0001", 6);
1099 wstartp[1] = decimalwc;
1100 if (wcp >= wstartp + 2)
1102 wmemset (wstartp + 6, L'0', wcp - (wstartp + 2));
1103 wcp += 4;
1105 else
1106 wcp += 5;
1108 else
1110 *wcp++ = (wchar_t) type;
1111 *wcp++ = expsign ? L'-' : L'+';
1113 /* Find the magnitude of the exponent. */
1114 expscale = 10;
1115 while (expscale <= exponent)
1116 expscale *= 10;
1118 if (exponent < 10)
1119 /* Exponent always has at least two digits. */
1120 *wcp++ = L'0';
1121 else
1124 expscale /= 10;
1125 *wcp++ = L'0' + (exponent / expscale);
1126 exponent %= expscale;
1128 while (expscale > 10);
1129 *wcp++ = L'0' + exponent;
1133 /* Compute number of characters which must be filled with the padding
1134 character. */
1135 if (is_neg || info->showsign || info->space)
1136 --width;
1137 width -= wcp - wstartp;
1139 if (!info->left && info->pad != '0' && width > 0)
1140 PADN (info->pad, width);
1142 if (is_neg)
1143 outchar ('-');
1144 else if (info->showsign)
1145 outchar ('+');
1146 else if (info->space)
1147 outchar (' ');
1149 if (!info->left && info->pad == '0' && width > 0)
1150 PADN ('0', width);
1153 char *buffer = NULL;
1154 char *buffer_end = NULL;
1155 char *cp = NULL;
1156 char *tmpptr;
1158 if (! wide)
1160 /* Create the single byte string. */
1161 size_t decimal_len;
1162 size_t thousands_sep_len;
1163 wchar_t *copywc;
1164 size_t factor = (info->i18n
1165 ? _NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MB_CUR_MAX)
1166 : 1);
1168 decimal_len = strlen (decimal);
1170 if (thousands_sep == NULL)
1171 thousands_sep_len = 0;
1172 else
1173 thousands_sep_len = strlen (thousands_sep);
1175 size_t nbuffer = (2 + chars_needed * factor + decimal_len
1176 + ngroups * thousands_sep_len);
1177 if (__builtin_expect (buffer_malloced, 0))
1179 buffer = (char *) malloc (nbuffer);
1180 if (buffer == NULL)
1182 /* Signal an error to the caller. */
1183 free (wbuffer);
1184 return -1;
1187 else
1188 buffer = (char *) alloca (nbuffer);
1189 buffer_end = buffer + nbuffer;
1191 /* Now copy the wide character string. Since the character
1192 (except for the decimal point and thousands separator) must
1193 be coming from the ASCII range we can esily convert the
1194 string without mapping tables. */
1195 for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc)
1196 if (*copywc == decimalwc)
1197 cp = (char *) __mempcpy (cp, decimal, decimal_len);
1198 else if (*copywc == thousands_sepwc)
1199 cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len);
1200 else
1201 *cp++ = (char) *copywc;
1204 tmpptr = buffer;
1205 if (__builtin_expect (info->i18n, 0))
1207 #ifdef COMPILE_WPRINTF
1208 wstartp = _i18n_number_rewrite (wstartp, wcp,
1209 wbuffer + wbuffer_to_alloc);
1210 wcp = wbuffer + wbuffer_to_alloc;
1211 assert ((uintptr_t) wbuffer <= (uintptr_t) wstartp);
1212 assert ((uintptr_t) wstartp
1213 < (uintptr_t) wbuffer + wbuffer_to_alloc);
1214 #else
1215 tmpptr = _i18n_number_rewrite (tmpptr, cp, buffer_end);
1216 cp = buffer_end;
1217 assert ((uintptr_t) buffer <= (uintptr_t) tmpptr);
1218 assert ((uintptr_t) tmpptr < (uintptr_t) buffer_end);
1219 #endif
1222 PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr);
1224 /* Free the memory if necessary. */
1225 if (__builtin_expect (buffer_malloced, 0))
1227 free (buffer);
1228 free (wbuffer);
1232 if (info->left && width > 0)
1233 PADN (info->pad, width);
1235 return done;
1237 ldbl_hidden_def (___printf_fp, __printf_fp)
1238 ldbl_strong_alias (___printf_fp, __printf_fp)
1240 /* Return the number of extra grouping characters that will be inserted
1241 into a number with INTDIG_MAX integer digits. */
1243 unsigned int
1244 __guess_grouping (unsigned int intdig_max, const char *grouping)
1246 unsigned int groups;
1248 /* We treat all negative values like CHAR_MAX. */
1250 if (*grouping == CHAR_MAX || *grouping <= 0)
1251 /* No grouping should be done. */
1252 return 0;
1254 groups = 0;
1255 while (intdig_max > (unsigned int) *grouping)
1257 ++groups;
1258 intdig_max -= *grouping++;
1260 if (*grouping == CHAR_MAX
1261 #if CHAR_MIN < 0
1262 || *grouping < 0
1263 #endif
1265 /* No more grouping should be done. */
1266 break;
1267 else if (*grouping == 0)
1269 /* Same grouping repeats. */
1270 groups += (intdig_max - 1) / grouping[-1];
1271 break;
1275 return groups;
1278 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1279 There is guaranteed enough space past BUFEND to extend it.
1280 Return the new end of buffer. */
1282 static wchar_t *
1283 internal_function
1284 group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no,
1285 const char *grouping, wchar_t thousands_sep, int ngroups)
1287 wchar_t *p;
1289 if (ngroups == 0)
1290 return bufend;
1292 /* Move the fractional part down. */
1293 __wmemmove (buf + intdig_no + ngroups, buf + intdig_no,
1294 bufend - (buf + intdig_no));
1296 p = buf + intdig_no + ngroups - 1;
1299 unsigned int len = *grouping++;
1301 *p-- = buf[--intdig_no];
1302 while (--len > 0);
1303 *p-- = thousands_sep;
1305 if (*grouping == CHAR_MAX
1306 #if CHAR_MIN < 0
1307 || *grouping < 0
1308 #endif
1310 /* No more grouping should be done. */
1311 break;
1312 else if (*grouping == 0)
1313 /* Same grouping repeats. */
1314 --grouping;
1315 } while (intdig_no > (unsigned int) *grouping);
1317 /* Copy the remaining ungrouped digits. */
1319 *p-- = buf[--intdig_no];
1320 while (p > buf);
1322 return bufend + ngroups;