hurd: Fix getting ssize_t for <sys/socket.h>
[glibc.git] / malloc / malloc.c
blob1c2a0b05b78c84cea60ee998108180d51b1f1ddf
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2017 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If
19 not, see <http://www.gnu.org/licenses/>. */
22 This is a version (aka ptmalloc2) of malloc/free/realloc written by
23 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
25 There have been substantial changes made after the integration into
26 glibc in all parts of the code. Do not look for much commonality
27 with the ptmalloc2 version.
29 * Version ptmalloc2-20011215
30 based on:
31 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
33 * Quickstart
35 In order to compile this implementation, a Makefile is provided with
36 the ptmalloc2 distribution, which has pre-defined targets for some
37 popular systems (e.g. "make posix" for Posix threads). All that is
38 typically required with regard to compiler flags is the selection of
39 the thread package via defining one out of USE_PTHREADS, USE_THR or
40 USE_SPROC. Check the thread-m.h file for what effects this has.
41 Many/most systems will additionally require USE_TSD_DATA_HACK to be
42 defined, so this is the default for "make posix".
44 * Why use this malloc?
46 This is not the fastest, most space-conserving, most portable, or
47 most tunable malloc ever written. However it is among the fastest
48 while also being among the most space-conserving, portable and tunable.
49 Consistent balance across these factors results in a good general-purpose
50 allocator for malloc-intensive programs.
52 The main properties of the algorithms are:
53 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
54 with ties normally decided via FIFO (i.e. least recently used).
55 * For small (<= 64 bytes by default) requests, it is a caching
56 allocator, that maintains pools of quickly recycled chunks.
57 * In between, and for combinations of large and small requests, it does
58 the best it can trying to meet both goals at once.
59 * For very large requests (>= 128KB by default), it relies on system
60 memory mapping facilities, if supported.
62 For a longer but slightly out of date high-level description, see
63 http://gee.cs.oswego.edu/dl/html/malloc.html
65 You may already by default be using a C library containing a malloc
66 that is based on some version of this malloc (for example in
67 linux). You might still want to use the one in this file in order to
68 customize settings or to avoid overheads associated with library
69 versions.
71 * Contents, described in more detail in "description of public routines" below.
73 Standard (ANSI/SVID/...) functions:
74 malloc(size_t n);
75 calloc(size_t n_elements, size_t element_size);
76 free(void* p);
77 realloc(void* p, size_t n);
78 memalign(size_t alignment, size_t n);
79 valloc(size_t n);
80 mallinfo()
81 mallopt(int parameter_number, int parameter_value)
83 Additional functions:
84 independent_calloc(size_t n_elements, size_t size, void* chunks[]);
85 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
86 pvalloc(size_t n);
87 malloc_trim(size_t pad);
88 malloc_usable_size(void* p);
89 malloc_stats();
91 * Vital statistics:
93 Supported pointer representation: 4 or 8 bytes
94 Supported size_t representation: 4 or 8 bytes
95 Note that size_t is allowed to be 4 bytes even if pointers are 8.
96 You can adjust this by defining INTERNAL_SIZE_T
98 Alignment: 2 * sizeof(size_t) (default)
99 (i.e., 8 byte alignment with 4byte size_t). This suffices for
100 nearly all current machines and C compilers. However, you can
101 define MALLOC_ALIGNMENT to be wider than this if necessary.
103 Minimum overhead per allocated chunk: 4 or 8 bytes
104 Each malloced chunk has a hidden word of overhead holding size
105 and status information.
107 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
108 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
110 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
111 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
112 needed; 4 (8) for a trailing size field and 8 (16) bytes for
113 free list pointers. Thus, the minimum allocatable size is
114 16/24/32 bytes.
116 Even a request for zero bytes (i.e., malloc(0)) returns a
117 pointer to something of the minimum allocatable size.
119 The maximum overhead wastage (i.e., number of extra bytes
120 allocated than were requested in malloc) is less than or equal
121 to the minimum size, except for requests >= mmap_threshold that
122 are serviced via mmap(), where the worst case wastage is 2 *
123 sizeof(size_t) bytes plus the remainder from a system page (the
124 minimal mmap unit); typically 4096 or 8192 bytes.
126 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
127 8-byte size_t: 2^64 minus about two pages
129 It is assumed that (possibly signed) size_t values suffice to
130 represent chunk sizes. `Possibly signed' is due to the fact
131 that `size_t' may be defined on a system as either a signed or
132 an unsigned type. The ISO C standard says that it must be
133 unsigned, but a few systems are known not to adhere to this.
134 Additionally, even when size_t is unsigned, sbrk (which is by
135 default used to obtain memory from system) accepts signed
136 arguments, and may not be able to handle size_t-wide arguments
137 with negative sign bit. Generally, values that would
138 appear as negative after accounting for overhead and alignment
139 are supported only via mmap(), which does not have this
140 limitation.
142 Requests for sizes outside the allowed range will perform an optional
143 failure action and then return null. (Requests may also
144 also fail because a system is out of memory.)
146 Thread-safety: thread-safe
148 Compliance: I believe it is compliant with the 1997 Single Unix Specification
149 Also SVID/XPG, ANSI C, and probably others as well.
151 * Synopsis of compile-time options:
153 People have reported using previous versions of this malloc on all
154 versions of Unix, sometimes by tweaking some of the defines
155 below. It has been tested most extensively on Solaris and Linux.
156 People also report using it in stand-alone embedded systems.
158 The implementation is in straight, hand-tuned ANSI C. It is not
159 at all modular. (Sorry!) It uses a lot of macros. To be at all
160 usable, this code should be compiled using an optimizing compiler
161 (for example gcc -O3) that can simplify expressions and control
162 paths. (FAQ: some macros import variables as arguments rather than
163 declare locals because people reported that some debuggers
164 otherwise get confused.)
166 OPTION DEFAULT VALUE
168 Compilation Environment options:
170 HAVE_MREMAP 0
172 Changing default word sizes:
174 INTERNAL_SIZE_T size_t
176 Configuration and functionality options:
178 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
179 USE_MALLOC_LOCK NOT defined
180 MALLOC_DEBUG NOT defined
181 REALLOC_ZERO_BYTES_FREES 1
182 TRIM_FASTBINS 0
184 Options for customizing MORECORE:
186 MORECORE sbrk
187 MORECORE_FAILURE -1
188 MORECORE_CONTIGUOUS 1
189 MORECORE_CANNOT_TRIM NOT defined
190 MORECORE_CLEARS 1
191 MMAP_AS_MORECORE_SIZE (1024 * 1024)
193 Tuning options that are also dynamically changeable via mallopt:
195 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
196 DEFAULT_TRIM_THRESHOLD 128 * 1024
197 DEFAULT_TOP_PAD 0
198 DEFAULT_MMAP_THRESHOLD 128 * 1024
199 DEFAULT_MMAP_MAX 65536
201 There are several other #defined constants and macros that you
202 probably don't want to touch unless you are extending or adapting malloc. */
205 void* is the pointer type that malloc should say it returns
208 #ifndef void
209 #define void void
210 #endif /*void*/
212 #include <stddef.h> /* for size_t */
213 #include <stdlib.h> /* for getenv(), abort() */
214 #include <unistd.h> /* for __libc_enable_secure */
216 #include <atomic.h>
217 #include <_itoa.h>
218 #include <bits/wordsize.h>
219 #include <sys/sysinfo.h>
221 #include <ldsodefs.h>
223 #include <unistd.h>
224 #include <stdio.h> /* needed for malloc_stats */
225 #include <errno.h>
227 #include <shlib-compat.h>
229 /* For uintptr_t. */
230 #include <stdint.h>
232 /* For va_arg, va_start, va_end. */
233 #include <stdarg.h>
235 /* For MIN, MAX, powerof2. */
236 #include <sys/param.h>
238 /* For ALIGN_UP et. al. */
239 #include <libc-pointer-arith.h>
241 /* For DIAG_PUSH/POP_NEEDS_COMMENT et al. */
242 #include <libc-diag.h>
244 #include <malloc/malloc-internal.h>
247 Debugging:
249 Because freed chunks may be overwritten with bookkeeping fields, this
250 malloc will often die when freed memory is overwritten by user
251 programs. This can be very effective (albeit in an annoying way)
252 in helping track down dangling pointers.
254 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
255 enabled that will catch more memory errors. You probably won't be
256 able to make much sense of the actual assertion errors, but they
257 should help you locate incorrectly overwritten memory. The checking
258 is fairly extensive, and will slow down execution
259 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
260 will attempt to check every non-mmapped allocated and free chunk in
261 the course of computing the summmaries. (By nature, mmapped regions
262 cannot be checked very much automatically.)
264 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
265 this code. The assertions in the check routines spell out in more
266 detail the assumptions and invariants underlying the algorithms.
268 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
269 checking that all accesses to malloced memory stay within their
270 bounds. However, there are several add-ons and adaptations of this
271 or other mallocs available that do this.
274 #ifndef MALLOC_DEBUG
275 #define MALLOC_DEBUG 0
276 #endif
278 #ifdef NDEBUG
279 # define assert(expr) ((void) 0)
280 #else
281 # define assert(expr) \
282 ((expr) \
283 ? ((void) 0) \
284 : __malloc_assert (#expr, __FILE__, __LINE__, __func__))
286 extern const char *__progname;
288 static void
289 __malloc_assert (const char *assertion, const char *file, unsigned int line,
290 const char *function)
292 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
293 __progname, __progname[0] ? ": " : "",
294 file, line,
295 function ? function : "", function ? ": " : "",
296 assertion);
297 fflush (stderr);
298 abort ();
300 #endif
302 #if USE_TCACHE
303 /* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */
304 # define TCACHE_MAX_BINS 64
305 # define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1)
307 /* Only used to pre-fill the tunables. */
308 # define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ)
310 /* When "x" is from chunksize(). */
311 # define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT)
312 /* When "x" is a user-provided size. */
313 # define usize2tidx(x) csize2tidx (request2size (x))
315 /* With rounding and alignment, the bins are...
316 idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit)
317 idx 1 bytes 25..40 or 13..20
318 idx 2 bytes 41..56 or 21..28
319 etc. */
321 /* This is another arbitrary limit, which tunables can change. Each
322 tcache bin will hold at most this number of chunks. */
323 # define TCACHE_FILL_COUNT 7
324 #endif
328 REALLOC_ZERO_BYTES_FREES should be set if a call to
329 realloc with zero bytes should be the same as a call to free.
330 This is required by the C standard. Otherwise, since this malloc
331 returns a unique pointer for malloc(0), so does realloc(p, 0).
334 #ifndef REALLOC_ZERO_BYTES_FREES
335 #define REALLOC_ZERO_BYTES_FREES 1
336 #endif
339 TRIM_FASTBINS controls whether free() of a very small chunk can
340 immediately lead to trimming. Setting to true (1) can reduce memory
341 footprint, but will almost always slow down programs that use a lot
342 of small chunks.
344 Define this only if you are willing to give up some speed to more
345 aggressively reduce system-level memory footprint when releasing
346 memory in programs that use many small chunks. You can get
347 essentially the same effect by setting MXFAST to 0, but this can
348 lead to even greater slowdowns in programs using many small chunks.
349 TRIM_FASTBINS is an in-between compile-time option, that disables
350 only those chunks bordering topmost memory from being placed in
351 fastbins.
354 #ifndef TRIM_FASTBINS
355 #define TRIM_FASTBINS 0
356 #endif
359 /* Definition for getting more memory from the OS. */
360 #define MORECORE (*__morecore)
361 #define MORECORE_FAILURE 0
362 void * __default_morecore (ptrdiff_t);
363 void *(*__morecore)(ptrdiff_t) = __default_morecore;
366 #include <string.h>
369 MORECORE-related declarations. By default, rely on sbrk
374 MORECORE is the name of the routine to call to obtain more memory
375 from the system. See below for general guidance on writing
376 alternative MORECORE functions, as well as a version for WIN32 and a
377 sample version for pre-OSX macos.
380 #ifndef MORECORE
381 #define MORECORE sbrk
382 #endif
385 MORECORE_FAILURE is the value returned upon failure of MORECORE
386 as well as mmap. Since it cannot be an otherwise valid memory address,
387 and must reflect values of standard sys calls, you probably ought not
388 try to redefine it.
391 #ifndef MORECORE_FAILURE
392 #define MORECORE_FAILURE (-1)
393 #endif
396 If MORECORE_CONTIGUOUS is true, take advantage of fact that
397 consecutive calls to MORECORE with positive arguments always return
398 contiguous increasing addresses. This is true of unix sbrk. Even
399 if not defined, when regions happen to be contiguous, malloc will
400 permit allocations spanning regions obtained from different
401 calls. But defining this when applicable enables some stronger
402 consistency checks and space efficiencies.
405 #ifndef MORECORE_CONTIGUOUS
406 #define MORECORE_CONTIGUOUS 1
407 #endif
410 Define MORECORE_CANNOT_TRIM if your version of MORECORE
411 cannot release space back to the system when given negative
412 arguments. This is generally necessary only if you are using
413 a hand-crafted MORECORE function that cannot handle negative arguments.
416 /* #define MORECORE_CANNOT_TRIM */
418 /* MORECORE_CLEARS (default 1)
419 The degree to which the routine mapped to MORECORE zeroes out
420 memory: never (0), only for newly allocated space (1) or always
421 (2). The distinction between (1) and (2) is necessary because on
422 some systems, if the application first decrements and then
423 increments the break value, the contents of the reallocated space
424 are unspecified.
427 #ifndef MORECORE_CLEARS
428 # define MORECORE_CLEARS 1
429 #endif
433 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
434 sbrk fails, and mmap is used as a backup. The value must be a
435 multiple of page size. This backup strategy generally applies only
436 when systems have "holes" in address space, so sbrk cannot perform
437 contiguous expansion, but there is still space available on system.
438 On systems for which this is known to be useful (i.e. most linux
439 kernels), this occurs only when programs allocate huge amounts of
440 memory. Between this, and the fact that mmap regions tend to be
441 limited, the size should be large, to avoid too many mmap calls and
442 thus avoid running out of kernel resources. */
444 #ifndef MMAP_AS_MORECORE_SIZE
445 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
446 #endif
449 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
450 large blocks.
453 #ifndef HAVE_MREMAP
454 #define HAVE_MREMAP 0
455 #endif
457 /* We may need to support __malloc_initialize_hook for backwards
458 compatibility. */
460 #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_24)
461 # define HAVE_MALLOC_INIT_HOOK 1
462 #else
463 # define HAVE_MALLOC_INIT_HOOK 0
464 #endif
468 This version of malloc supports the standard SVID/XPG mallinfo
469 routine that returns a struct containing usage properties and
470 statistics. It should work on any SVID/XPG compliant system that has
471 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
472 install such a thing yourself, cut out the preliminary declarations
473 as described above and below and save them in a malloc.h file. But
474 there's no compelling reason to bother to do this.)
476 The main declaration needed is the mallinfo struct that is returned
477 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
478 bunch of fields that are not even meaningful in this version of
479 malloc. These fields are are instead filled by mallinfo() with
480 other numbers that might be of interest.
484 /* ---------- description of public routines ------------ */
487 malloc(size_t n)
488 Returns a pointer to a newly allocated chunk of at least n bytes, or null
489 if no space is available. Additionally, on failure, errno is
490 set to ENOMEM on ANSI C systems.
492 If n is zero, malloc returns a minumum-sized chunk. (The minimum
493 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
494 systems.) On most systems, size_t is an unsigned type, so calls
495 with negative arguments are interpreted as requests for huge amounts
496 of space, which will often fail. The maximum supported value of n
497 differs across systems, but is in all cases less than the maximum
498 representable value of a size_t.
500 void* __libc_malloc(size_t);
501 libc_hidden_proto (__libc_malloc)
504 free(void* p)
505 Releases the chunk of memory pointed to by p, that had been previously
506 allocated using malloc or a related routine such as realloc.
507 It has no effect if p is null. It can have arbitrary (i.e., bad!)
508 effects if p has already been freed.
510 Unless disabled (using mallopt), freeing very large spaces will
511 when possible, automatically trigger operations that give
512 back unused memory to the system, thus reducing program footprint.
514 void __libc_free(void*);
515 libc_hidden_proto (__libc_free)
518 calloc(size_t n_elements, size_t element_size);
519 Returns a pointer to n_elements * element_size bytes, with all locations
520 set to zero.
522 void* __libc_calloc(size_t, size_t);
525 realloc(void* p, size_t n)
526 Returns a pointer to a chunk of size n that contains the same data
527 as does chunk p up to the minimum of (n, p's size) bytes, or null
528 if no space is available.
530 The returned pointer may or may not be the same as p. The algorithm
531 prefers extending p when possible, otherwise it employs the
532 equivalent of a malloc-copy-free sequence.
534 If p is null, realloc is equivalent to malloc.
536 If space is not available, realloc returns null, errno is set (if on
537 ANSI) and p is NOT freed.
539 if n is for fewer bytes than already held by p, the newly unused
540 space is lopped off and freed if possible. Unless the #define
541 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
542 zero (re)allocates a minimum-sized chunk.
544 Large chunks that were internally obtained via mmap will always be
545 grown using malloc-copy-free sequences unless the system supports
546 MREMAP (currently only linux).
548 The old unix realloc convention of allowing the last-free'd chunk
549 to be used as an argument to realloc is not supported.
551 void* __libc_realloc(void*, size_t);
552 libc_hidden_proto (__libc_realloc)
555 memalign(size_t alignment, size_t n);
556 Returns a pointer to a newly allocated chunk of n bytes, aligned
557 in accord with the alignment argument.
559 The alignment argument should be a power of two. If the argument is
560 not a power of two, the nearest greater power is used.
561 8-byte alignment is guaranteed by normal malloc calls, so don't
562 bother calling memalign with an argument of 8 or less.
564 Overreliance on memalign is a sure way to fragment space.
566 void* __libc_memalign(size_t, size_t);
567 libc_hidden_proto (__libc_memalign)
570 valloc(size_t n);
571 Equivalent to memalign(pagesize, n), where pagesize is the page
572 size of the system. If the pagesize is unknown, 4096 is used.
574 void* __libc_valloc(size_t);
579 mallopt(int parameter_number, int parameter_value)
580 Sets tunable parameters The format is to provide a
581 (parameter-number, parameter-value) pair. mallopt then sets the
582 corresponding parameter to the argument value if it can (i.e., so
583 long as the value is meaningful), and returns 1 if successful else
584 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
585 normally defined in malloc.h. Only one of these (M_MXFAST) is used
586 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
587 so setting them has no effect. But this malloc also supports four
588 other options in mallopt. See below for details. Briefly, supported
589 parameters are as follows (listed defaults are for "typical"
590 configurations).
592 Symbol param # default allowed param values
593 M_MXFAST 1 64 0-80 (0 disables fastbins)
594 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
595 M_TOP_PAD -2 0 any
596 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
597 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
599 int __libc_mallopt(int, int);
600 libc_hidden_proto (__libc_mallopt)
604 mallinfo()
605 Returns (by copy) a struct containing various summary statistics:
607 arena: current total non-mmapped bytes allocated from system
608 ordblks: the number of free chunks
609 smblks: the number of fastbin blocks (i.e., small chunks that
610 have been freed but not use resused or consolidated)
611 hblks: current number of mmapped regions
612 hblkhd: total bytes held in mmapped regions
613 usmblks: always 0
614 fsmblks: total bytes held in fastbin blocks
615 uordblks: current total allocated space (normal or mmapped)
616 fordblks: total free space
617 keepcost: the maximum number of bytes that could ideally be released
618 back to system via malloc_trim. ("ideally" means that
619 it ignores page restrictions etc.)
621 Because these fields are ints, but internal bookkeeping may
622 be kept as longs, the reported values may wrap around zero and
623 thus be inaccurate.
625 struct mallinfo __libc_mallinfo(void);
629 pvalloc(size_t n);
630 Equivalent to valloc(minimum-page-that-holds(n)), that is,
631 round up n to nearest pagesize.
633 void* __libc_pvalloc(size_t);
636 malloc_trim(size_t pad);
638 If possible, gives memory back to the system (via negative
639 arguments to sbrk) if there is unused memory at the `high' end of
640 the malloc pool. You can call this after freeing large blocks of
641 memory to potentially reduce the system-level memory requirements
642 of a program. However, it cannot guarantee to reduce memory. Under
643 some allocation patterns, some large free blocks of memory will be
644 locked between two used chunks, so they cannot be given back to
645 the system.
647 The `pad' argument to malloc_trim represents the amount of free
648 trailing space to leave untrimmed. If this argument is zero,
649 only the minimum amount of memory to maintain internal data
650 structures will be left (one page or less). Non-zero arguments
651 can be supplied to maintain enough trailing space to service
652 future expected allocations without having to re-obtain memory
653 from the system.
655 Malloc_trim returns 1 if it actually released any memory, else 0.
656 On systems that do not support "negative sbrks", it will always
657 return 0.
659 int __malloc_trim(size_t);
662 malloc_usable_size(void* p);
664 Returns the number of bytes you can actually use in
665 an allocated chunk, which may be more than you requested (although
666 often not) due to alignment and minimum size constraints.
667 You can use this many bytes without worrying about
668 overwriting other allocated objects. This is not a particularly great
669 programming practice. malloc_usable_size can be more useful in
670 debugging and assertions, for example:
672 p = malloc(n);
673 assert(malloc_usable_size(p) >= 256);
676 size_t __malloc_usable_size(void*);
679 malloc_stats();
680 Prints on stderr the amount of space obtained from the system (both
681 via sbrk and mmap), the maximum amount (which may be more than
682 current if malloc_trim and/or munmap got called), and the current
683 number of bytes allocated via malloc (or realloc, etc) but not yet
684 freed. Note that this is the number of bytes allocated, not the
685 number requested. It will be larger than the number requested
686 because of alignment and bookkeeping overhead. Because it includes
687 alignment wastage as being in use, this figure may be greater than
688 zero even when no user-level chunks are allocated.
690 The reported current and maximum system memory can be inaccurate if
691 a program makes other calls to system memory allocation functions
692 (normally sbrk) outside of malloc.
694 malloc_stats prints only the most commonly interesting statistics.
695 More information can be obtained by calling mallinfo.
698 void __malloc_stats(void);
701 malloc_get_state(void);
703 Returns the state of all malloc variables in an opaque data
704 structure.
706 void* __malloc_get_state(void);
709 malloc_set_state(void* state);
711 Restore the state of all malloc variables from data obtained with
712 malloc_get_state().
714 int __malloc_set_state(void*);
717 posix_memalign(void **memptr, size_t alignment, size_t size);
719 POSIX wrapper like memalign(), checking for validity of size.
721 int __posix_memalign(void **, size_t, size_t);
723 /* mallopt tuning options */
726 M_MXFAST is the maximum request size used for "fastbins", special bins
727 that hold returned chunks without consolidating their spaces. This
728 enables future requests for chunks of the same size to be handled
729 very quickly, but can increase fragmentation, and thus increase the
730 overall memory footprint of a program.
732 This malloc manages fastbins very conservatively yet still
733 efficiently, so fragmentation is rarely a problem for values less
734 than or equal to the default. The maximum supported value of MXFAST
735 is 80. You wouldn't want it any higher than this anyway. Fastbins
736 are designed especially for use with many small structs, objects or
737 strings -- the default handles structs/objects/arrays with sizes up
738 to 8 4byte fields, or small strings representing words, tokens,
739 etc. Using fastbins for larger objects normally worsens
740 fragmentation without improving speed.
742 M_MXFAST is set in REQUEST size units. It is internally used in
743 chunksize units, which adds padding and alignment. You can reduce
744 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
745 algorithm to be a closer approximation of fifo-best-fit in all cases,
746 not just for larger requests, but will generally cause it to be
747 slower.
751 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
752 #ifndef M_MXFAST
753 #define M_MXFAST 1
754 #endif
756 #ifndef DEFAULT_MXFAST
757 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
758 #endif
762 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
763 to keep before releasing via malloc_trim in free().
765 Automatic trimming is mainly useful in long-lived programs.
766 Because trimming via sbrk can be slow on some systems, and can
767 sometimes be wasteful (in cases where programs immediately
768 afterward allocate more large chunks) the value should be high
769 enough so that your overall system performance would improve by
770 releasing this much memory.
772 The trim threshold and the mmap control parameters (see below)
773 can be traded off with one another. Trimming and mmapping are
774 two different ways of releasing unused memory back to the
775 system. Between these two, it is often possible to keep
776 system-level demands of a long-lived program down to a bare
777 minimum. For example, in one test suite of sessions measuring
778 the XF86 X server on Linux, using a trim threshold of 128K and a
779 mmap threshold of 192K led to near-minimal long term resource
780 consumption.
782 If you are using this malloc in a long-lived program, it should
783 pay to experiment with these values. As a rough guide, you
784 might set to a value close to the average size of a process
785 (program) running on your system. Releasing this much memory
786 would allow such a process to run in memory. Generally, it's
787 worth it to tune for trimming rather tham memory mapping when a
788 program undergoes phases where several large chunks are
789 allocated and released in ways that can reuse each other's
790 storage, perhaps mixed with phases where there are no such
791 chunks at all. And in well-behaved long-lived programs,
792 controlling release of large blocks via trimming versus mapping
793 is usually faster.
795 However, in most programs, these parameters serve mainly as
796 protection against the system-level effects of carrying around
797 massive amounts of unneeded memory. Since frequent calls to
798 sbrk, mmap, and munmap otherwise degrade performance, the default
799 parameters are set to relatively high values that serve only as
800 safeguards.
802 The trim value It must be greater than page size to have any useful
803 effect. To disable trimming completely, you can set to
804 (unsigned long)(-1)
806 Trim settings interact with fastbin (MXFAST) settings: Unless
807 TRIM_FASTBINS is defined, automatic trimming never takes place upon
808 freeing a chunk with size less than or equal to MXFAST. Trimming is
809 instead delayed until subsequent freeing of larger chunks. However,
810 you can still force an attempted trim by calling malloc_trim.
812 Also, trimming is not generally possible in cases where
813 the main arena is obtained via mmap.
815 Note that the trick some people use of mallocing a huge space and
816 then freeing it at program startup, in an attempt to reserve system
817 memory, doesn't have the intended effect under automatic trimming,
818 since that memory will immediately be returned to the system.
821 #define M_TRIM_THRESHOLD -1
823 #ifndef DEFAULT_TRIM_THRESHOLD
824 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
825 #endif
828 M_TOP_PAD is the amount of extra `padding' space to allocate or
829 retain whenever sbrk is called. It is used in two ways internally:
831 * When sbrk is called to extend the top of the arena to satisfy
832 a new malloc request, this much padding is added to the sbrk
833 request.
835 * When malloc_trim is called automatically from free(),
836 it is used as the `pad' argument.
838 In both cases, the actual amount of padding is rounded
839 so that the end of the arena is always a system page boundary.
841 The main reason for using padding is to avoid calling sbrk so
842 often. Having even a small pad greatly reduces the likelihood
843 that nearly every malloc request during program start-up (or
844 after trimming) will invoke sbrk, which needlessly wastes
845 time.
847 Automatic rounding-up to page-size units is normally sufficient
848 to avoid measurable overhead, so the default is 0. However, in
849 systems where sbrk is relatively slow, it can pay to increase
850 this value, at the expense of carrying around more memory than
851 the program needs.
854 #define M_TOP_PAD -2
856 #ifndef DEFAULT_TOP_PAD
857 #define DEFAULT_TOP_PAD (0)
858 #endif
861 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
862 adjusted MMAP_THRESHOLD.
865 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
866 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
867 #endif
869 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
870 /* For 32-bit platforms we cannot increase the maximum mmap
871 threshold much because it is also the minimum value for the
872 maximum heap size and its alignment. Going above 512k (i.e., 1M
873 for new heaps) wastes too much address space. */
874 # if __WORDSIZE == 32
875 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
876 # else
877 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
878 # endif
879 #endif
882 M_MMAP_THRESHOLD is the request size threshold for using mmap()
883 to service a request. Requests of at least this size that cannot
884 be allocated using already-existing space will be serviced via mmap.
885 (If enough normal freed space already exists it is used instead.)
887 Using mmap segregates relatively large chunks of memory so that
888 they can be individually obtained and released from the host
889 system. A request serviced through mmap is never reused by any
890 other request (at least not directly; the system may just so
891 happen to remap successive requests to the same locations).
893 Segregating space in this way has the benefits that:
895 1. Mmapped space can ALWAYS be individually released back
896 to the system, which helps keep the system level memory
897 demands of a long-lived program low.
898 2. Mapped memory can never become `locked' between
899 other chunks, as can happen with normally allocated chunks, which
900 means that even trimming via malloc_trim would not release them.
901 3. On some systems with "holes" in address spaces, mmap can obtain
902 memory that sbrk cannot.
904 However, it has the disadvantages that:
906 1. The space cannot be reclaimed, consolidated, and then
907 used to service later requests, as happens with normal chunks.
908 2. It can lead to more wastage because of mmap page alignment
909 requirements
910 3. It causes malloc performance to be more dependent on host
911 system memory management support routines which may vary in
912 implementation quality and may impose arbitrary
913 limitations. Generally, servicing a request via normal
914 malloc steps is faster than going through a system's mmap.
916 The advantages of mmap nearly always outweigh disadvantages for
917 "large" chunks, but the value of "large" varies across systems. The
918 default is an empirically derived value that works well in most
919 systems.
922 Update in 2006:
923 The above was written in 2001. Since then the world has changed a lot.
924 Memory got bigger. Applications got bigger. The virtual address space
925 layout in 32 bit linux changed.
927 In the new situation, brk() and mmap space is shared and there are no
928 artificial limits on brk size imposed by the kernel. What is more,
929 applications have started using transient allocations larger than the
930 128Kb as was imagined in 2001.
932 The price for mmap is also high now; each time glibc mmaps from the
933 kernel, the kernel is forced to zero out the memory it gives to the
934 application. Zeroing memory is expensive and eats a lot of cache and
935 memory bandwidth. This has nothing to do with the efficiency of the
936 virtual memory system, by doing mmap the kernel just has no choice but
937 to zero.
939 In 2001, the kernel had a maximum size for brk() which was about 800
940 megabytes on 32 bit x86, at that point brk() would hit the first
941 mmaped shared libaries and couldn't expand anymore. With current 2.6
942 kernels, the VA space layout is different and brk() and mmap
943 both can span the entire heap at will.
945 Rather than using a static threshold for the brk/mmap tradeoff,
946 we are now using a simple dynamic one. The goal is still to avoid
947 fragmentation. The old goals we kept are
948 1) try to get the long lived large allocations to use mmap()
949 2) really large allocations should always use mmap()
950 and we're adding now:
951 3) transient allocations should use brk() to avoid forcing the kernel
952 having to zero memory over and over again
954 The implementation works with a sliding threshold, which is by default
955 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
956 out at 128Kb as per the 2001 default.
958 This allows us to satisfy requirement 1) under the assumption that long
959 lived allocations are made early in the process' lifespan, before it has
960 started doing dynamic allocations of the same size (which will
961 increase the threshold).
963 The upperbound on the threshold satisfies requirement 2)
965 The threshold goes up in value when the application frees memory that was
966 allocated with the mmap allocator. The idea is that once the application
967 starts freeing memory of a certain size, it's highly probable that this is
968 a size the application uses for transient allocations. This estimator
969 is there to satisfy the new third requirement.
973 #define M_MMAP_THRESHOLD -3
975 #ifndef DEFAULT_MMAP_THRESHOLD
976 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
977 #endif
980 M_MMAP_MAX is the maximum number of requests to simultaneously
981 service using mmap. This parameter exists because
982 some systems have a limited number of internal tables for
983 use by mmap, and using more than a few of them may degrade
984 performance.
986 The default is set to a value that serves only as a safeguard.
987 Setting to 0 disables use of mmap for servicing large requests.
990 #define M_MMAP_MAX -4
992 #ifndef DEFAULT_MMAP_MAX
993 #define DEFAULT_MMAP_MAX (65536)
994 #endif
996 #include <malloc.h>
998 #ifndef RETURN_ADDRESS
999 #define RETURN_ADDRESS(X_) (NULL)
1000 #endif
1002 /* Forward declarations. */
1003 struct malloc_chunk;
1004 typedef struct malloc_chunk* mchunkptr;
1006 /* Internal routines. */
1008 static void* _int_malloc(mstate, size_t);
1009 static void _int_free(mstate, mchunkptr, int);
1010 static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1011 INTERNAL_SIZE_T);
1012 static void* _int_memalign(mstate, size_t, size_t);
1013 static void* _mid_memalign(size_t, size_t, void *);
1015 static void malloc_printerr(const char *str) __attribute__ ((noreturn));
1017 static void* mem2mem_check(void *p, size_t sz);
1018 static void top_check(void);
1019 static void munmap_chunk(mchunkptr p);
1020 #if HAVE_MREMAP
1021 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size);
1022 #endif
1024 static void* malloc_check(size_t sz, const void *caller);
1025 static void free_check(void* mem, const void *caller);
1026 static void* realloc_check(void* oldmem, size_t bytes,
1027 const void *caller);
1028 static void* memalign_check(size_t alignment, size_t bytes,
1029 const void *caller);
1031 /* ------------------ MMAP support ------------------ */
1034 #include <fcntl.h>
1035 #include <sys/mman.h>
1037 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1038 # define MAP_ANONYMOUS MAP_ANON
1039 #endif
1041 #ifndef MAP_NORESERVE
1042 # define MAP_NORESERVE 0
1043 #endif
1045 #define MMAP(addr, size, prot, flags) \
1046 __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0)
1050 ----------------------- Chunk representations -----------------------
1055 This struct declaration is misleading (but accurate and necessary).
1056 It declares a "view" into memory allowing access to necessary
1057 fields at known offsets from a given base. See explanation below.
1060 struct malloc_chunk {
1062 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
1063 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */
1065 struct malloc_chunk* fd; /* double links -- used only if free. */
1066 struct malloc_chunk* bk;
1068 /* Only used for large blocks: pointer to next larger size. */
1069 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1070 struct malloc_chunk* bk_nextsize;
1075 malloc_chunk details:
1077 (The following includes lightly edited explanations by Colin Plumb.)
1079 Chunks of memory are maintained using a `boundary tag' method as
1080 described in e.g., Knuth or Standish. (See the paper by Paul
1081 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1082 survey of such techniques.) Sizes of free chunks are stored both
1083 in the front of each chunk and at the end. This makes
1084 consolidating fragmented chunks into bigger chunks very fast. The
1085 size fields also hold bits representing whether chunks are free or
1086 in use.
1088 An allocated chunk looks like this:
1091 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1092 | Size of previous chunk, if unallocated (P clear) |
1093 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1094 | Size of chunk, in bytes |A|M|P|
1095 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1096 | User data starts here... .
1098 . (malloc_usable_size() bytes) .
1100 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1101 | (size of chunk, but used for application data) |
1102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1103 | Size of next chunk, in bytes |A|0|1|
1104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1106 Where "chunk" is the front of the chunk for the purpose of most of
1107 the malloc code, but "mem" is the pointer that is returned to the
1108 user. "Nextchunk" is the beginning of the next contiguous chunk.
1110 Chunks always begin on even word boundaries, so the mem portion
1111 (which is returned to the user) is also on an even word boundary, and
1112 thus at least double-word aligned.
1114 Free chunks are stored in circular doubly-linked lists, and look like this:
1116 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1117 | Size of previous chunk, if unallocated (P clear) |
1118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1119 `head:' | Size of chunk, in bytes |A|0|P|
1120 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1121 | Forward pointer to next chunk in list |
1122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1123 | Back pointer to previous chunk in list |
1124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1125 | Unused space (may be 0 bytes long) .
1128 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1129 `foot:' | Size of chunk, in bytes |
1130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1131 | Size of next chunk, in bytes |A|0|0|
1132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1134 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1135 chunk size (which is always a multiple of two words), is an in-use
1136 bit for the *previous* chunk. If that bit is *clear*, then the
1137 word before the current chunk size contains the previous chunk
1138 size, and can be used to find the front of the previous chunk.
1139 The very first chunk allocated always has this bit set,
1140 preventing access to non-existent (or non-owned) memory. If
1141 prev_inuse is set for any given chunk, then you CANNOT determine
1142 the size of the previous chunk, and might even get a memory
1143 addressing fault when trying to do so.
1145 The A (NON_MAIN_ARENA) bit is cleared for chunks on the initial,
1146 main arena, described by the main_arena variable. When additional
1147 threads are spawned, each thread receives its own arena (up to a
1148 configurable limit, after which arenas are reused for multiple
1149 threads), and the chunks in these arenas have the A bit set. To
1150 find the arena for a chunk on such a non-main arena, heap_for_ptr
1151 performs a bit mask operation and indirection through the ar_ptr
1152 member of the per-heap header heap_info (see arena.c).
1154 Note that the `foot' of the current chunk is actually represented
1155 as the prev_size of the NEXT chunk. This makes it easier to
1156 deal with alignments etc but can be very confusing when trying
1157 to extend or adapt this code.
1159 The three exceptions to all this are:
1161 1. The special chunk `top' doesn't bother using the
1162 trailing size field since there is no next contiguous chunk
1163 that would have to index off it. After initialization, `top'
1164 is forced to always exist. If it would become less than
1165 MINSIZE bytes long, it is replenished.
1167 2. Chunks allocated via mmap, which have the second-lowest-order
1168 bit M (IS_MMAPPED) set in their size fields. Because they are
1169 allocated one-by-one, each must contain its own trailing size
1170 field. If the M bit is set, the other bits are ignored
1171 (because mmapped chunks are neither in an arena, nor adjacent
1172 to a freed chunk). The M bit is also used for chunks which
1173 originally came from a dumped heap via malloc_set_state in
1174 hooks.c.
1176 3. Chunks in fastbins are treated as allocated chunks from the
1177 point of view of the chunk allocator. They are consolidated
1178 with their neighbors only in bulk, in malloc_consolidate.
1182 ---------- Size and alignment checks and conversions ----------
1185 /* conversion from malloc headers to user pointers, and back */
1187 #define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ))
1188 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1190 /* The smallest possible chunk */
1191 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1193 /* The smallest size we can malloc is an aligned minimal chunk */
1195 #define MINSIZE \
1196 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1198 /* Check if m has acceptable alignment */
1200 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1202 #define misaligned_chunk(p) \
1203 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1204 & MALLOC_ALIGN_MASK)
1208 Check if a request is so large that it would wrap around zero when
1209 padded and aligned. To simplify some other code, the bound is made
1210 low enough so that adding MINSIZE will also not wrap around zero.
1213 #define REQUEST_OUT_OF_RANGE(req) \
1214 ((unsigned long) (req) >= \
1215 (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE))
1217 /* pad request bytes into a usable size -- internal version */
1219 #define request2size(req) \
1220 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1221 MINSIZE : \
1222 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1224 /* Same, except also perform argument check */
1226 #define checked_request2size(req, sz) \
1227 if (REQUEST_OUT_OF_RANGE (req)) { \
1228 __set_errno (ENOMEM); \
1229 return 0; \
1231 (sz) = request2size (req);
1234 --------------- Physical chunk operations ---------------
1238 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1239 #define PREV_INUSE 0x1
1241 /* extract inuse bit of previous chunk */
1242 #define prev_inuse(p) ((p)->mchunk_size & PREV_INUSE)
1245 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1246 #define IS_MMAPPED 0x2
1248 /* check for mmap()'ed chunk */
1249 #define chunk_is_mmapped(p) ((p)->mchunk_size & IS_MMAPPED)
1252 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1253 from a non-main arena. This is only set immediately before handing
1254 the chunk to the user, if necessary. */
1255 #define NON_MAIN_ARENA 0x4
1257 /* Check for chunk from main arena. */
1258 #define chunk_main_arena(p) (((p)->mchunk_size & NON_MAIN_ARENA) == 0)
1260 /* Mark a chunk as not being on the main arena. */
1261 #define set_non_main_arena(p) ((p)->mchunk_size |= NON_MAIN_ARENA)
1265 Bits to mask off when extracting size
1267 Note: IS_MMAPPED is intentionally not masked off from size field in
1268 macros for which mmapped chunks should never be seen. This should
1269 cause helpful core dumps to occur if it is tried by accident by
1270 people extending or adapting this malloc.
1272 #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)
1274 /* Get size, ignoring use bits */
1275 #define chunksize(p) (chunksize_nomask (p) & ~(SIZE_BITS))
1277 /* Like chunksize, but do not mask SIZE_BITS. */
1278 #define chunksize_nomask(p) ((p)->mchunk_size)
1280 /* Ptr to next physical malloc_chunk. */
1281 #define next_chunk(p) ((mchunkptr) (((char *) (p)) + chunksize (p)))
1283 /* Size of the chunk below P. Only valid if prev_inuse (P). */
1284 #define prev_size(p) ((p)->mchunk_prev_size)
1286 /* Set the size of the chunk below P. Only valid if prev_inuse (P). */
1287 #define set_prev_size(p, sz) ((p)->mchunk_prev_size = (sz))
1289 /* Ptr to previous physical malloc_chunk. Only valid if prev_inuse (P). */
1290 #define prev_chunk(p) ((mchunkptr) (((char *) (p)) - prev_size (p)))
1292 /* Treat space at ptr + offset as a chunk */
1293 #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s)))
1295 /* extract p's inuse bit */
1296 #define inuse(p) \
1297 ((((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size) & PREV_INUSE)
1299 /* set/clear chunk as being inuse without otherwise disturbing */
1300 #define set_inuse(p) \
1301 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size |= PREV_INUSE
1303 #define clear_inuse(p) \
1304 ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size &= ~(PREV_INUSE)
1307 /* check/set/clear inuse bits in known places */
1308 #define inuse_bit_at_offset(p, s) \
1309 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size & PREV_INUSE)
1311 #define set_inuse_bit_at_offset(p, s) \
1312 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size |= PREV_INUSE)
1314 #define clear_inuse_bit_at_offset(p, s) \
1315 (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size &= ~(PREV_INUSE))
1318 /* Set size at head, without disturbing its use bit */
1319 #define set_head_size(p, s) ((p)->mchunk_size = (((p)->mchunk_size & SIZE_BITS) | (s)))
1321 /* Set size/use field */
1322 #define set_head(p, s) ((p)->mchunk_size = (s))
1324 /* Set size at footer (only when chunk is not in use) */
1325 #define set_foot(p, s) (((mchunkptr) ((char *) (p) + (s)))->mchunk_prev_size = (s))
1328 #pragma GCC poison mchunk_size
1329 #pragma GCC poison mchunk_prev_size
1332 -------------------- Internal data structures --------------------
1334 All internal state is held in an instance of malloc_state defined
1335 below. There are no other static variables, except in two optional
1336 cases:
1337 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
1338 * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor
1339 for mmap.
1341 Beware of lots of tricks that minimize the total bookkeeping space
1342 requirements. The result is a little over 1K bytes (for 4byte
1343 pointers and size_t.)
1347 Bins
1349 An array of bin headers for free chunks. Each bin is doubly
1350 linked. The bins are approximately proportionally (log) spaced.
1351 There are a lot of these bins (128). This may look excessive, but
1352 works very well in practice. Most bins hold sizes that are
1353 unusual as malloc request sizes, but are more usual for fragments
1354 and consolidated sets of chunks, which is what these bins hold, so
1355 they can be found quickly. All procedures maintain the invariant
1356 that no consolidated chunk physically borders another one, so each
1357 chunk in a list is known to be preceeded and followed by either
1358 inuse chunks or the ends of memory.
1360 Chunks in bins are kept in size order, with ties going to the
1361 approximately least recently used chunk. Ordering isn't needed
1362 for the small bins, which all contain the same-sized chunks, but
1363 facilitates best-fit allocation for larger chunks. These lists
1364 are just sequential. Keeping them in order almost never requires
1365 enough traversal to warrant using fancier ordered data
1366 structures.
1368 Chunks of the same size are linked with the most
1369 recently freed at the front, and allocations are taken from the
1370 back. This results in LRU (FIFO) allocation order, which tends
1371 to give each chunk an equal opportunity to be consolidated with
1372 adjacent freed chunks, resulting in larger free chunks and less
1373 fragmentation.
1375 To simplify use in double-linked lists, each bin header acts
1376 as a malloc_chunk. This avoids special-casing for headers.
1377 But to conserve space and improve locality, we allocate
1378 only the fd/bk pointers of bins, and then use repositioning tricks
1379 to treat these as the fields of a malloc_chunk*.
1382 typedef struct malloc_chunk *mbinptr;
1384 /* addressing -- note that bin_at(0) does not exist */
1385 #define bin_at(m, i) \
1386 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
1387 - offsetof (struct malloc_chunk, fd))
1389 /* analog of ++bin */
1390 #define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1)))
1392 /* Reminders about list directionality within bins */
1393 #define first(b) ((b)->fd)
1394 #define last(b) ((b)->bk)
1396 /* Take a chunk off a bin list */
1397 #define unlink(AV, P, BK, FD) { \
1398 if (__builtin_expect (chunksize(P) != prev_size (next_chunk(P)), 0)) \
1399 malloc_printerr ("corrupted size vs. prev_size"); \
1400 FD = P->fd; \
1401 BK = P->bk; \
1402 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
1403 malloc_printerr ("corrupted double-linked list"); \
1404 else { \
1405 FD->bk = BK; \
1406 BK->fd = FD; \
1407 if (!in_smallbin_range (chunksize_nomask (P)) \
1408 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
1409 if (__builtin_expect (P->fd_nextsize->bk_nextsize != P, 0) \
1410 || __builtin_expect (P->bk_nextsize->fd_nextsize != P, 0)) \
1411 malloc_printerr ("corrupted double-linked list (not small)"); \
1412 if (FD->fd_nextsize == NULL) { \
1413 if (P->fd_nextsize == P) \
1414 FD->fd_nextsize = FD->bk_nextsize = FD; \
1415 else { \
1416 FD->fd_nextsize = P->fd_nextsize; \
1417 FD->bk_nextsize = P->bk_nextsize; \
1418 P->fd_nextsize->bk_nextsize = FD; \
1419 P->bk_nextsize->fd_nextsize = FD; \
1421 } else { \
1422 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
1423 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
1430 Indexing
1432 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1433 8 bytes apart. Larger bins are approximately logarithmically spaced:
1435 64 bins of size 8
1436 32 bins of size 64
1437 16 bins of size 512
1438 8 bins of size 4096
1439 4 bins of size 32768
1440 2 bins of size 262144
1441 1 bin of size what's left
1443 There is actually a little bit of slop in the numbers in bin_index
1444 for the sake of speed. This makes no difference elsewhere.
1446 The bins top out around 1MB because we expect to service large
1447 requests via mmap.
1449 Bin 0 does not exist. Bin 1 is the unordered list; if that would be
1450 a valid chunk size the small bins are bumped up one.
1453 #define NBINS 128
1454 #define NSMALLBINS 64
1455 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
1456 #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ)
1457 #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH)
1459 #define in_smallbin_range(sz) \
1460 ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE)
1462 #define smallbin_index(sz) \
1463 ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\
1464 + SMALLBIN_CORRECTION)
1466 #define largebin_index_32(sz) \
1467 (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\
1468 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1469 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1470 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1471 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1472 126)
1474 #define largebin_index_32_big(sz) \
1475 (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\
1476 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1477 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1478 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1479 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1480 126)
1482 // XXX It remains to be seen whether it is good to keep the widths of
1483 // XXX the buckets the same or whether it should be scaled by a factor
1484 // XXX of two as well.
1485 #define largebin_index_64(sz) \
1486 (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\
1487 ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\
1488 ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\
1489 ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\
1490 ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\
1491 126)
1493 #define largebin_index(sz) \
1494 (SIZE_SZ == 8 ? largebin_index_64 (sz) \
1495 : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \
1496 : largebin_index_32 (sz))
1498 #define bin_index(sz) \
1499 ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz))
1503 Unsorted chunks
1505 All remainders from chunk splits, as well as all returned chunks,
1506 are first placed in the "unsorted" bin. They are then placed
1507 in regular bins after malloc gives them ONE chance to be used before
1508 binning. So, basically, the unsorted_chunks list acts as a queue,
1509 with chunks being placed on it in free (and malloc_consolidate),
1510 and taken off (to be either used or placed in bins) in malloc.
1512 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
1513 does not have to be taken into account in size comparisons.
1516 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
1517 #define unsorted_chunks(M) (bin_at (M, 1))
1522 The top-most available chunk (i.e., the one bordering the end of
1523 available memory) is treated specially. It is never included in
1524 any bin, is used only if no other chunk is available, and is
1525 released back to the system if it is very large (see
1526 M_TRIM_THRESHOLD). Because top initially
1527 points to its own bin with initial zero size, thus forcing
1528 extension on the first malloc request, we avoid having any special
1529 code in malloc to check whether it even exists yet. But we still
1530 need to do so when getting memory from system, so we make
1531 initial_top treat the bin as a legal but unusable chunk during the
1532 interval between initialization and the first call to
1533 sysmalloc. (This is somewhat delicate, since it relies on
1534 the 2 preceding words to be zero during this interval as well.)
1537 /* Conveniently, the unsorted bin can be used as dummy top on first call */
1538 #define initial_top(M) (unsorted_chunks (M))
1541 Binmap
1543 To help compensate for the large number of bins, a one-level index
1544 structure is used for bin-by-bin searching. `binmap' is a
1545 bitvector recording whether bins are definitely empty so they can
1546 be skipped over during during traversals. The bits are NOT always
1547 cleared as soon as bins are empty, but instead only
1548 when they are noticed to be empty during traversal in malloc.
1551 /* Conservatively use 32 bits per map word, even if on 64bit system */
1552 #define BINMAPSHIFT 5
1553 #define BITSPERMAP (1U << BINMAPSHIFT)
1554 #define BINMAPSIZE (NBINS / BITSPERMAP)
1556 #define idx2block(i) ((i) >> BINMAPSHIFT)
1557 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1))))
1559 #define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i))
1560 #define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i)))
1561 #define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i))
1564 Fastbins
1566 An array of lists holding recently freed small chunks. Fastbins
1567 are not doubly linked. It is faster to single-link them, and
1568 since chunks are never removed from the middles of these lists,
1569 double linking is not necessary. Also, unlike regular bins, they
1570 are not even processed in FIFO order (they use faster LIFO) since
1571 ordering doesn't much matter in the transient contexts in which
1572 fastbins are normally used.
1574 Chunks in fastbins keep their inuse bit set, so they cannot
1575 be consolidated with other free chunks. malloc_consolidate
1576 releases all chunks in fastbins and consolidates them with
1577 other free chunks.
1580 typedef struct malloc_chunk *mfastbinptr;
1581 #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
1583 /* offset 2 to use otherwise unindexable first 2 bins */
1584 #define fastbin_index(sz) \
1585 ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
1588 /* The maximum fastbin request size we support */
1589 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
1591 #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1)
1594 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
1595 that triggers automatic consolidation of possibly-surrounding
1596 fastbin chunks. This is a heuristic, so the exact value should not
1597 matter too much. It is defined at half the default trim threshold as a
1598 compromise heuristic to only attempt consolidation if it is likely
1599 to lead to trimming. However, it is not dynamically tunable, since
1600 consolidation reduces fragmentation surrounding large chunks even
1601 if trimming is not used.
1604 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
1607 Since the lowest 2 bits in max_fast don't matter in size comparisons,
1608 they are used as flags.
1612 FASTCHUNKS_BIT held in max_fast indicates that there are probably
1613 some fastbin chunks. It is set true on entering a chunk into any
1614 fastbin, and cleared only in malloc_consolidate.
1616 The truth value is inverted so that have_fastchunks will be true
1617 upon startup (since statics are zero-filled), simplifying
1618 initialization checks.
1621 #define FASTCHUNKS_BIT (1U)
1623 #define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
1624 #define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
1625 #define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
1628 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
1629 regions. Otherwise, contiguity is exploited in merging together,
1630 when possible, results from consecutive MORECORE calls.
1632 The initial value comes from MORECORE_CONTIGUOUS, but is
1633 changed dynamically if mmap is ever used as an sbrk substitute.
1636 #define NONCONTIGUOUS_BIT (2U)
1638 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
1639 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
1640 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
1641 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
1643 /* Maximum size of memory handled in fastbins. */
1644 static INTERNAL_SIZE_T global_max_fast;
1647 Set value of max_fast.
1648 Use impossibly small value if 0.
1649 Precondition: there are no existing fastbin chunks.
1650 Setting the value clears fastchunk bit but preserves noncontiguous bit.
1653 #define set_max_fast(s) \
1654 global_max_fast = (((s) == 0) \
1655 ? SMALLBIN_WIDTH : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
1657 static inline INTERNAL_SIZE_T
1658 get_max_fast (void)
1660 /* Tell the GCC optimizers that global_max_fast is never larger
1661 than MAX_FAST_SIZE. This avoids out-of-bounds array accesses in
1662 _int_malloc after constant propagation of the size parameter.
1663 (The code never executes because malloc preserves the
1664 global_max_fast invariant, but the optimizers may not recognize
1665 this.) */
1666 if (global_max_fast > MAX_FAST_SIZE)
1667 __builtin_unreachable ();
1668 return global_max_fast;
1672 ----------- Internal state representation and initialization -----------
1675 struct malloc_state
1677 /* Serialize access. */
1678 __libc_lock_define (, mutex);
1680 /* Flags (formerly in max_fast). */
1681 int flags;
1683 /* Fastbins */
1684 mfastbinptr fastbinsY[NFASTBINS];
1686 /* Base of the topmost chunk -- not otherwise kept in a bin */
1687 mchunkptr top;
1689 /* The remainder from the most recent split of a small request */
1690 mchunkptr last_remainder;
1692 /* Normal bins packed as described above */
1693 mchunkptr bins[NBINS * 2 - 2];
1695 /* Bitmap of bins */
1696 unsigned int binmap[BINMAPSIZE];
1698 /* Linked list */
1699 struct malloc_state *next;
1701 /* Linked list for free arenas. Access to this field is serialized
1702 by free_list_lock in arena.c. */
1703 struct malloc_state *next_free;
1705 /* Number of threads attached to this arena. 0 if the arena is on
1706 the free list. Access to this field is serialized by
1707 free_list_lock in arena.c. */
1708 INTERNAL_SIZE_T attached_threads;
1710 /* Memory allocated from the system in this arena. */
1711 INTERNAL_SIZE_T system_mem;
1712 INTERNAL_SIZE_T max_system_mem;
1715 struct malloc_par
1717 /* Tunable parameters */
1718 unsigned long trim_threshold;
1719 INTERNAL_SIZE_T top_pad;
1720 INTERNAL_SIZE_T mmap_threshold;
1721 INTERNAL_SIZE_T arena_test;
1722 INTERNAL_SIZE_T arena_max;
1724 /* Memory map support */
1725 int n_mmaps;
1726 int n_mmaps_max;
1727 int max_n_mmaps;
1728 /* the mmap_threshold is dynamic, until the user sets
1729 it manually, at which point we need to disable any
1730 dynamic behavior. */
1731 int no_dyn_threshold;
1733 /* Statistics */
1734 INTERNAL_SIZE_T mmapped_mem;
1735 INTERNAL_SIZE_T max_mmapped_mem;
1737 /* First address handed out by MORECORE/sbrk. */
1738 char *sbrk_base;
1740 #if USE_TCACHE
1741 /* Maximum number of buckets to use. */
1742 size_t tcache_bins;
1743 size_t tcache_max_bytes;
1744 /* Maximum number of chunks in each bucket. */
1745 size_t tcache_count;
1746 /* Maximum number of chunks to remove from the unsorted list, which
1747 aren't used to prefill the cache. */
1748 size_t tcache_unsorted_limit;
1749 #endif
1752 /* There are several instances of this struct ("arenas") in this
1753 malloc. If you are adapting this malloc in a way that does NOT use
1754 a static or mmapped malloc_state, you MUST explicitly zero-fill it
1755 before using. This malloc relies on the property that malloc_state
1756 is initialized to all zeroes (as is true of C statics). */
1758 static struct malloc_state main_arena =
1760 .mutex = _LIBC_LOCK_INITIALIZER,
1761 .next = &main_arena,
1762 .attached_threads = 1
1765 /* These variables are used for undumping support. Chunked are marked
1766 as using mmap, but we leave them alone if they fall into this
1767 range. NB: The chunk size for these chunks only includes the
1768 initial size field (of SIZE_SZ bytes), there is no trailing size
1769 field (unlike with regular mmapped chunks). */
1770 static mchunkptr dumped_main_arena_start; /* Inclusive. */
1771 static mchunkptr dumped_main_arena_end; /* Exclusive. */
1773 /* True if the pointer falls into the dumped arena. Use this after
1774 chunk_is_mmapped indicates a chunk is mmapped. */
1775 #define DUMPED_MAIN_ARENA_CHUNK(p) \
1776 ((p) >= dumped_main_arena_start && (p) < dumped_main_arena_end)
1778 /* There is only one instance of the malloc parameters. */
1780 static struct malloc_par mp_ =
1782 .top_pad = DEFAULT_TOP_PAD,
1783 .n_mmaps_max = DEFAULT_MMAP_MAX,
1784 .mmap_threshold = DEFAULT_MMAP_THRESHOLD,
1785 .trim_threshold = DEFAULT_TRIM_THRESHOLD,
1786 #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8))
1787 .arena_test = NARENAS_FROM_NCORES (1)
1788 #if USE_TCACHE
1790 .tcache_count = TCACHE_FILL_COUNT,
1791 .tcache_bins = TCACHE_MAX_BINS,
1792 .tcache_max_bytes = tidx2usize (TCACHE_MAX_BINS-1),
1793 .tcache_unsorted_limit = 0 /* No limit. */
1794 #endif
1798 Initialize a malloc_state struct.
1800 This is called only from within malloc_consolidate, which needs
1801 be called in the same contexts anyway. It is never called directly
1802 outside of malloc_consolidate because some optimizing compilers try
1803 to inline it at all call points, which turns out not to be an
1804 optimization at all. (Inlining it in malloc_consolidate is fine though.)
1807 static void
1808 malloc_init_state (mstate av)
1810 int i;
1811 mbinptr bin;
1813 /* Establish circular links for normal bins */
1814 for (i = 1; i < NBINS; ++i)
1816 bin = bin_at (av, i);
1817 bin->fd = bin->bk = bin;
1820 #if MORECORE_CONTIGUOUS
1821 if (av != &main_arena)
1822 #endif
1823 set_noncontiguous (av);
1824 if (av == &main_arena)
1825 set_max_fast (DEFAULT_MXFAST);
1826 av->flags |= FASTCHUNKS_BIT;
1828 av->top = initial_top (av);
1832 Other internal utilities operating on mstates
1835 static void *sysmalloc (INTERNAL_SIZE_T, mstate);
1836 static int systrim (size_t, mstate);
1837 static void malloc_consolidate (mstate);
1840 /* -------------- Early definitions for debugging hooks ---------------- */
1842 /* Define and initialize the hook variables. These weak definitions must
1843 appear before any use of the variables in a function (arena.c uses one). */
1844 #ifndef weak_variable
1845 /* In GNU libc we want the hook variables to be weak definitions to
1846 avoid a problem with Emacs. */
1847 # define weak_variable weak_function
1848 #endif
1850 /* Forward declarations. */
1851 static void *malloc_hook_ini (size_t sz,
1852 const void *caller) __THROW;
1853 static void *realloc_hook_ini (void *ptr, size_t sz,
1854 const void *caller) __THROW;
1855 static void *memalign_hook_ini (size_t alignment, size_t sz,
1856 const void *caller) __THROW;
1858 #if HAVE_MALLOC_INIT_HOOK
1859 void weak_variable (*__malloc_initialize_hook) (void) = NULL;
1860 compat_symbol (libc, __malloc_initialize_hook,
1861 __malloc_initialize_hook, GLIBC_2_0);
1862 #endif
1864 void weak_variable (*__free_hook) (void *__ptr,
1865 const void *) = NULL;
1866 void *weak_variable (*__malloc_hook)
1867 (size_t __size, const void *) = malloc_hook_ini;
1868 void *weak_variable (*__realloc_hook)
1869 (void *__ptr, size_t __size, const void *)
1870 = realloc_hook_ini;
1871 void *weak_variable (*__memalign_hook)
1872 (size_t __alignment, size_t __size, const void *)
1873 = memalign_hook_ini;
1874 void weak_variable (*__after_morecore_hook) (void) = NULL;
1877 /* ------------------ Testing support ----------------------------------*/
1879 static int perturb_byte;
1881 static void
1882 alloc_perturb (char *p, size_t n)
1884 if (__glibc_unlikely (perturb_byte))
1885 memset (p, perturb_byte ^ 0xff, n);
1888 static void
1889 free_perturb (char *p, size_t n)
1891 if (__glibc_unlikely (perturb_byte))
1892 memset (p, perturb_byte, n);
1897 #include <stap-probe.h>
1899 /* ------------------- Support for multiple arenas -------------------- */
1900 #include "arena.c"
1903 Debugging support
1905 These routines make a number of assertions about the states
1906 of data structures that should be true at all times. If any
1907 are not true, it's very likely that a user program has somehow
1908 trashed memory. (It's also possible that there is a coding error
1909 in malloc. In which case, please report it!)
1912 #if !MALLOC_DEBUG
1914 # define check_chunk(A, P)
1915 # define check_free_chunk(A, P)
1916 # define check_inuse_chunk(A, P)
1917 # define check_remalloced_chunk(A, P, N)
1918 # define check_malloced_chunk(A, P, N)
1919 # define check_malloc_state(A)
1921 #else
1923 # define check_chunk(A, P) do_check_chunk (A, P)
1924 # define check_free_chunk(A, P) do_check_free_chunk (A, P)
1925 # define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P)
1926 # define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N)
1927 # define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N)
1928 # define check_malloc_state(A) do_check_malloc_state (A)
1931 Properties of all chunks
1934 static void
1935 do_check_chunk (mstate av, mchunkptr p)
1937 unsigned long sz = chunksize (p);
1938 /* min and max possible addresses assuming contiguous allocation */
1939 char *max_address = (char *) (av->top) + chunksize (av->top);
1940 char *min_address = max_address - av->system_mem;
1942 if (!chunk_is_mmapped (p))
1944 /* Has legal address ... */
1945 if (p != av->top)
1947 if (contiguous (av))
1949 assert (((char *) p) >= min_address);
1950 assert (((char *) p + sz) <= ((char *) (av->top)));
1953 else
1955 /* top size is always at least MINSIZE */
1956 assert ((unsigned long) (sz) >= MINSIZE);
1957 /* top predecessor always marked inuse */
1958 assert (prev_inuse (p));
1961 else if (!DUMPED_MAIN_ARENA_CHUNK (p))
1963 /* address is outside main heap */
1964 if (contiguous (av) && av->top != initial_top (av))
1966 assert (((char *) p) < min_address || ((char *) p) >= max_address);
1968 /* chunk is page-aligned */
1969 assert (((prev_size (p) + sz) & (GLRO (dl_pagesize) - 1)) == 0);
1970 /* mem is aligned */
1971 assert (aligned_OK (chunk2mem (p)));
1976 Properties of free chunks
1979 static void
1980 do_check_free_chunk (mstate av, mchunkptr p)
1982 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
1983 mchunkptr next = chunk_at_offset (p, sz);
1985 do_check_chunk (av, p);
1987 /* Chunk must claim to be free ... */
1988 assert (!inuse (p));
1989 assert (!chunk_is_mmapped (p));
1991 /* Unless a special marker, must have OK fields */
1992 if ((unsigned long) (sz) >= MINSIZE)
1994 assert ((sz & MALLOC_ALIGN_MASK) == 0);
1995 assert (aligned_OK (chunk2mem (p)));
1996 /* ... matching footer field */
1997 assert (prev_size (p) == sz);
1998 /* ... and is fully consolidated */
1999 assert (prev_inuse (p));
2000 assert (next == av->top || inuse (next));
2002 /* ... and has minimally sane links */
2003 assert (p->fd->bk == p);
2004 assert (p->bk->fd == p);
2006 else /* markers are always of size SIZE_SZ */
2007 assert (sz == SIZE_SZ);
2011 Properties of inuse chunks
2014 static void
2015 do_check_inuse_chunk (mstate av, mchunkptr p)
2017 mchunkptr next;
2019 do_check_chunk (av, p);
2021 if (chunk_is_mmapped (p))
2022 return; /* mmapped chunks have no next/prev */
2024 /* Check whether it claims to be in use ... */
2025 assert (inuse (p));
2027 next = next_chunk (p);
2029 /* ... and is surrounded by OK chunks.
2030 Since more things can be checked with free chunks than inuse ones,
2031 if an inuse chunk borders them and debug is on, it's worth doing them.
2033 if (!prev_inuse (p))
2035 /* Note that we cannot even look at prev unless it is not inuse */
2036 mchunkptr prv = prev_chunk (p);
2037 assert (next_chunk (prv) == p);
2038 do_check_free_chunk (av, prv);
2041 if (next == av->top)
2043 assert (prev_inuse (next));
2044 assert (chunksize (next) >= MINSIZE);
2046 else if (!inuse (next))
2047 do_check_free_chunk (av, next);
2051 Properties of chunks recycled from fastbins
2054 static void
2055 do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2057 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE | NON_MAIN_ARENA);
2059 if (!chunk_is_mmapped (p))
2061 assert (av == arena_for_chunk (p));
2062 if (chunk_main_arena (p))
2063 assert (av == &main_arena);
2064 else
2065 assert (av != &main_arena);
2068 do_check_inuse_chunk (av, p);
2070 /* Legal size ... */
2071 assert ((sz & MALLOC_ALIGN_MASK) == 0);
2072 assert ((unsigned long) (sz) >= MINSIZE);
2073 /* ... and alignment */
2074 assert (aligned_OK (chunk2mem (p)));
2075 /* chunk is less than MINSIZE more than request */
2076 assert ((long) (sz) - (long) (s) >= 0);
2077 assert ((long) (sz) - (long) (s + MINSIZE) < 0);
2081 Properties of nonrecycled chunks at the point they are malloced
2084 static void
2085 do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2087 /* same as recycled case ... */
2088 do_check_remalloced_chunk (av, p, s);
2091 ... plus, must obey implementation invariant that prev_inuse is
2092 always true of any allocated chunk; i.e., that each allocated
2093 chunk borders either a previously allocated and still in-use
2094 chunk, or the base of its memory arena. This is ensured
2095 by making all allocations from the `lowest' part of any found
2096 chunk. This does not necessarily hold however for chunks
2097 recycled via fastbins.
2100 assert (prev_inuse (p));
2105 Properties of malloc_state.
2107 This may be useful for debugging malloc, as well as detecting user
2108 programmer errors that somehow write into malloc_state.
2110 If you are extending or experimenting with this malloc, you can
2111 probably figure out how to hack this routine to print out or
2112 display chunk addresses, sizes, bins, and other instrumentation.
2115 static void
2116 do_check_malloc_state (mstate av)
2118 int i;
2119 mchunkptr p;
2120 mchunkptr q;
2121 mbinptr b;
2122 unsigned int idx;
2123 INTERNAL_SIZE_T size;
2124 unsigned long total = 0;
2125 int max_fast_bin;
2127 /* internal size_t must be no wider than pointer type */
2128 assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *));
2130 /* alignment is a power of 2 */
2131 assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0);
2133 /* cannot run remaining checks until fully initialized */
2134 if (av->top == 0 || av->top == initial_top (av))
2135 return;
2137 /* pagesize is a power of 2 */
2138 assert (powerof2(GLRO (dl_pagesize)));
2140 /* A contiguous main_arena is consistent with sbrk_base. */
2141 if (av == &main_arena && contiguous (av))
2142 assert ((char *) mp_.sbrk_base + av->system_mem ==
2143 (char *) av->top + chunksize (av->top));
2145 /* properties of fastbins */
2147 /* max_fast is in allowed range */
2148 assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE));
2150 max_fast_bin = fastbin_index (get_max_fast ());
2152 for (i = 0; i < NFASTBINS; ++i)
2154 p = fastbin (av, i);
2156 /* The following test can only be performed for the main arena.
2157 While mallopt calls malloc_consolidate to get rid of all fast
2158 bins (especially those larger than the new maximum) this does
2159 only happen for the main arena. Trying to do this for any
2160 other arena would mean those arenas have to be locked and
2161 malloc_consolidate be called for them. This is excessive. And
2162 even if this is acceptable to somebody it still cannot solve
2163 the problem completely since if the arena is locked a
2164 concurrent malloc call might create a new arena which then
2165 could use the newly invalid fast bins. */
2167 /* all bins past max_fast are empty */
2168 if (av == &main_arena && i > max_fast_bin)
2169 assert (p == 0);
2171 while (p != 0)
2173 /* each chunk claims to be inuse */
2174 do_check_inuse_chunk (av, p);
2175 total += chunksize (p);
2176 /* chunk belongs in this bin */
2177 assert (fastbin_index (chunksize (p)) == i);
2178 p = p->fd;
2182 if (total != 0)
2183 assert (have_fastchunks (av));
2184 else if (!have_fastchunks (av))
2185 assert (total == 0);
2187 /* check normal bins */
2188 for (i = 1; i < NBINS; ++i)
2190 b = bin_at (av, i);
2192 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2193 if (i >= 2)
2195 unsigned int binbit = get_binmap (av, i);
2196 int empty = last (b) == b;
2197 if (!binbit)
2198 assert (empty);
2199 else if (!empty)
2200 assert (binbit);
2203 for (p = last (b); p != b; p = p->bk)
2205 /* each chunk claims to be free */
2206 do_check_free_chunk (av, p);
2207 size = chunksize (p);
2208 total += size;
2209 if (i >= 2)
2211 /* chunk belongs in bin */
2212 idx = bin_index (size);
2213 assert (idx == i);
2214 /* lists are sorted */
2215 assert (p->bk == b ||
2216 (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p));
2218 if (!in_smallbin_range (size))
2220 if (p->fd_nextsize != NULL)
2222 if (p->fd_nextsize == p)
2223 assert (p->bk_nextsize == p);
2224 else
2226 if (p->fd_nextsize == first (b))
2227 assert (chunksize (p) < chunksize (p->fd_nextsize));
2228 else
2229 assert (chunksize (p) > chunksize (p->fd_nextsize));
2231 if (p == first (b))
2232 assert (chunksize (p) > chunksize (p->bk_nextsize));
2233 else
2234 assert (chunksize (p) < chunksize (p->bk_nextsize));
2237 else
2238 assert (p->bk_nextsize == NULL);
2241 else if (!in_smallbin_range (size))
2242 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2243 /* chunk is followed by a legal chain of inuse chunks */
2244 for (q = next_chunk (p);
2245 (q != av->top && inuse (q) &&
2246 (unsigned long) (chunksize (q)) >= MINSIZE);
2247 q = next_chunk (q))
2248 do_check_inuse_chunk (av, q);
2252 /* top chunk is OK */
2253 check_chunk (av, av->top);
2255 #endif
2258 /* ----------------- Support for debugging hooks -------------------- */
2259 #include "hooks.c"
2262 /* ----------- Routines dealing with system allocation -------------- */
2265 sysmalloc handles malloc cases requiring more memory from the system.
2266 On entry, it is assumed that av->top does not have enough
2267 space to service request for nb bytes, thus requiring that av->top
2268 be extended or replaced.
2271 static void *
2272 sysmalloc (INTERNAL_SIZE_T nb, mstate av)
2274 mchunkptr old_top; /* incoming value of av->top */
2275 INTERNAL_SIZE_T old_size; /* its size */
2276 char *old_end; /* its end address */
2278 long size; /* arg to first MORECORE or mmap call */
2279 char *brk; /* return value from MORECORE */
2281 long correction; /* arg to 2nd MORECORE call */
2282 char *snd_brk; /* 2nd return val */
2284 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2285 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2286 char *aligned_brk; /* aligned offset into brk */
2288 mchunkptr p; /* the allocated/returned chunk */
2289 mchunkptr remainder; /* remainder from allocation */
2290 unsigned long remainder_size; /* its size */
2293 size_t pagesize = GLRO (dl_pagesize);
2294 bool tried_mmap = false;
2298 If have mmap, and the request size meets the mmap threshold, and
2299 the system supports mmap, and there are few enough currently
2300 allocated mmapped regions, try to directly map this request
2301 rather than expanding top.
2304 if (av == NULL
2305 || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold)
2306 && (mp_.n_mmaps < mp_.n_mmaps_max)))
2308 char *mm; /* return value from mmap call*/
2310 try_mmap:
2312 Round up size to nearest page. For mmapped chunks, the overhead
2313 is one SIZE_SZ unit larger than for normal chunks, because there
2314 is no following chunk whose prev_size field could be used.
2316 See the front_misalign handling below, for glibc there is no
2317 need for further alignments unless we have have high alignment.
2319 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2320 size = ALIGN_UP (nb + SIZE_SZ, pagesize);
2321 else
2322 size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);
2323 tried_mmap = true;
2325 /* Don't try if size wraps around 0 */
2326 if ((unsigned long) (size) > (unsigned long) (nb))
2328 mm = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2330 if (mm != MAP_FAILED)
2333 The offset to the start of the mmapped region is stored
2334 in the prev_size field of the chunk. This allows us to adjust
2335 returned start address to meet alignment requirements here
2336 and in memalign(), and still be able to compute proper
2337 address argument for later munmap in free() and realloc().
2340 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2342 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
2343 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
2344 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2345 assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
2346 front_misalign = 0;
2348 else
2349 front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
2350 if (front_misalign > 0)
2352 correction = MALLOC_ALIGNMENT - front_misalign;
2353 p = (mchunkptr) (mm + correction);
2354 set_prev_size (p, correction);
2355 set_head (p, (size - correction) | IS_MMAPPED);
2357 else
2359 p = (mchunkptr) mm;
2360 set_prev_size (p, 0);
2361 set_head (p, size | IS_MMAPPED);
2364 /* update statistics */
2366 int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1;
2367 atomic_max (&mp_.max_n_mmaps, new);
2369 unsigned long sum;
2370 sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size;
2371 atomic_max (&mp_.max_mmapped_mem, sum);
2373 check_chunk (av, p);
2375 return chunk2mem (p);
2380 /* There are no usable arenas and mmap also failed. */
2381 if (av == NULL)
2382 return 0;
2384 /* Record incoming configuration of top */
2386 old_top = av->top;
2387 old_size = chunksize (old_top);
2388 old_end = (char *) (chunk_at_offset (old_top, old_size));
2390 brk = snd_brk = (char *) (MORECORE_FAILURE);
2393 If not the first time through, we require old_size to be
2394 at least MINSIZE and to have prev_inuse set.
2397 assert ((old_top == initial_top (av) && old_size == 0) ||
2398 ((unsigned long) (old_size) >= MINSIZE &&
2399 prev_inuse (old_top) &&
2400 ((unsigned long) old_end & (pagesize - 1)) == 0));
2402 /* Precondition: not enough current space to satisfy nb request */
2403 assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
2406 if (av != &main_arena)
2408 heap_info *old_heap, *heap;
2409 size_t old_heap_size;
2411 /* First try to extend the current heap. */
2412 old_heap = heap_for_ptr (old_top);
2413 old_heap_size = old_heap->size;
2414 if ((long) (MINSIZE + nb - old_size) > 0
2415 && grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
2417 av->system_mem += old_heap->size - old_heap_size;
2418 set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
2419 | PREV_INUSE);
2421 else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
2423 /* Use a newly allocated heap. */
2424 heap->ar_ptr = av;
2425 heap->prev = old_heap;
2426 av->system_mem += heap->size;
2427 /* Set up the new top. */
2428 top (av) = chunk_at_offset (heap, sizeof (*heap));
2429 set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
2431 /* Setup fencepost and free the old top chunk with a multiple of
2432 MALLOC_ALIGNMENT in size. */
2433 /* The fencepost takes at least MINSIZE bytes, because it might
2434 become the top chunk again later. Note that a footer is set
2435 up, too, although the chunk is marked in use. */
2436 old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
2437 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE);
2438 if (old_size >= MINSIZE)
2440 set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE);
2441 set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ));
2442 set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
2443 _int_free (av, old_top, 1);
2445 else
2447 set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE);
2448 set_foot (old_top, (old_size + 2 * SIZE_SZ));
2451 else if (!tried_mmap)
2452 /* We can at least try to use to mmap memory. */
2453 goto try_mmap;
2455 else /* av == main_arena */
2458 { /* Request enough space for nb + pad + overhead */
2459 size = nb + mp_.top_pad + MINSIZE;
2462 If contiguous, we can subtract out existing space that we hope to
2463 combine with new space. We add it back later only if
2464 we don't actually get contiguous space.
2467 if (contiguous (av))
2468 size -= old_size;
2471 Round to a multiple of page size.
2472 If MORECORE is not contiguous, this ensures that we only call it
2473 with whole-page arguments. And if MORECORE is contiguous and
2474 this is not first time through, this preserves page-alignment of
2475 previous calls. Otherwise, we correct to page-align below.
2478 size = ALIGN_UP (size, pagesize);
2481 Don't try to call MORECORE if argument is so big as to appear
2482 negative. Note that since mmap takes size_t arg, it may succeed
2483 below even if we cannot call MORECORE.
2486 if (size > 0)
2488 brk = (char *) (MORECORE (size));
2489 LIBC_PROBE (memory_sbrk_more, 2, brk, size);
2492 if (brk != (char *) (MORECORE_FAILURE))
2494 /* Call the `morecore' hook if necessary. */
2495 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2496 if (__builtin_expect (hook != NULL, 0))
2497 (*hook)();
2499 else
2502 If have mmap, try using it as a backup when MORECORE fails or
2503 cannot be used. This is worth doing on systems that have "holes" in
2504 address space, so sbrk cannot extend to give contiguous space, but
2505 space is available elsewhere. Note that we ignore mmap max count
2506 and threshold limits, since the space will not be used as a
2507 segregated mmap region.
2510 /* Cannot merge with old top, so add its size back in */
2511 if (contiguous (av))
2512 size = ALIGN_UP (size + old_size, pagesize);
2514 /* If we are relying on mmap as backup, then use larger units */
2515 if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE))
2516 size = MMAP_AS_MORECORE_SIZE;
2518 /* Don't try if size wraps around 0 */
2519 if ((unsigned long) (size) > (unsigned long) (nb))
2521 char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0));
2523 if (mbrk != MAP_FAILED)
2525 /* We do not need, and cannot use, another sbrk call to find end */
2526 brk = mbrk;
2527 snd_brk = brk + size;
2530 Record that we no longer have a contiguous sbrk region.
2531 After the first time mmap is used as backup, we do not
2532 ever rely on contiguous space since this could incorrectly
2533 bridge regions.
2535 set_noncontiguous (av);
2540 if (brk != (char *) (MORECORE_FAILURE))
2542 if (mp_.sbrk_base == 0)
2543 mp_.sbrk_base = brk;
2544 av->system_mem += size;
2547 If MORECORE extends previous space, we can likewise extend top size.
2550 if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
2551 set_head (old_top, (size + old_size) | PREV_INUSE);
2553 else if (contiguous (av) && old_size && brk < old_end)
2554 /* Oops! Someone else killed our space.. Can't touch anything. */
2555 malloc_printerr ("break adjusted to free malloc space");
2558 Otherwise, make adjustments:
2560 * If the first time through or noncontiguous, we need to call sbrk
2561 just to find out where the end of memory lies.
2563 * We need to ensure that all returned chunks from malloc will meet
2564 MALLOC_ALIGNMENT
2566 * If there was an intervening foreign sbrk, we need to adjust sbrk
2567 request size to account for fact that we will not be able to
2568 combine new space with existing space in old_top.
2570 * Almost all systems internally allocate whole pages at a time, in
2571 which case we might as well use the whole last page of request.
2572 So we allocate enough more memory to hit a page boundary now,
2573 which in turn causes future contiguous calls to page-align.
2576 else
2578 front_misalign = 0;
2579 end_misalign = 0;
2580 correction = 0;
2581 aligned_brk = brk;
2583 /* handle contiguous cases */
2584 if (contiguous (av))
2586 /* Count foreign sbrk as system_mem. */
2587 if (old_size)
2588 av->system_mem += brk - old_end;
2590 /* Guarantee alignment of first new chunk made from this space */
2592 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2593 if (front_misalign > 0)
2596 Skip over some bytes to arrive at an aligned position.
2597 We don't need to specially mark these wasted front bytes.
2598 They will never be accessed anyway because
2599 prev_inuse of av->top (and any chunk created from its start)
2600 is always true after initialization.
2603 correction = MALLOC_ALIGNMENT - front_misalign;
2604 aligned_brk += correction;
2608 If this isn't adjacent to existing space, then we will not
2609 be able to merge with old_top space, so must add to 2nd request.
2612 correction += old_size;
2614 /* Extend the end address to hit a page boundary */
2615 end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
2616 correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign;
2618 assert (correction >= 0);
2619 snd_brk = (char *) (MORECORE (correction));
2622 If can't allocate correction, try to at least find out current
2623 brk. It might be enough to proceed without failing.
2625 Note that if second sbrk did NOT fail, we assume that space
2626 is contiguous with first sbrk. This is a safe assumption unless
2627 program is multithreaded but doesn't use locks and a foreign sbrk
2628 occurred between our first and second calls.
2631 if (snd_brk == (char *) (MORECORE_FAILURE))
2633 correction = 0;
2634 snd_brk = (char *) (MORECORE (0));
2636 else
2638 /* Call the `morecore' hook if necessary. */
2639 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2640 if (__builtin_expect (hook != NULL, 0))
2641 (*hook)();
2645 /* handle non-contiguous cases */
2646 else
2648 if (MALLOC_ALIGNMENT == 2 * SIZE_SZ)
2649 /* MORECORE/mmap must correctly align */
2650 assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
2651 else
2653 front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
2654 if (front_misalign > 0)
2657 Skip over some bytes to arrive at an aligned position.
2658 We don't need to specially mark these wasted front bytes.
2659 They will never be accessed anyway because
2660 prev_inuse of av->top (and any chunk created from its start)
2661 is always true after initialization.
2664 aligned_brk += MALLOC_ALIGNMENT - front_misalign;
2668 /* Find out current end of memory */
2669 if (snd_brk == (char *) (MORECORE_FAILURE))
2671 snd_brk = (char *) (MORECORE (0));
2675 /* Adjust top based on results of second sbrk */
2676 if (snd_brk != (char *) (MORECORE_FAILURE))
2678 av->top = (mchunkptr) aligned_brk;
2679 set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
2680 av->system_mem += correction;
2683 If not the first time through, we either have a
2684 gap due to foreign sbrk or a non-contiguous region. Insert a
2685 double fencepost at old_top to prevent consolidation with space
2686 we don't own. These fenceposts are artificial chunks that are
2687 marked as inuse and are in any case too small to use. We need
2688 two to make sizes and alignments work out.
2691 if (old_size != 0)
2694 Shrink old_top to insert fenceposts, keeping size a
2695 multiple of MALLOC_ALIGNMENT. We know there is at least
2696 enough space in old_top to do this.
2698 old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2699 set_head (old_top, old_size | PREV_INUSE);
2702 Note that the following assignments completely overwrite
2703 old_top when old_size was previously MINSIZE. This is
2704 intentional. We need the fencepost, even if old_top otherwise gets
2705 lost.
2707 set_head (chunk_at_offset (old_top, old_size),
2708 (2 * SIZE_SZ) | PREV_INUSE);
2709 set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ),
2710 (2 * SIZE_SZ) | PREV_INUSE);
2712 /* If possible, release the rest. */
2713 if (old_size >= MINSIZE)
2715 _int_free (av, old_top, 1);
2721 } /* if (av != &main_arena) */
2723 if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
2724 av->max_system_mem = av->system_mem;
2725 check_malloc_state (av);
2727 /* finally, do the allocation */
2728 p = av->top;
2729 size = chunksize (p);
2731 /* check that one of the above allocation paths succeeded */
2732 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
2734 remainder_size = size - nb;
2735 remainder = chunk_at_offset (p, nb);
2736 av->top = remainder;
2737 set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
2738 set_head (remainder, remainder_size | PREV_INUSE);
2739 check_malloced_chunk (av, p, nb);
2740 return chunk2mem (p);
2743 /* catch all failure paths */
2744 __set_errno (ENOMEM);
2745 return 0;
2750 systrim is an inverse of sorts to sysmalloc. It gives memory back
2751 to the system (via negative arguments to sbrk) if there is unused
2752 memory at the `high' end of the malloc pool. It is called
2753 automatically by free() when top space exceeds the trim
2754 threshold. It is also called by the public malloc_trim routine. It
2755 returns 1 if it actually released any memory, else 0.
2758 static int
2759 systrim (size_t pad, mstate av)
2761 long top_size; /* Amount of top-most memory */
2762 long extra; /* Amount to release */
2763 long released; /* Amount actually released */
2764 char *current_brk; /* address returned by pre-check sbrk call */
2765 char *new_brk; /* address returned by post-check sbrk call */
2766 size_t pagesize;
2767 long top_area;
2769 pagesize = GLRO (dl_pagesize);
2770 top_size = chunksize (av->top);
2772 top_area = top_size - MINSIZE - 1;
2773 if (top_area <= pad)
2774 return 0;
2776 /* Release in pagesize units and round down to the nearest page. */
2777 extra = ALIGN_DOWN(top_area - pad, pagesize);
2779 if (extra == 0)
2780 return 0;
2783 Only proceed if end of memory is where we last set it.
2784 This avoids problems if there were foreign sbrk calls.
2786 current_brk = (char *) (MORECORE (0));
2787 if (current_brk == (char *) (av->top) + top_size)
2790 Attempt to release memory. We ignore MORECORE return value,
2791 and instead call again to find out where new end of memory is.
2792 This avoids problems if first call releases less than we asked,
2793 of if failure somehow altered brk value. (We could still
2794 encounter problems if it altered brk in some very bad way,
2795 but the only thing we can do is adjust anyway, which will cause
2796 some downstream failure.)
2799 MORECORE (-extra);
2800 /* Call the `morecore' hook if necessary. */
2801 void (*hook) (void) = atomic_forced_read (__after_morecore_hook);
2802 if (__builtin_expect (hook != NULL, 0))
2803 (*hook)();
2804 new_brk = (char *) (MORECORE (0));
2806 LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra);
2808 if (new_brk != (char *) MORECORE_FAILURE)
2810 released = (long) (current_brk - new_brk);
2812 if (released != 0)
2814 /* Success. Adjust top. */
2815 av->system_mem -= released;
2816 set_head (av->top, (top_size - released) | PREV_INUSE);
2817 check_malloc_state (av);
2818 return 1;
2822 return 0;
2825 static void
2826 munmap_chunk (mchunkptr p)
2828 INTERNAL_SIZE_T size = chunksize (p);
2830 assert (chunk_is_mmapped (p));
2832 /* Do nothing if the chunk is a faked mmapped chunk in the dumped
2833 main arena. We never free this memory. */
2834 if (DUMPED_MAIN_ARENA_CHUNK (p))
2835 return;
2837 uintptr_t block = (uintptr_t) p - prev_size (p);
2838 size_t total_size = prev_size (p) + size;
2839 /* Unfortunately we have to do the compilers job by hand here. Normally
2840 we would test BLOCK and TOTAL-SIZE separately for compliance with the
2841 page size. But gcc does not recognize the optimization possibility
2842 (in the moment at least) so we combine the two values into one before
2843 the bit test. */
2844 if (__builtin_expect (((block | total_size) & (GLRO (dl_pagesize) - 1)) != 0, 0))
2845 malloc_printerr ("munmap_chunk(): invalid pointer");
2847 atomic_decrement (&mp_.n_mmaps);
2848 atomic_add (&mp_.mmapped_mem, -total_size);
2850 /* If munmap failed the process virtual memory address space is in a
2851 bad shape. Just leave the block hanging around, the process will
2852 terminate shortly anyway since not much can be done. */
2853 __munmap ((char *) block, total_size);
2856 #if HAVE_MREMAP
2858 static mchunkptr
2859 mremap_chunk (mchunkptr p, size_t new_size)
2861 size_t pagesize = GLRO (dl_pagesize);
2862 INTERNAL_SIZE_T offset = prev_size (p);
2863 INTERNAL_SIZE_T size = chunksize (p);
2864 char *cp;
2866 assert (chunk_is_mmapped (p));
2867 assert (((size + offset) & (GLRO (dl_pagesize) - 1)) == 0);
2869 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
2870 new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize);
2872 /* No need to remap if the number of pages does not change. */
2873 if (size + offset == new_size)
2874 return p;
2876 cp = (char *) __mremap ((char *) p - offset, size + offset, new_size,
2877 MREMAP_MAYMOVE);
2879 if (cp == MAP_FAILED)
2880 return 0;
2882 p = (mchunkptr) (cp + offset);
2884 assert (aligned_OK (chunk2mem (p)));
2886 assert (prev_size (p) == offset);
2887 set_head (p, (new_size - offset) | IS_MMAPPED);
2889 INTERNAL_SIZE_T new;
2890 new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset)
2891 + new_size - size - offset;
2892 atomic_max (&mp_.max_mmapped_mem, new);
2893 return p;
2895 #endif /* HAVE_MREMAP */
2897 /*------------------------ Public wrappers. --------------------------------*/
2899 #if USE_TCACHE
2901 /* We overlay this structure on the user-data portion of a chunk when
2902 the chunk is stored in the per-thread cache. */
2903 typedef struct tcache_entry
2905 struct tcache_entry *next;
2906 } tcache_entry;
2908 /* There is one of these for each thread, which contains the
2909 per-thread cache (hence "tcache_perthread_struct"). Keeping
2910 overall size low is mildly important. Note that COUNTS and ENTRIES
2911 are redundant (we could have just counted the linked list each
2912 time), this is for performance reasons. */
2913 typedef struct tcache_perthread_struct
2915 char counts[TCACHE_MAX_BINS];
2916 tcache_entry *entries[TCACHE_MAX_BINS];
2917 } tcache_perthread_struct;
2919 static __thread char tcache_shutting_down = 0;
2920 static __thread tcache_perthread_struct *tcache = NULL;
2922 /* Caller must ensure that we know tc_idx is valid and there's room
2923 for more chunks. */
2924 static void
2925 tcache_put (mchunkptr chunk, size_t tc_idx)
2927 tcache_entry *e = (tcache_entry *) chunk2mem (chunk);
2928 assert (tc_idx < TCACHE_MAX_BINS);
2929 e->next = tcache->entries[tc_idx];
2930 tcache->entries[tc_idx] = e;
2931 ++(tcache->counts[tc_idx]);
2934 /* Caller must ensure that we know tc_idx is valid and there's
2935 available chunks to remove. */
2936 static void *
2937 tcache_get (size_t tc_idx)
2939 tcache_entry *e = tcache->entries[tc_idx];
2940 assert (tc_idx < TCACHE_MAX_BINS);
2941 assert (tcache->entries[tc_idx] > 0);
2942 tcache->entries[tc_idx] = e->next;
2943 --(tcache->counts[tc_idx]);
2944 return (void *) e;
2947 static void __attribute__ ((section ("__libc_thread_freeres_fn")))
2948 tcache_thread_freeres (void)
2950 int i;
2951 tcache_perthread_struct *tcache_tmp = tcache;
2953 if (!tcache)
2954 return;
2956 tcache = NULL;
2958 for (i = 0; i < TCACHE_MAX_BINS; ++i)
2960 while (tcache_tmp->entries[i])
2962 tcache_entry *e = tcache_tmp->entries[i];
2963 tcache_tmp->entries[i] = e->next;
2964 __libc_free (e);
2968 __libc_free (tcache_tmp);
2970 tcache_shutting_down = 1;
2972 text_set_element (__libc_thread_subfreeres, tcache_thread_freeres);
2974 static void
2975 tcache_init(void)
2977 mstate ar_ptr;
2978 void *victim = 0;
2979 const size_t bytes = sizeof (tcache_perthread_struct);
2981 if (tcache_shutting_down)
2982 return;
2984 arena_get (ar_ptr, bytes);
2985 victim = _int_malloc (ar_ptr, bytes);
2986 if (!victim && ar_ptr != NULL)
2988 ar_ptr = arena_get_retry (ar_ptr, bytes);
2989 victim = _int_malloc (ar_ptr, bytes);
2993 if (ar_ptr != NULL)
2994 __libc_lock_unlock (ar_ptr->mutex);
2996 /* In a low memory situation, we may not be able to allocate memory
2997 - in which case, we just keep trying later. However, we
2998 typically do this very early, so either there is sufficient
2999 memory, or there isn't enough memory to do non-trivial
3000 allocations anyway. */
3001 if (victim)
3003 tcache = (tcache_perthread_struct *) victim;
3004 memset (tcache, 0, sizeof (tcache_perthread_struct));
3009 #define MAYBE_INIT_TCACHE() \
3010 if (__glibc_unlikely (tcache == NULL)) \
3011 tcache_init();
3013 #else
3014 #define MAYBE_INIT_TCACHE()
3015 #endif
3017 void *
3018 __libc_malloc (size_t bytes)
3020 mstate ar_ptr;
3021 void *victim;
3023 void *(*hook) (size_t, const void *)
3024 = atomic_forced_read (__malloc_hook);
3025 if (__builtin_expect (hook != NULL, 0))
3026 return (*hook)(bytes, RETURN_ADDRESS (0));
3027 #if USE_TCACHE
3028 /* int_free also calls request2size, be careful to not pad twice. */
3029 size_t tbytes = request2size (bytes);
3030 size_t tc_idx = csize2tidx (tbytes);
3032 MAYBE_INIT_TCACHE ();
3034 DIAG_PUSH_NEEDS_COMMENT;
3035 if (tc_idx < mp_.tcache_bins
3036 /*&& tc_idx < TCACHE_MAX_BINS*/ /* to appease gcc */
3037 && tcache
3038 && tcache->entries[tc_idx] != NULL)
3040 return tcache_get (tc_idx);
3042 DIAG_POP_NEEDS_COMMENT;
3043 #endif
3045 arena_get (ar_ptr, bytes);
3047 victim = _int_malloc (ar_ptr, bytes);
3048 /* Retry with another arena only if we were able to find a usable arena
3049 before. */
3050 if (!victim && ar_ptr != NULL)
3052 LIBC_PROBE (memory_malloc_retry, 1, bytes);
3053 ar_ptr = arena_get_retry (ar_ptr, bytes);
3054 victim = _int_malloc (ar_ptr, bytes);
3057 if (ar_ptr != NULL)
3058 __libc_lock_unlock (ar_ptr->mutex);
3060 assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
3061 ar_ptr == arena_for_chunk (mem2chunk (victim)));
3062 return victim;
3064 libc_hidden_def (__libc_malloc)
3066 void
3067 __libc_free (void *mem)
3069 mstate ar_ptr;
3070 mchunkptr p; /* chunk corresponding to mem */
3072 void (*hook) (void *, const void *)
3073 = atomic_forced_read (__free_hook);
3074 if (__builtin_expect (hook != NULL, 0))
3076 (*hook)(mem, RETURN_ADDRESS (0));
3077 return;
3080 if (mem == 0) /* free(0) has no effect */
3081 return;
3083 p = mem2chunk (mem);
3085 if (chunk_is_mmapped (p)) /* release mmapped memory. */
3087 /* See if the dynamic brk/mmap threshold needs adjusting.
3088 Dumped fake mmapped chunks do not affect the threshold. */
3089 if (!mp_.no_dyn_threshold
3090 && chunksize_nomask (p) > mp_.mmap_threshold
3091 && chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX
3092 && !DUMPED_MAIN_ARENA_CHUNK (p))
3094 mp_.mmap_threshold = chunksize (p);
3095 mp_.trim_threshold = 2 * mp_.mmap_threshold;
3096 LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
3097 mp_.mmap_threshold, mp_.trim_threshold);
3099 munmap_chunk (p);
3100 return;
3103 MAYBE_INIT_TCACHE ();
3105 ar_ptr = arena_for_chunk (p);
3106 _int_free (ar_ptr, p, 0);
3108 libc_hidden_def (__libc_free)
3110 void *
3111 __libc_realloc (void *oldmem, size_t bytes)
3113 mstate ar_ptr;
3114 INTERNAL_SIZE_T nb; /* padded request size */
3116 void *newp; /* chunk to return */
3118 void *(*hook) (void *, size_t, const void *) =
3119 atomic_forced_read (__realloc_hook);
3120 if (__builtin_expect (hook != NULL, 0))
3121 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
3123 #if REALLOC_ZERO_BYTES_FREES
3124 if (bytes == 0 && oldmem != NULL)
3126 __libc_free (oldmem); return 0;
3128 #endif
3130 /* realloc of null is supposed to be same as malloc */
3131 if (oldmem == 0)
3132 return __libc_malloc (bytes);
3134 /* chunk corresponding to oldmem */
3135 const mchunkptr oldp = mem2chunk (oldmem);
3136 /* its size */
3137 const INTERNAL_SIZE_T oldsize = chunksize (oldp);
3139 if (chunk_is_mmapped (oldp))
3140 ar_ptr = NULL;
3141 else
3143 MAYBE_INIT_TCACHE ();
3144 ar_ptr = arena_for_chunk (oldp);
3147 /* Little security check which won't hurt performance: the allocator
3148 never wrapps around at the end of the address space. Therefore
3149 we can exclude some size values which might appear here by
3150 accident or by "design" from some intruder. We need to bypass
3151 this check for dumped fake mmap chunks from the old main arena
3152 because the new malloc may provide additional alignment. */
3153 if ((__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
3154 || __builtin_expect (misaligned_chunk (oldp), 0))
3155 && !DUMPED_MAIN_ARENA_CHUNK (oldp))
3156 malloc_printerr ("realloc(): invalid pointer");
3158 checked_request2size (bytes, nb);
3160 if (chunk_is_mmapped (oldp))
3162 /* If this is a faked mmapped chunk from the dumped main arena,
3163 always make a copy (and do not free the old chunk). */
3164 if (DUMPED_MAIN_ARENA_CHUNK (oldp))
3166 /* Must alloc, copy, free. */
3167 void *newmem = __libc_malloc (bytes);
3168 if (newmem == 0)
3169 return NULL;
3170 /* Copy as many bytes as are available from the old chunk
3171 and fit into the new size. NB: The overhead for faked
3172 mmapped chunks is only SIZE_SZ, not 2 * SIZE_SZ as for
3173 regular mmapped chunks. */
3174 if (bytes > oldsize - SIZE_SZ)
3175 bytes = oldsize - SIZE_SZ;
3176 memcpy (newmem, oldmem, bytes);
3177 return newmem;
3180 void *newmem;
3182 #if HAVE_MREMAP
3183 newp = mremap_chunk (oldp, nb);
3184 if (newp)
3185 return chunk2mem (newp);
3186 #endif
3187 /* Note the extra SIZE_SZ overhead. */
3188 if (oldsize - SIZE_SZ >= nb)
3189 return oldmem; /* do nothing */
3191 /* Must alloc, copy, free. */
3192 newmem = __libc_malloc (bytes);
3193 if (newmem == 0)
3194 return 0; /* propagate failure */
3196 memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ);
3197 munmap_chunk (oldp);
3198 return newmem;
3201 __libc_lock_lock (ar_ptr->mutex);
3203 newp = _int_realloc (ar_ptr, oldp, oldsize, nb);
3205 __libc_lock_unlock (ar_ptr->mutex);
3206 assert (!newp || chunk_is_mmapped (mem2chunk (newp)) ||
3207 ar_ptr == arena_for_chunk (mem2chunk (newp)));
3209 if (newp == NULL)
3211 /* Try harder to allocate memory in other arenas. */
3212 LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem);
3213 newp = __libc_malloc (bytes);
3214 if (newp != NULL)
3216 memcpy (newp, oldmem, oldsize - SIZE_SZ);
3217 _int_free (ar_ptr, oldp, 0);
3221 return newp;
3223 libc_hidden_def (__libc_realloc)
3225 void *
3226 __libc_memalign (size_t alignment, size_t bytes)
3228 void *address = RETURN_ADDRESS (0);
3229 return _mid_memalign (alignment, bytes, address);
3232 static void *
3233 _mid_memalign (size_t alignment, size_t bytes, void *address)
3235 mstate ar_ptr;
3236 void *p;
3238 void *(*hook) (size_t, size_t, const void *) =
3239 atomic_forced_read (__memalign_hook);
3240 if (__builtin_expect (hook != NULL, 0))
3241 return (*hook)(alignment, bytes, address);
3243 /* If we need less alignment than we give anyway, just relay to malloc. */
3244 if (alignment <= MALLOC_ALIGNMENT)
3245 return __libc_malloc (bytes);
3247 /* Otherwise, ensure that it is at least a minimum chunk size */
3248 if (alignment < MINSIZE)
3249 alignment = MINSIZE;
3251 /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a
3252 power of 2 and will cause overflow in the check below. */
3253 if (alignment > SIZE_MAX / 2 + 1)
3255 __set_errno (EINVAL);
3256 return 0;
3259 /* Check for overflow. */
3260 if (bytes > SIZE_MAX - alignment - MINSIZE)
3262 __set_errno (ENOMEM);
3263 return 0;
3267 /* Make sure alignment is power of 2. */
3268 if (!powerof2 (alignment))
3270 size_t a = MALLOC_ALIGNMENT * 2;
3271 while (a < alignment)
3272 a <<= 1;
3273 alignment = a;
3276 arena_get (ar_ptr, bytes + alignment + MINSIZE);
3278 p = _int_memalign (ar_ptr, alignment, bytes);
3279 if (!p && ar_ptr != NULL)
3281 LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment);
3282 ar_ptr = arena_get_retry (ar_ptr, bytes);
3283 p = _int_memalign (ar_ptr, alignment, bytes);
3286 if (ar_ptr != NULL)
3287 __libc_lock_unlock (ar_ptr->mutex);
3289 assert (!p || chunk_is_mmapped (mem2chunk (p)) ||
3290 ar_ptr == arena_for_chunk (mem2chunk (p)));
3291 return p;
3293 /* For ISO C11. */
3294 weak_alias (__libc_memalign, aligned_alloc)
3295 libc_hidden_def (__libc_memalign)
3297 void *
3298 __libc_valloc (size_t bytes)
3300 if (__malloc_initialized < 0)
3301 ptmalloc_init ();
3303 void *address = RETURN_ADDRESS (0);
3304 size_t pagesize = GLRO (dl_pagesize);
3305 return _mid_memalign (pagesize, bytes, address);
3308 void *
3309 __libc_pvalloc (size_t bytes)
3311 if (__malloc_initialized < 0)
3312 ptmalloc_init ();
3314 void *address = RETURN_ADDRESS (0);
3315 size_t pagesize = GLRO (dl_pagesize);
3316 size_t rounded_bytes = ALIGN_UP (bytes, pagesize);
3318 /* Check for overflow. */
3319 if (bytes > SIZE_MAX - 2 * pagesize - MINSIZE)
3321 __set_errno (ENOMEM);
3322 return 0;
3325 return _mid_memalign (pagesize, rounded_bytes, address);
3328 void *
3329 __libc_calloc (size_t n, size_t elem_size)
3331 mstate av;
3332 mchunkptr oldtop, p;
3333 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
3334 void *mem;
3335 unsigned long clearsize;
3336 unsigned long nclears;
3337 INTERNAL_SIZE_T *d;
3339 /* size_t is unsigned so the behavior on overflow is defined. */
3340 bytes = n * elem_size;
3341 #define HALF_INTERNAL_SIZE_T \
3342 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3343 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0))
3345 if (elem_size != 0 && bytes / elem_size != n)
3347 __set_errno (ENOMEM);
3348 return 0;
3352 void *(*hook) (size_t, const void *) =
3353 atomic_forced_read (__malloc_hook);
3354 if (__builtin_expect (hook != NULL, 0))
3356 sz = bytes;
3357 mem = (*hook)(sz, RETURN_ADDRESS (0));
3358 if (mem == 0)
3359 return 0;
3361 return memset (mem, 0, sz);
3364 sz = bytes;
3366 MAYBE_INIT_TCACHE ();
3368 arena_get (av, sz);
3369 if (av)
3371 /* Check if we hand out the top chunk, in which case there may be no
3372 need to clear. */
3373 #if MORECORE_CLEARS
3374 oldtop = top (av);
3375 oldtopsize = chunksize (top (av));
3376 # if MORECORE_CLEARS < 2
3377 /* Only newly allocated memory is guaranteed to be cleared. */
3378 if (av == &main_arena &&
3379 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop)
3380 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop);
3381 # endif
3382 if (av != &main_arena)
3384 heap_info *heap = heap_for_ptr (oldtop);
3385 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
3386 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
3388 #endif
3390 else
3392 /* No usable arenas. */
3393 oldtop = 0;
3394 oldtopsize = 0;
3396 mem = _int_malloc (av, sz);
3399 assert (!mem || chunk_is_mmapped (mem2chunk (mem)) ||
3400 av == arena_for_chunk (mem2chunk (mem)));
3402 if (mem == 0 && av != NULL)
3404 LIBC_PROBE (memory_calloc_retry, 1, sz);
3405 av = arena_get_retry (av, sz);
3406 mem = _int_malloc (av, sz);
3409 if (av != NULL)
3410 __libc_lock_unlock (av->mutex);
3412 /* Allocation failed even after a retry. */
3413 if (mem == 0)
3414 return 0;
3416 p = mem2chunk (mem);
3418 /* Two optional cases in which clearing not necessary */
3419 if (chunk_is_mmapped (p))
3421 if (__builtin_expect (perturb_byte, 0))
3422 return memset (mem, 0, sz);
3424 return mem;
3427 csz = chunksize (p);
3429 #if MORECORE_CLEARS
3430 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize))
3432 /* clear only the bytes from non-freshly-sbrked memory */
3433 csz = oldtopsize;
3435 #endif
3437 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3438 contents have an odd number of INTERNAL_SIZE_T-sized words;
3439 minimally 3. */
3440 d = (INTERNAL_SIZE_T *) mem;
3441 clearsize = csz - SIZE_SZ;
3442 nclears = clearsize / sizeof (INTERNAL_SIZE_T);
3443 assert (nclears >= 3);
3445 if (nclears > 9)
3446 return memset (d, 0, clearsize);
3448 else
3450 *(d + 0) = 0;
3451 *(d + 1) = 0;
3452 *(d + 2) = 0;
3453 if (nclears > 4)
3455 *(d + 3) = 0;
3456 *(d + 4) = 0;
3457 if (nclears > 6)
3459 *(d + 5) = 0;
3460 *(d + 6) = 0;
3461 if (nclears > 8)
3463 *(d + 7) = 0;
3464 *(d + 8) = 0;
3470 return mem;
3474 ------------------------------ malloc ------------------------------
3477 static void *
3478 _int_malloc (mstate av, size_t bytes)
3480 INTERNAL_SIZE_T nb; /* normalized request size */
3481 unsigned int idx; /* associated bin index */
3482 mbinptr bin; /* associated bin */
3484 mchunkptr victim; /* inspected/selected chunk */
3485 INTERNAL_SIZE_T size; /* its size */
3486 int victim_index; /* its bin index */
3488 mchunkptr remainder; /* remainder from a split */
3489 unsigned long remainder_size; /* its size */
3491 unsigned int block; /* bit map traverser */
3492 unsigned int bit; /* bit map traverser */
3493 unsigned int map; /* current word of binmap */
3495 mchunkptr fwd; /* misc temp for linking */
3496 mchunkptr bck; /* misc temp for linking */
3498 #if USE_TCACHE
3499 size_t tcache_unsorted_count; /* count of unsorted chunks processed */
3500 #endif
3503 Convert request size to internal form by adding SIZE_SZ bytes
3504 overhead plus possibly more to obtain necessary alignment and/or
3505 to obtain a size of at least MINSIZE, the smallest allocatable
3506 size. Also, checked_request2size traps (returning 0) request sizes
3507 that are so large that they wrap around zero when padded and
3508 aligned.
3511 checked_request2size (bytes, nb);
3513 /* There are no usable arenas. Fall back to sysmalloc to get a chunk from
3514 mmap. */
3515 if (__glibc_unlikely (av == NULL))
3517 void *p = sysmalloc (nb, av);
3518 if (p != NULL)
3519 alloc_perturb (p, bytes);
3520 return p;
3524 If the size qualifies as a fastbin, first check corresponding bin.
3525 This code is safe to execute even if av is not yet initialized, so we
3526 can try it without checking, which saves some time on this fast path.
3529 #define REMOVE_FB(fb, victim, pp) \
3530 do \
3532 victim = pp; \
3533 if (victim == NULL) \
3534 break; \
3536 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim)) \
3537 != victim); \
3539 if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
3541 idx = fastbin_index (nb);
3542 mfastbinptr *fb = &fastbin (av, idx);
3543 mchunkptr pp = *fb;
3544 REMOVE_FB (fb, victim, pp);
3545 if (victim != 0)
3547 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
3548 malloc_printerr ("malloc(): memory corruption (fast)");
3549 check_remalloced_chunk (av, victim, nb);
3550 #if USE_TCACHE
3551 /* While we're here, if we see other chunks of the same size,
3552 stash them in the tcache. */
3553 size_t tc_idx = csize2tidx (nb);
3554 if (tcache && tc_idx < mp_.tcache_bins)
3556 mchunkptr tc_victim;
3558 /* While bin not empty and tcache not full, copy chunks over. */
3559 while (tcache->counts[tc_idx] < mp_.tcache_count
3560 && (pp = *fb) != NULL)
3562 REMOVE_FB (fb, tc_victim, pp);
3563 if (tc_victim != 0)
3565 tcache_put (tc_victim, tc_idx);
3569 #endif
3570 void *p = chunk2mem (victim);
3571 alloc_perturb (p, bytes);
3572 return p;
3577 If a small request, check regular bin. Since these "smallbins"
3578 hold one size each, no searching within bins is necessary.
3579 (For a large request, we need to wait until unsorted chunks are
3580 processed to find best fit. But for small ones, fits are exact
3581 anyway, so we can check now, which is faster.)
3584 if (in_smallbin_range (nb))
3586 idx = smallbin_index (nb);
3587 bin = bin_at (av, idx);
3589 if ((victim = last (bin)) != bin)
3591 if (victim == 0) /* initialization check */
3592 malloc_consolidate (av);
3593 else
3595 bck = victim->bk;
3596 if (__glibc_unlikely (bck->fd != victim))
3597 malloc_printerr
3598 ("malloc(): smallbin double linked list corrupted");
3599 set_inuse_bit_at_offset (victim, nb);
3600 bin->bk = bck;
3601 bck->fd = bin;
3603 if (av != &main_arena)
3604 set_non_main_arena (victim);
3605 check_malloced_chunk (av, victim, nb);
3606 #if USE_TCACHE
3607 /* While we're here, if we see other chunks of the same size,
3608 stash them in the tcache. */
3609 size_t tc_idx = csize2tidx (nb);
3610 if (tcache && tc_idx < mp_.tcache_bins)
3612 mchunkptr tc_victim;
3614 /* While bin not empty and tcache not full, copy chunks over. */
3615 while (tcache->counts[tc_idx] < mp_.tcache_count
3616 && (tc_victim = last (bin)) != bin)
3618 if (tc_victim != 0)
3620 bck = tc_victim->bk;
3621 set_inuse_bit_at_offset (tc_victim, nb);
3622 if (av != &main_arena)
3623 set_non_main_arena (tc_victim);
3624 bin->bk = bck;
3625 bck->fd = bin;
3627 tcache_put (tc_victim, tc_idx);
3631 #endif
3632 void *p = chunk2mem (victim);
3633 alloc_perturb (p, bytes);
3634 return p;
3640 If this is a large request, consolidate fastbins before continuing.
3641 While it might look excessive to kill all fastbins before
3642 even seeing if there is space available, this avoids
3643 fragmentation problems normally associated with fastbins.
3644 Also, in practice, programs tend to have runs of either small or
3645 large requests, but less often mixtures, so consolidation is not
3646 invoked all that often in most programs. And the programs that
3647 it is called frequently in otherwise tend to fragment.
3650 else
3652 idx = largebin_index (nb);
3653 if (have_fastchunks (av))
3654 malloc_consolidate (av);
3658 Process recently freed or remaindered chunks, taking one only if
3659 it is exact fit, or, if this a small request, the chunk is remainder from
3660 the most recent non-exact fit. Place other traversed chunks in
3661 bins. Note that this step is the only place in any routine where
3662 chunks are placed in bins.
3664 The outer loop here is needed because we might not realize until
3665 near the end of malloc that we should have consolidated, so must
3666 do so and retry. This happens at most once, and only when we would
3667 otherwise need to expand memory to service a "small" request.
3670 #if USE_TCACHE
3671 INTERNAL_SIZE_T tcache_nb = 0;
3672 size_t tc_idx = csize2tidx (nb);
3673 if (tcache && tc_idx < mp_.tcache_bins)
3674 tcache_nb = nb;
3675 int return_cached = 0;
3677 tcache_unsorted_count = 0;
3678 #endif
3680 for (;; )
3682 int iters = 0;
3683 while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
3685 bck = victim->bk;
3686 if (__builtin_expect (chunksize_nomask (victim) <= 2 * SIZE_SZ, 0)
3687 || __builtin_expect (chunksize_nomask (victim)
3688 > av->system_mem, 0))
3689 malloc_printerr ("malloc(): memory corruption");
3690 size = chunksize (victim);
3693 If a small request, try to use last remainder if it is the
3694 only chunk in unsorted bin. This helps promote locality for
3695 runs of consecutive small requests. This is the only
3696 exception to best-fit, and applies only when there is
3697 no exact fit for a small chunk.
3700 if (in_smallbin_range (nb) &&
3701 bck == unsorted_chunks (av) &&
3702 victim == av->last_remainder &&
3703 (unsigned long) (size) > (unsigned long) (nb + MINSIZE))
3705 /* split and reattach remainder */
3706 remainder_size = size - nb;
3707 remainder = chunk_at_offset (victim, nb);
3708 unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
3709 av->last_remainder = remainder;
3710 remainder->bk = remainder->fd = unsorted_chunks (av);
3711 if (!in_smallbin_range (remainder_size))
3713 remainder->fd_nextsize = NULL;
3714 remainder->bk_nextsize = NULL;
3717 set_head (victim, nb | PREV_INUSE |
3718 (av != &main_arena ? NON_MAIN_ARENA : 0));
3719 set_head (remainder, remainder_size | PREV_INUSE);
3720 set_foot (remainder, remainder_size);
3722 check_malloced_chunk (av, victim, nb);
3723 void *p = chunk2mem (victim);
3724 alloc_perturb (p, bytes);
3725 return p;
3728 /* remove from unsorted list */
3729 unsorted_chunks (av)->bk = bck;
3730 bck->fd = unsorted_chunks (av);
3732 /* Take now instead of binning if exact fit */
3734 if (size == nb)
3736 set_inuse_bit_at_offset (victim, size);
3737 if (av != &main_arena)
3738 set_non_main_arena (victim);
3739 #if USE_TCACHE
3740 /* Fill cache first, return to user only if cache fills.
3741 We may return one of these chunks later. */
3742 if (tcache_nb
3743 && tcache->counts[tc_idx] < mp_.tcache_count)
3745 tcache_put (victim, tc_idx);
3746 return_cached = 1;
3747 continue;
3749 else
3751 #endif
3752 check_malloced_chunk (av, victim, nb);
3753 void *p = chunk2mem (victim);
3754 alloc_perturb (p, bytes);
3755 return p;
3756 #if USE_TCACHE
3758 #endif
3761 /* place chunk in bin */
3763 if (in_smallbin_range (size))
3765 victim_index = smallbin_index (size);
3766 bck = bin_at (av, victim_index);
3767 fwd = bck->fd;
3769 else
3771 victim_index = largebin_index (size);
3772 bck = bin_at (av, victim_index);
3773 fwd = bck->fd;
3775 /* maintain large bins in sorted order */
3776 if (fwd != bck)
3778 /* Or with inuse bit to speed comparisons */
3779 size |= PREV_INUSE;
3780 /* if smaller than smallest, bypass loop below */
3781 assert (chunk_main_arena (bck->bk));
3782 if ((unsigned long) (size)
3783 < (unsigned long) chunksize_nomask (bck->bk))
3785 fwd = bck;
3786 bck = bck->bk;
3788 victim->fd_nextsize = fwd->fd;
3789 victim->bk_nextsize = fwd->fd->bk_nextsize;
3790 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
3792 else
3794 assert (chunk_main_arena (fwd));
3795 while ((unsigned long) size < chunksize_nomask (fwd))
3797 fwd = fwd->fd_nextsize;
3798 assert (chunk_main_arena (fwd));
3801 if ((unsigned long) size
3802 == (unsigned long) chunksize_nomask (fwd))
3803 /* Always insert in the second position. */
3804 fwd = fwd->fd;
3805 else
3807 victim->fd_nextsize = fwd;
3808 victim->bk_nextsize = fwd->bk_nextsize;
3809 fwd->bk_nextsize = victim;
3810 victim->bk_nextsize->fd_nextsize = victim;
3812 bck = fwd->bk;
3815 else
3816 victim->fd_nextsize = victim->bk_nextsize = victim;
3819 mark_bin (av, victim_index);
3820 victim->bk = bck;
3821 victim->fd = fwd;
3822 fwd->bk = victim;
3823 bck->fd = victim;
3825 #if USE_TCACHE
3826 /* If we've processed as many chunks as we're allowed while
3827 filling the cache, return one of the cached ones. */
3828 ++tcache_unsorted_count;
3829 if (return_cached
3830 && mp_.tcache_unsorted_limit > 0
3831 && tcache_unsorted_count > mp_.tcache_unsorted_limit)
3833 return tcache_get (tc_idx);
3835 #endif
3837 #define MAX_ITERS 10000
3838 if (++iters >= MAX_ITERS)
3839 break;
3842 #if USE_TCACHE
3843 /* If all the small chunks we found ended up cached, return one now. */
3844 if (return_cached)
3846 return tcache_get (tc_idx);
3848 #endif
3851 If a large request, scan through the chunks of current bin in
3852 sorted order to find smallest that fits. Use the skip list for this.
3855 if (!in_smallbin_range (nb))
3857 bin = bin_at (av, idx);
3859 /* skip scan if empty or largest chunk is too small */
3860 if ((victim = first (bin)) != bin
3861 && (unsigned long) chunksize_nomask (victim)
3862 >= (unsigned long) (nb))
3864 victim = victim->bk_nextsize;
3865 while (((unsigned long) (size = chunksize (victim)) <
3866 (unsigned long) (nb)))
3867 victim = victim->bk_nextsize;
3869 /* Avoid removing the first entry for a size so that the skip
3870 list does not have to be rerouted. */
3871 if (victim != last (bin)
3872 && chunksize_nomask (victim)
3873 == chunksize_nomask (victim->fd))
3874 victim = victim->fd;
3876 remainder_size = size - nb;
3877 unlink (av, victim, bck, fwd);
3879 /* Exhaust */
3880 if (remainder_size < MINSIZE)
3882 set_inuse_bit_at_offset (victim, size);
3883 if (av != &main_arena)
3884 set_non_main_arena (victim);
3886 /* Split */
3887 else
3889 remainder = chunk_at_offset (victim, nb);
3890 /* We cannot assume the unsorted list is empty and therefore
3891 have to perform a complete insert here. */
3892 bck = unsorted_chunks (av);
3893 fwd = bck->fd;
3894 if (__glibc_unlikely (fwd->bk != bck))
3895 malloc_printerr ("malloc(): corrupted unsorted chunks");
3896 remainder->bk = bck;
3897 remainder->fd = fwd;
3898 bck->fd = remainder;
3899 fwd->bk = remainder;
3900 if (!in_smallbin_range (remainder_size))
3902 remainder->fd_nextsize = NULL;
3903 remainder->bk_nextsize = NULL;
3905 set_head (victim, nb | PREV_INUSE |
3906 (av != &main_arena ? NON_MAIN_ARENA : 0));
3907 set_head (remainder, remainder_size | PREV_INUSE);
3908 set_foot (remainder, remainder_size);
3910 check_malloced_chunk (av, victim, nb);
3911 void *p = chunk2mem (victim);
3912 alloc_perturb (p, bytes);
3913 return p;
3918 Search for a chunk by scanning bins, starting with next largest
3919 bin. This search is strictly by best-fit; i.e., the smallest
3920 (with ties going to approximately the least recently used) chunk
3921 that fits is selected.
3923 The bitmap avoids needing to check that most blocks are nonempty.
3924 The particular case of skipping all bins during warm-up phases
3925 when no chunks have been returned yet is faster than it might look.
3928 ++idx;
3929 bin = bin_at (av, idx);
3930 block = idx2block (idx);
3931 map = av->binmap[block];
3932 bit = idx2bit (idx);
3934 for (;; )
3936 /* Skip rest of block if there are no more set bits in this block. */
3937 if (bit > map || bit == 0)
3941 if (++block >= BINMAPSIZE) /* out of bins */
3942 goto use_top;
3944 while ((map = av->binmap[block]) == 0);
3946 bin = bin_at (av, (block << BINMAPSHIFT));
3947 bit = 1;
3950 /* Advance to bin with set bit. There must be one. */
3951 while ((bit & map) == 0)
3953 bin = next_bin (bin);
3954 bit <<= 1;
3955 assert (bit != 0);
3958 /* Inspect the bin. It is likely to be non-empty */
3959 victim = last (bin);
3961 /* If a false alarm (empty bin), clear the bit. */
3962 if (victim == bin)
3964 av->binmap[block] = map &= ~bit; /* Write through */
3965 bin = next_bin (bin);
3966 bit <<= 1;
3969 else
3971 size = chunksize (victim);
3973 /* We know the first chunk in this bin is big enough to use. */
3974 assert ((unsigned long) (size) >= (unsigned long) (nb));
3976 remainder_size = size - nb;
3978 /* unlink */
3979 unlink (av, victim, bck, fwd);
3981 /* Exhaust */
3982 if (remainder_size < MINSIZE)
3984 set_inuse_bit_at_offset (victim, size);
3985 if (av != &main_arena)
3986 set_non_main_arena (victim);
3989 /* Split */
3990 else
3992 remainder = chunk_at_offset (victim, nb);
3994 /* We cannot assume the unsorted list is empty and therefore
3995 have to perform a complete insert here. */
3996 bck = unsorted_chunks (av);
3997 fwd = bck->fd;
3998 if (__glibc_unlikely (fwd->bk != bck))
3999 malloc_printerr ("malloc(): corrupted unsorted chunks 2");
4000 remainder->bk = bck;
4001 remainder->fd = fwd;
4002 bck->fd = remainder;
4003 fwd->bk = remainder;
4005 /* advertise as last remainder */
4006 if (in_smallbin_range (nb))
4007 av->last_remainder = remainder;
4008 if (!in_smallbin_range (remainder_size))
4010 remainder->fd_nextsize = NULL;
4011 remainder->bk_nextsize = NULL;
4013 set_head (victim, nb | PREV_INUSE |
4014 (av != &main_arena ? NON_MAIN_ARENA : 0));
4015 set_head (remainder, remainder_size | PREV_INUSE);
4016 set_foot (remainder, remainder_size);
4018 check_malloced_chunk (av, victim, nb);
4019 void *p = chunk2mem (victim);
4020 alloc_perturb (p, bytes);
4021 return p;
4025 use_top:
4027 If large enough, split off the chunk bordering the end of memory
4028 (held in av->top). Note that this is in accord with the best-fit
4029 search rule. In effect, av->top is treated as larger (and thus
4030 less well fitting) than any other available chunk since it can
4031 be extended to be as large as necessary (up to system
4032 limitations).
4034 We require that av->top always exists (i.e., has size >=
4035 MINSIZE) after initialization, so if it would otherwise be
4036 exhausted by current request, it is replenished. (The main
4037 reason for ensuring it exists is that we may need MINSIZE space
4038 to put in fenceposts in sysmalloc.)
4041 victim = av->top;
4042 size = chunksize (victim);
4044 if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
4046 remainder_size = size - nb;
4047 remainder = chunk_at_offset (victim, nb);
4048 av->top = remainder;
4049 set_head (victim, nb | PREV_INUSE |
4050 (av != &main_arena ? NON_MAIN_ARENA : 0));
4051 set_head (remainder, remainder_size | PREV_INUSE);
4053 check_malloced_chunk (av, victim, nb);
4054 void *p = chunk2mem (victim);
4055 alloc_perturb (p, bytes);
4056 return p;
4059 /* When we are using atomic ops to free fast chunks we can get
4060 here for all block sizes. */
4061 else if (have_fastchunks (av))
4063 malloc_consolidate (av);
4064 /* restore original bin index */
4065 if (in_smallbin_range (nb))
4066 idx = smallbin_index (nb);
4067 else
4068 idx = largebin_index (nb);
4072 Otherwise, relay to handle system-dependent cases
4074 else
4076 void *p = sysmalloc (nb, av);
4077 if (p != NULL)
4078 alloc_perturb (p, bytes);
4079 return p;
4085 ------------------------------ free ------------------------------
4088 static void
4089 _int_free (mstate av, mchunkptr p, int have_lock)
4091 INTERNAL_SIZE_T size; /* its size */
4092 mfastbinptr *fb; /* associated fastbin */
4093 mchunkptr nextchunk; /* next contiguous chunk */
4094 INTERNAL_SIZE_T nextsize; /* its size */
4095 int nextinuse; /* true if nextchunk is used */
4096 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4097 mchunkptr bck; /* misc temp for linking */
4098 mchunkptr fwd; /* misc temp for linking */
4100 size = chunksize (p);
4102 /* Little security check which won't hurt performance: the
4103 allocator never wrapps around at the end of the address space.
4104 Therefore we can exclude some size values which might appear
4105 here by accident or by "design" from some intruder. */
4106 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
4107 || __builtin_expect (misaligned_chunk (p), 0))
4108 malloc_printerr ("free(): invalid pointer");
4109 /* We know that each chunk is at least MINSIZE bytes in size or a
4110 multiple of MALLOC_ALIGNMENT. */
4111 if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
4112 malloc_printerr ("free(): invalid size");
4114 check_inuse_chunk(av, p);
4116 #if USE_TCACHE
4118 size_t tc_idx = csize2tidx (size);
4120 if (tcache
4121 && tc_idx < mp_.tcache_bins
4122 && tcache->counts[tc_idx] < mp_.tcache_count)
4124 tcache_put (p, tc_idx);
4125 return;
4128 #endif
4131 If eligible, place chunk on a fastbin so it can be found
4132 and used quickly in malloc.
4135 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
4137 #if TRIM_FASTBINS
4139 If TRIM_FASTBINS set, don't place chunks
4140 bordering top into fastbins
4142 && (chunk_at_offset(p, size) != av->top)
4143 #endif
4146 if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size))
4147 <= 2 * SIZE_SZ, 0)
4148 || __builtin_expect (chunksize (chunk_at_offset (p, size))
4149 >= av->system_mem, 0))
4151 /* We might not have a lock at this point and concurrent modifications
4152 of system_mem might have let to a false positive. Redo the test
4153 after getting the lock. */
4154 if (!have_lock
4155 || ({ __libc_lock_lock (av->mutex);
4156 chunksize_nomask (chunk_at_offset (p, size)) <= 2 * SIZE_SZ
4157 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
4159 malloc_printerr ("free(): invalid next size (fast)");
4160 if (! have_lock)
4161 __libc_lock_unlock (av->mutex);
4164 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
4166 set_fastchunks(av);
4167 unsigned int idx = fastbin_index(size);
4168 fb = &fastbin (av, idx);
4170 /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */
4171 mchunkptr old = *fb, old2;
4172 unsigned int old_idx = ~0u;
4175 /* Check that the top of the bin is not the record we are going to add
4176 (i.e., double free). */
4177 if (__builtin_expect (old == p, 0))
4178 malloc_printerr ("double free or corruption (fasttop)");
4179 /* Check that size of fastbin chunk at the top is the same as
4180 size of the chunk that we are adding. We can dereference OLD
4181 only if we have the lock, otherwise it might have already been
4182 deallocated. See use of OLD_IDX below for the actual check. */
4183 if (have_lock && old != NULL)
4184 old_idx = fastbin_index(chunksize(old));
4185 p->fd = old2 = old;
4187 while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) != old2);
4189 if (have_lock && old != NULL && __builtin_expect (old_idx != idx, 0))
4190 malloc_printerr ("invalid fastbin entry (free)");
4194 Consolidate other non-mmapped chunks as they arrive.
4197 else if (!chunk_is_mmapped(p)) {
4198 if (!have_lock)
4199 __libc_lock_lock (av->mutex);
4201 nextchunk = chunk_at_offset(p, size);
4203 /* Lightweight tests: check whether the block is already the
4204 top block. */
4205 if (__glibc_unlikely (p == av->top))
4206 malloc_printerr ("double free or corruption (top)");
4207 /* Or whether the next chunk is beyond the boundaries of the arena. */
4208 if (__builtin_expect (contiguous (av)
4209 && (char *) nextchunk
4210 >= ((char *) av->top + chunksize(av->top)), 0))
4211 malloc_printerr ("double free or corruption (out)");
4212 /* Or whether the block is actually not marked used. */
4213 if (__glibc_unlikely (!prev_inuse(nextchunk)))
4214 malloc_printerr ("double free or corruption (!prev)");
4216 nextsize = chunksize(nextchunk);
4217 if (__builtin_expect (chunksize_nomask (nextchunk) <= 2 * SIZE_SZ, 0)
4218 || __builtin_expect (nextsize >= av->system_mem, 0))
4219 malloc_printerr ("free(): invalid next size (normal)");
4221 free_perturb (chunk2mem(p), size - 2 * SIZE_SZ);
4223 /* consolidate backward */
4224 if (!prev_inuse(p)) {
4225 prevsize = prev_size (p);
4226 size += prevsize;
4227 p = chunk_at_offset(p, -((long) prevsize));
4228 unlink(av, p, bck, fwd);
4231 if (nextchunk != av->top) {
4232 /* get and clear inuse bit */
4233 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4235 /* consolidate forward */
4236 if (!nextinuse) {
4237 unlink(av, nextchunk, bck, fwd);
4238 size += nextsize;
4239 } else
4240 clear_inuse_bit_at_offset(nextchunk, 0);
4243 Place the chunk in unsorted chunk list. Chunks are
4244 not placed into regular bins until after they have
4245 been given one chance to be used in malloc.
4248 bck = unsorted_chunks(av);
4249 fwd = bck->fd;
4250 if (__glibc_unlikely (fwd->bk != bck))
4251 malloc_printerr ("free(): corrupted unsorted chunks");
4252 p->fd = fwd;
4253 p->bk = bck;
4254 if (!in_smallbin_range(size))
4256 p->fd_nextsize = NULL;
4257 p->bk_nextsize = NULL;
4259 bck->fd = p;
4260 fwd->bk = p;
4262 set_head(p, size | PREV_INUSE);
4263 set_foot(p, size);
4265 check_free_chunk(av, p);
4269 If the chunk borders the current high end of memory,
4270 consolidate into top
4273 else {
4274 size += nextsize;
4275 set_head(p, size | PREV_INUSE);
4276 av->top = p;
4277 check_chunk(av, p);
4281 If freeing a large space, consolidate possibly-surrounding
4282 chunks. Then, if the total unused topmost memory exceeds trim
4283 threshold, ask malloc_trim to reduce top.
4285 Unless max_fast is 0, we don't know if there are fastbins
4286 bordering top, so we cannot tell for sure whether threshold
4287 has been reached unless fastbins are consolidated. But we
4288 don't want to consolidate on each free. As a compromise,
4289 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4290 is reached.
4293 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
4294 if (have_fastchunks(av))
4295 malloc_consolidate(av);
4297 if (av == &main_arena) {
4298 #ifndef MORECORE_CANNOT_TRIM
4299 if ((unsigned long)(chunksize(av->top)) >=
4300 (unsigned long)(mp_.trim_threshold))
4301 systrim(mp_.top_pad, av);
4302 #endif
4303 } else {
4304 /* Always try heap_trim(), even if the top chunk is not
4305 large, because the corresponding heap might go away. */
4306 heap_info *heap = heap_for_ptr(top(av));
4308 assert(heap->ar_ptr == av);
4309 heap_trim(heap, mp_.top_pad);
4313 if (!have_lock)
4314 __libc_lock_unlock (av->mutex);
4317 If the chunk was allocated via mmap, release via munmap().
4320 else {
4321 munmap_chunk (p);
4326 ------------------------- malloc_consolidate -------------------------
4328 malloc_consolidate is a specialized version of free() that tears
4329 down chunks held in fastbins. Free itself cannot be used for this
4330 purpose since, among other things, it might place chunks back onto
4331 fastbins. So, instead, we need to use a minor variant of the same
4332 code.
4334 Also, because this routine needs to be called the first time through
4335 malloc anyway, it turns out to be the perfect place to trigger
4336 initialization code.
4339 static void malloc_consolidate(mstate av)
4341 mfastbinptr* fb; /* current fastbin being consolidated */
4342 mfastbinptr* maxfb; /* last fastbin (for loop control) */
4343 mchunkptr p; /* current chunk being consolidated */
4344 mchunkptr nextp; /* next chunk to consolidate */
4345 mchunkptr unsorted_bin; /* bin header */
4346 mchunkptr first_unsorted; /* chunk to link to */
4348 /* These have same use as in free() */
4349 mchunkptr nextchunk;
4350 INTERNAL_SIZE_T size;
4351 INTERNAL_SIZE_T nextsize;
4352 INTERNAL_SIZE_T prevsize;
4353 int nextinuse;
4354 mchunkptr bck;
4355 mchunkptr fwd;
4358 If max_fast is 0, we know that av hasn't
4359 yet been initialized, in which case do so below
4362 if (get_max_fast () != 0) {
4363 clear_fastchunks(av);
4365 unsorted_bin = unsorted_chunks(av);
4368 Remove each chunk from fast bin and consolidate it, placing it
4369 then in unsorted bin. Among other reasons for doing this,
4370 placing in unsorted bin avoids needing to calculate actual bins
4371 until malloc is sure that chunks aren't immediately going to be
4372 reused anyway.
4375 maxfb = &fastbin (av, NFASTBINS - 1);
4376 fb = &fastbin (av, 0);
4377 do {
4378 p = atomic_exchange_acq (fb, NULL);
4379 if (p != 0) {
4380 do {
4381 check_inuse_chunk(av, p);
4382 nextp = p->fd;
4384 /* Slightly streamlined version of consolidation code in free() */
4385 size = chunksize (p);
4386 nextchunk = chunk_at_offset(p, size);
4387 nextsize = chunksize(nextchunk);
4389 if (!prev_inuse(p)) {
4390 prevsize = prev_size (p);
4391 size += prevsize;
4392 p = chunk_at_offset(p, -((long) prevsize));
4393 unlink(av, p, bck, fwd);
4396 if (nextchunk != av->top) {
4397 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4399 if (!nextinuse) {
4400 size += nextsize;
4401 unlink(av, nextchunk, bck, fwd);
4402 } else
4403 clear_inuse_bit_at_offset(nextchunk, 0);
4405 first_unsorted = unsorted_bin->fd;
4406 unsorted_bin->fd = p;
4407 first_unsorted->bk = p;
4409 if (!in_smallbin_range (size)) {
4410 p->fd_nextsize = NULL;
4411 p->bk_nextsize = NULL;
4414 set_head(p, size | PREV_INUSE);
4415 p->bk = unsorted_bin;
4416 p->fd = first_unsorted;
4417 set_foot(p, size);
4420 else {
4421 size += nextsize;
4422 set_head(p, size | PREV_INUSE);
4423 av->top = p;
4426 } while ( (p = nextp) != 0);
4429 } while (fb++ != maxfb);
4431 else {
4432 malloc_init_state(av);
4433 check_malloc_state(av);
4438 ------------------------------ realloc ------------------------------
4441 void*
4442 _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
4443 INTERNAL_SIZE_T nb)
4445 mchunkptr newp; /* chunk to return */
4446 INTERNAL_SIZE_T newsize; /* its size */
4447 void* newmem; /* corresponding user mem */
4449 mchunkptr next; /* next contiguous chunk after oldp */
4451 mchunkptr remainder; /* extra space at end of newp */
4452 unsigned long remainder_size; /* its size */
4454 mchunkptr bck; /* misc temp for linking */
4455 mchunkptr fwd; /* misc temp for linking */
4457 unsigned long copysize; /* bytes to copy */
4458 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
4459 INTERNAL_SIZE_T* s; /* copy source */
4460 INTERNAL_SIZE_T* d; /* copy destination */
4462 /* oldmem size */
4463 if (__builtin_expect (chunksize_nomask (oldp) <= 2 * SIZE_SZ, 0)
4464 || __builtin_expect (oldsize >= av->system_mem, 0))
4465 malloc_printerr ("realloc(): invalid old size");
4467 check_inuse_chunk (av, oldp);
4469 /* All callers already filter out mmap'ed chunks. */
4470 assert (!chunk_is_mmapped (oldp));
4472 next = chunk_at_offset (oldp, oldsize);
4473 INTERNAL_SIZE_T nextsize = chunksize (next);
4474 if (__builtin_expect (chunksize_nomask (next) <= 2 * SIZE_SZ, 0)
4475 || __builtin_expect (nextsize >= av->system_mem, 0))
4476 malloc_printerr ("realloc(): invalid next size");
4478 if ((unsigned long) (oldsize) >= (unsigned long) (nb))
4480 /* already big enough; split below */
4481 newp = oldp;
4482 newsize = oldsize;
4485 else
4487 /* Try to expand forward into top */
4488 if (next == av->top &&
4489 (unsigned long) (newsize = oldsize + nextsize) >=
4490 (unsigned long) (nb + MINSIZE))
4492 set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4493 av->top = chunk_at_offset (oldp, nb);
4494 set_head (av->top, (newsize - nb) | PREV_INUSE);
4495 check_inuse_chunk (av, oldp);
4496 return chunk2mem (oldp);
4499 /* Try to expand forward into next chunk; split off remainder below */
4500 else if (next != av->top &&
4501 !inuse (next) &&
4502 (unsigned long) (newsize = oldsize + nextsize) >=
4503 (unsigned long) (nb))
4505 newp = oldp;
4506 unlink (av, next, bck, fwd);
4509 /* allocate, copy, free */
4510 else
4512 newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK);
4513 if (newmem == 0)
4514 return 0; /* propagate failure */
4516 newp = mem2chunk (newmem);
4517 newsize = chunksize (newp);
4520 Avoid copy if newp is next chunk after oldp.
4522 if (newp == next)
4524 newsize += oldsize;
4525 newp = oldp;
4527 else
4530 Unroll copy of <= 36 bytes (72 if 8byte sizes)
4531 We know that contents have an odd number of
4532 INTERNAL_SIZE_T-sized words; minimally 3.
4535 copysize = oldsize - SIZE_SZ;
4536 s = (INTERNAL_SIZE_T *) (chunk2mem (oldp));
4537 d = (INTERNAL_SIZE_T *) (newmem);
4538 ncopies = copysize / sizeof (INTERNAL_SIZE_T);
4539 assert (ncopies >= 3);
4541 if (ncopies > 9)
4542 memcpy (d, s, copysize);
4544 else
4546 *(d + 0) = *(s + 0);
4547 *(d + 1) = *(s + 1);
4548 *(d + 2) = *(s + 2);
4549 if (ncopies > 4)
4551 *(d + 3) = *(s + 3);
4552 *(d + 4) = *(s + 4);
4553 if (ncopies > 6)
4555 *(d + 5) = *(s + 5);
4556 *(d + 6) = *(s + 6);
4557 if (ncopies > 8)
4559 *(d + 7) = *(s + 7);
4560 *(d + 8) = *(s + 8);
4566 _int_free (av, oldp, 1);
4567 check_inuse_chunk (av, newp);
4568 return chunk2mem (newp);
4573 /* If possible, free extra space in old or extended chunk */
4575 assert ((unsigned long) (newsize) >= (unsigned long) (nb));
4577 remainder_size = newsize - nb;
4579 if (remainder_size < MINSIZE) /* not enough extra to split off */
4581 set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4582 set_inuse_bit_at_offset (newp, newsize);
4584 else /* split remainder */
4586 remainder = chunk_at_offset (newp, nb);
4587 set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
4588 set_head (remainder, remainder_size | PREV_INUSE |
4589 (av != &main_arena ? NON_MAIN_ARENA : 0));
4590 /* Mark remainder as inuse so free() won't complain */
4591 set_inuse_bit_at_offset (remainder, remainder_size);
4592 _int_free (av, remainder, 1);
4595 check_inuse_chunk (av, newp);
4596 return chunk2mem (newp);
4600 ------------------------------ memalign ------------------------------
4603 static void *
4604 _int_memalign (mstate av, size_t alignment, size_t bytes)
4606 INTERNAL_SIZE_T nb; /* padded request size */
4607 char *m; /* memory returned by malloc call */
4608 mchunkptr p; /* corresponding chunk */
4609 char *brk; /* alignment point within p */
4610 mchunkptr newp; /* chunk to return */
4611 INTERNAL_SIZE_T newsize; /* its size */
4612 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
4613 mchunkptr remainder; /* spare room at end to split off */
4614 unsigned long remainder_size; /* its size */
4615 INTERNAL_SIZE_T size;
4619 checked_request2size (bytes, nb);
4622 Strategy: find a spot within that chunk that meets the alignment
4623 request, and then possibly free the leading and trailing space.
4627 /* Call malloc with worst case padding to hit alignment. */
4629 m = (char *) (_int_malloc (av, nb + alignment + MINSIZE));
4631 if (m == 0)
4632 return 0; /* propagate failure */
4634 p = mem2chunk (m);
4636 if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */
4638 { /*
4639 Find an aligned spot inside chunk. Since we need to give back
4640 leading space in a chunk of at least MINSIZE, if the first
4641 calculation places us at a spot with less than MINSIZE leader,
4642 we can move to the next aligned spot -- we've allocated enough
4643 total room so that this is always possible.
4645 brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) &
4646 - ((signed long) alignment));
4647 if ((unsigned long) (brk - (char *) (p)) < MINSIZE)
4648 brk += alignment;
4650 newp = (mchunkptr) brk;
4651 leadsize = brk - (char *) (p);
4652 newsize = chunksize (p) - leadsize;
4654 /* For mmapped chunks, just adjust offset */
4655 if (chunk_is_mmapped (p))
4657 set_prev_size (newp, prev_size (p) + leadsize);
4658 set_head (newp, newsize | IS_MMAPPED);
4659 return chunk2mem (newp);
4662 /* Otherwise, give back leader, use the rest */
4663 set_head (newp, newsize | PREV_INUSE |
4664 (av != &main_arena ? NON_MAIN_ARENA : 0));
4665 set_inuse_bit_at_offset (newp, newsize);
4666 set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
4667 _int_free (av, p, 1);
4668 p = newp;
4670 assert (newsize >= nb &&
4671 (((unsigned long) (chunk2mem (p))) % alignment) == 0);
4674 /* Also give back spare room at the end */
4675 if (!chunk_is_mmapped (p))
4677 size = chunksize (p);
4678 if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE))
4680 remainder_size = size - nb;
4681 remainder = chunk_at_offset (p, nb);
4682 set_head (remainder, remainder_size | PREV_INUSE |
4683 (av != &main_arena ? NON_MAIN_ARENA : 0));
4684 set_head_size (p, nb);
4685 _int_free (av, remainder, 1);
4689 check_inuse_chunk (av, p);
4690 return chunk2mem (p);
4695 ------------------------------ malloc_trim ------------------------------
4698 static int
4699 mtrim (mstate av, size_t pad)
4701 /* Ensure initialization/consolidation */
4702 malloc_consolidate (av);
4704 const size_t ps = GLRO (dl_pagesize);
4705 int psindex = bin_index (ps);
4706 const size_t psm1 = ps - 1;
4708 int result = 0;
4709 for (int i = 1; i < NBINS; ++i)
4710 if (i == 1 || i >= psindex)
4712 mbinptr bin = bin_at (av, i);
4714 for (mchunkptr p = last (bin); p != bin; p = p->bk)
4716 INTERNAL_SIZE_T size = chunksize (p);
4718 if (size > psm1 + sizeof (struct malloc_chunk))
4720 /* See whether the chunk contains at least one unused page. */
4721 char *paligned_mem = (char *) (((uintptr_t) p
4722 + sizeof (struct malloc_chunk)
4723 + psm1) & ~psm1);
4725 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
4726 assert ((char *) p + size > paligned_mem);
4728 /* This is the size we could potentially free. */
4729 size -= paligned_mem - (char *) p;
4731 if (size > psm1)
4733 #if MALLOC_DEBUG
4734 /* When debugging we simulate destroying the memory
4735 content. */
4736 memset (paligned_mem, 0x89, size & ~psm1);
4737 #endif
4738 __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
4740 result = 1;
4746 #ifndef MORECORE_CANNOT_TRIM
4747 return result | (av == &main_arena ? systrim (pad, av) : 0);
4749 #else
4750 return result;
4751 #endif
4756 __malloc_trim (size_t s)
4758 int result = 0;
4760 if (__malloc_initialized < 0)
4761 ptmalloc_init ();
4763 mstate ar_ptr = &main_arena;
4766 __libc_lock_lock (ar_ptr->mutex);
4767 result |= mtrim (ar_ptr, s);
4768 __libc_lock_unlock (ar_ptr->mutex);
4770 ar_ptr = ar_ptr->next;
4772 while (ar_ptr != &main_arena);
4774 return result;
4779 ------------------------- malloc_usable_size -------------------------
4782 static size_t
4783 musable (void *mem)
4785 mchunkptr p;
4786 if (mem != 0)
4788 p = mem2chunk (mem);
4790 if (__builtin_expect (using_malloc_checking == 1, 0))
4791 return malloc_check_get_size (p);
4793 if (chunk_is_mmapped (p))
4795 if (DUMPED_MAIN_ARENA_CHUNK (p))
4796 return chunksize (p) - SIZE_SZ;
4797 else
4798 return chunksize (p) - 2 * SIZE_SZ;
4800 else if (inuse (p))
4801 return chunksize (p) - SIZE_SZ;
4803 return 0;
4807 size_t
4808 __malloc_usable_size (void *m)
4810 size_t result;
4812 result = musable (m);
4813 return result;
4817 ------------------------------ mallinfo ------------------------------
4818 Accumulate malloc statistics for arena AV into M.
4821 static void
4822 int_mallinfo (mstate av, struct mallinfo *m)
4824 size_t i;
4825 mbinptr b;
4826 mchunkptr p;
4827 INTERNAL_SIZE_T avail;
4828 INTERNAL_SIZE_T fastavail;
4829 int nblocks;
4830 int nfastblocks;
4832 /* Ensure initialization */
4833 if (av->top == 0)
4834 malloc_consolidate (av);
4836 check_malloc_state (av);
4838 /* Account for top */
4839 avail = chunksize (av->top);
4840 nblocks = 1; /* top always exists */
4842 /* traverse fastbins */
4843 nfastblocks = 0;
4844 fastavail = 0;
4846 for (i = 0; i < NFASTBINS; ++i)
4848 for (p = fastbin (av, i); p != 0; p = p->fd)
4850 ++nfastblocks;
4851 fastavail += chunksize (p);
4855 avail += fastavail;
4857 /* traverse regular bins */
4858 for (i = 1; i < NBINS; ++i)
4860 b = bin_at (av, i);
4861 for (p = last (b); p != b; p = p->bk)
4863 ++nblocks;
4864 avail += chunksize (p);
4868 m->smblks += nfastblocks;
4869 m->ordblks += nblocks;
4870 m->fordblks += avail;
4871 m->uordblks += av->system_mem - avail;
4872 m->arena += av->system_mem;
4873 m->fsmblks += fastavail;
4874 if (av == &main_arena)
4876 m->hblks = mp_.n_mmaps;
4877 m->hblkhd = mp_.mmapped_mem;
4878 m->usmblks = 0;
4879 m->keepcost = chunksize (av->top);
4884 struct mallinfo
4885 __libc_mallinfo (void)
4887 struct mallinfo m;
4888 mstate ar_ptr;
4890 if (__malloc_initialized < 0)
4891 ptmalloc_init ();
4893 memset (&m, 0, sizeof (m));
4894 ar_ptr = &main_arena;
4897 __libc_lock_lock (ar_ptr->mutex);
4898 int_mallinfo (ar_ptr, &m);
4899 __libc_lock_unlock (ar_ptr->mutex);
4901 ar_ptr = ar_ptr->next;
4903 while (ar_ptr != &main_arena);
4905 return m;
4909 ------------------------------ malloc_stats ------------------------------
4912 void
4913 __malloc_stats (void)
4915 int i;
4916 mstate ar_ptr;
4917 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
4919 if (__malloc_initialized < 0)
4920 ptmalloc_init ();
4921 _IO_flockfile (stderr);
4922 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
4923 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
4924 for (i = 0, ar_ptr = &main_arena;; i++)
4926 struct mallinfo mi;
4928 memset (&mi, 0, sizeof (mi));
4929 __libc_lock_lock (ar_ptr->mutex);
4930 int_mallinfo (ar_ptr, &mi);
4931 fprintf (stderr, "Arena %d:\n", i);
4932 fprintf (stderr, "system bytes = %10u\n", (unsigned int) mi.arena);
4933 fprintf (stderr, "in use bytes = %10u\n", (unsigned int) mi.uordblks);
4934 #if MALLOC_DEBUG > 1
4935 if (i > 0)
4936 dump_heap (heap_for_ptr (top (ar_ptr)));
4937 #endif
4938 system_b += mi.arena;
4939 in_use_b += mi.uordblks;
4940 __libc_lock_unlock (ar_ptr->mutex);
4941 ar_ptr = ar_ptr->next;
4942 if (ar_ptr == &main_arena)
4943 break;
4945 fprintf (stderr, "Total (incl. mmap):\n");
4946 fprintf (stderr, "system bytes = %10u\n", system_b);
4947 fprintf (stderr, "in use bytes = %10u\n", in_use_b);
4948 fprintf (stderr, "max mmap regions = %10u\n", (unsigned int) mp_.max_n_mmaps);
4949 fprintf (stderr, "max mmap bytes = %10lu\n",
4950 (unsigned long) mp_.max_mmapped_mem);
4951 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
4952 _IO_funlockfile (stderr);
4957 ------------------------------ mallopt ------------------------------
4959 static inline int
4960 __always_inline
4961 do_set_trim_threshold (size_t value)
4963 LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, mp_.trim_threshold,
4964 mp_.no_dyn_threshold);
4965 mp_.trim_threshold = value;
4966 mp_.no_dyn_threshold = 1;
4967 return 1;
4970 static inline int
4971 __always_inline
4972 do_set_top_pad (size_t value)
4974 LIBC_PROBE (memory_mallopt_top_pad, 3, value, mp_.top_pad,
4975 mp_.no_dyn_threshold);
4976 mp_.top_pad = value;
4977 mp_.no_dyn_threshold = 1;
4978 return 1;
4981 static inline int
4982 __always_inline
4983 do_set_mmap_threshold (size_t value)
4985 /* Forbid setting the threshold too high. */
4986 if (value <= HEAP_MAX_SIZE / 2)
4988 LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, mp_.mmap_threshold,
4989 mp_.no_dyn_threshold);
4990 mp_.mmap_threshold = value;
4991 mp_.no_dyn_threshold = 1;
4992 return 1;
4994 return 0;
4997 static inline int
4998 __always_inline
4999 do_set_mmaps_max (int32_t value)
5001 LIBC_PROBE (memory_mallopt_mmap_max, 3, value, mp_.n_mmaps_max,
5002 mp_.no_dyn_threshold);
5003 mp_.n_mmaps_max = value;
5004 mp_.no_dyn_threshold = 1;
5005 return 1;
5008 static inline int
5009 __always_inline
5010 do_set_mallopt_check (int32_t value)
5012 return 1;
5015 static inline int
5016 __always_inline
5017 do_set_perturb_byte (int32_t value)
5019 LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte);
5020 perturb_byte = value;
5021 return 1;
5024 static inline int
5025 __always_inline
5026 do_set_arena_test (size_t value)
5028 LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test);
5029 mp_.arena_test = value;
5030 return 1;
5033 static inline int
5034 __always_inline
5035 do_set_arena_max (size_t value)
5037 LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max);
5038 mp_.arena_max = value;
5039 return 1;
5042 #if USE_TCACHE
5043 static inline int
5044 __always_inline
5045 do_set_tcache_max (size_t value)
5047 if (value >= 0 && value <= MAX_TCACHE_SIZE)
5049 LIBC_PROBE (memory_tunable_tcache_max_bytes, 2, value, mp_.tcache_max_bytes);
5050 mp_.tcache_max_bytes = value;
5051 mp_.tcache_bins = csize2tidx (request2size(value)) + 1;
5053 return 1;
5056 static inline int
5057 __always_inline
5058 do_set_tcache_count (size_t value)
5060 LIBC_PROBE (memory_tunable_tcache_count, 2, value, mp_.tcache_count);
5061 mp_.tcache_count = value;
5062 return 1;
5065 static inline int
5066 __always_inline
5067 do_set_tcache_unsorted_limit (size_t value)
5069 LIBC_PROBE (memory_tunable_tcache_unsorted_limit, 2, value, mp_.tcache_unsorted_limit);
5070 mp_.tcache_unsorted_limit = value;
5071 return 1;
5073 #endif
5076 __libc_mallopt (int param_number, int value)
5078 mstate av = &main_arena;
5079 int res = 1;
5081 if (__malloc_initialized < 0)
5082 ptmalloc_init ();
5083 __libc_lock_lock (av->mutex);
5084 /* Ensure initialization/consolidation */
5085 malloc_consolidate (av);
5087 LIBC_PROBE (memory_mallopt, 2, param_number, value);
5089 switch (param_number)
5091 case M_MXFAST:
5092 if (value >= 0 && value <= MAX_FAST_SIZE)
5094 LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ());
5095 set_max_fast (value);
5097 else
5098 res = 0;
5099 break;
5101 case M_TRIM_THRESHOLD:
5102 do_set_trim_threshold (value);
5103 break;
5105 case M_TOP_PAD:
5106 do_set_top_pad (value);
5107 break;
5109 case M_MMAP_THRESHOLD:
5110 res = do_set_mmap_threshold (value);
5111 break;
5113 case M_MMAP_MAX:
5114 do_set_mmaps_max (value);
5115 break;
5117 case M_CHECK_ACTION:
5118 do_set_mallopt_check (value);
5119 break;
5121 case M_PERTURB:
5122 do_set_perturb_byte (value);
5123 break;
5125 case M_ARENA_TEST:
5126 if (value > 0)
5127 do_set_arena_test (value);
5128 break;
5130 case M_ARENA_MAX:
5131 if (value > 0)
5132 do_set_arena_max (value);
5133 break;
5135 __libc_lock_unlock (av->mutex);
5136 return res;
5138 libc_hidden_def (__libc_mallopt)
5142 -------------------- Alternative MORECORE functions --------------------
5147 General Requirements for MORECORE.
5149 The MORECORE function must have the following properties:
5151 If MORECORE_CONTIGUOUS is false:
5153 * MORECORE must allocate in multiples of pagesize. It will
5154 only be called with arguments that are multiples of pagesize.
5156 * MORECORE(0) must return an address that is at least
5157 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5159 else (i.e. If MORECORE_CONTIGUOUS is true):
5161 * Consecutive calls to MORECORE with positive arguments
5162 return increasing addresses, indicating that space has been
5163 contiguously extended.
5165 * MORECORE need not allocate in multiples of pagesize.
5166 Calls to MORECORE need not have args of multiples of pagesize.
5168 * MORECORE need not page-align.
5170 In either case:
5172 * MORECORE may allocate more memory than requested. (Or even less,
5173 but this will generally result in a malloc failure.)
5175 * MORECORE must not allocate memory when given argument zero, but
5176 instead return one past the end address of memory from previous
5177 nonzero call. This malloc does NOT call MORECORE(0)
5178 until at least one call with positive arguments is made, so
5179 the initial value returned is not important.
5181 * Even though consecutive calls to MORECORE need not return contiguous
5182 addresses, it must be OK for malloc'ed chunks to span multiple
5183 regions in those cases where they do happen to be contiguous.
5185 * MORECORE need not handle negative arguments -- it may instead
5186 just return MORECORE_FAILURE when given negative arguments.
5187 Negative arguments are always multiples of pagesize. MORECORE
5188 must not misinterpret negative args as large positive unsigned
5189 args. You can suppress all such calls from even occurring by defining
5190 MORECORE_CANNOT_TRIM,
5192 There is some variation across systems about the type of the
5193 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5194 actually be size_t, because sbrk supports negative args, so it is
5195 normally the signed type of the same width as size_t (sometimes
5196 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5197 matter though. Internally, we use "long" as arguments, which should
5198 work across all reasonable possibilities.
5200 Additionally, if MORECORE ever returns failure for a positive
5201 request, then mmap is used as a noncontiguous system allocator. This
5202 is a useful backup strategy for systems with holes in address spaces
5203 -- in this case sbrk cannot contiguously expand the heap, but mmap
5204 may be able to map noncontiguous space.
5206 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5207 a function that always returns MORECORE_FAILURE.
5209 If you are using this malloc with something other than sbrk (or its
5210 emulation) to supply memory regions, you probably want to set
5211 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5212 allocator kindly contributed for pre-OSX macOS. It uses virtually
5213 but not necessarily physically contiguous non-paged memory (locked
5214 in, present and won't get swapped out). You can use it by
5215 uncommenting this section, adding some #includes, and setting up the
5216 appropriate defines above:
5218 *#define MORECORE osMoreCore
5219 *#define MORECORE_CONTIGUOUS 0
5221 There is also a shutdown routine that should somehow be called for
5222 cleanup upon program exit.
5224 *#define MAX_POOL_ENTRIES 100
5225 *#define MINIMUM_MORECORE_SIZE (64 * 1024)
5226 static int next_os_pool;
5227 void *our_os_pools[MAX_POOL_ENTRIES];
5229 void *osMoreCore(int size)
5231 void *ptr = 0;
5232 static void *sbrk_top = 0;
5234 if (size > 0)
5236 if (size < MINIMUM_MORECORE_SIZE)
5237 size = MINIMUM_MORECORE_SIZE;
5238 if (CurrentExecutionLevel() == kTaskLevel)
5239 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5240 if (ptr == 0)
5242 return (void *) MORECORE_FAILURE;
5244 // save ptrs so they can be freed during cleanup
5245 our_os_pools[next_os_pool] = ptr;
5246 next_os_pool++;
5247 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5248 sbrk_top = (char *) ptr + size;
5249 return ptr;
5251 else if (size < 0)
5253 // we don't currently support shrink behavior
5254 return (void *) MORECORE_FAILURE;
5256 else
5258 return sbrk_top;
5262 // cleanup any allocated memory pools
5263 // called as last thing before shutting down driver
5265 void osCleanupMem(void)
5267 void **ptr;
5269 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5270 if (*ptr)
5272 PoolDeallocate(*ptr);
5273 * ptr = 0;
5280 /* Helper code. */
5282 extern char **__libc_argv attribute_hidden;
5284 static void
5285 malloc_printerr (const char *str)
5287 __libc_message (do_abort, "%s\n", str);
5288 __builtin_unreachable ();
5291 /* We need a wrapper function for one of the additions of POSIX. */
5293 __posix_memalign (void **memptr, size_t alignment, size_t size)
5295 void *mem;
5297 /* Test whether the SIZE argument is valid. It must be a power of
5298 two multiple of sizeof (void *). */
5299 if (alignment % sizeof (void *) != 0
5300 || !powerof2 (alignment / sizeof (void *))
5301 || alignment == 0)
5302 return EINVAL;
5305 void *address = RETURN_ADDRESS (0);
5306 mem = _mid_memalign (alignment, size, address);
5308 if (mem != NULL)
5310 *memptr = mem;
5311 return 0;
5314 return ENOMEM;
5316 weak_alias (__posix_memalign, posix_memalign)
5320 __malloc_info (int options, FILE *fp)
5322 /* For now, at least. */
5323 if (options != 0)
5324 return EINVAL;
5326 int n = 0;
5327 size_t total_nblocks = 0;
5328 size_t total_nfastblocks = 0;
5329 size_t total_avail = 0;
5330 size_t total_fastavail = 0;
5331 size_t total_system = 0;
5332 size_t total_max_system = 0;
5333 size_t total_aspace = 0;
5334 size_t total_aspace_mprotect = 0;
5338 if (__malloc_initialized < 0)
5339 ptmalloc_init ();
5341 fputs ("<malloc version=\"1\">\n", fp);
5343 /* Iterate over all arenas currently in use. */
5344 mstate ar_ptr = &main_arena;
5347 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
5349 size_t nblocks = 0;
5350 size_t nfastblocks = 0;
5351 size_t avail = 0;
5352 size_t fastavail = 0;
5353 struct
5355 size_t from;
5356 size_t to;
5357 size_t total;
5358 size_t count;
5359 } sizes[NFASTBINS + NBINS - 1];
5360 #define nsizes (sizeof (sizes) / sizeof (sizes[0]))
5362 __libc_lock_lock (ar_ptr->mutex);
5364 for (size_t i = 0; i < NFASTBINS; ++i)
5366 mchunkptr p = fastbin (ar_ptr, i);
5367 if (p != NULL)
5369 size_t nthissize = 0;
5370 size_t thissize = chunksize (p);
5372 while (p != NULL)
5374 ++nthissize;
5375 p = p->fd;
5378 fastavail += nthissize * thissize;
5379 nfastblocks += nthissize;
5380 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
5381 sizes[i].to = thissize;
5382 sizes[i].count = nthissize;
5384 else
5385 sizes[i].from = sizes[i].to = sizes[i].count = 0;
5387 sizes[i].total = sizes[i].count * sizes[i].to;
5391 mbinptr bin;
5392 struct malloc_chunk *r;
5394 for (size_t i = 1; i < NBINS; ++i)
5396 bin = bin_at (ar_ptr, i);
5397 r = bin->fd;
5398 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
5399 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
5400 = sizes[NFASTBINS - 1 + i].count = 0;
5402 if (r != NULL)
5403 while (r != bin)
5405 size_t r_size = chunksize_nomask (r);
5406 ++sizes[NFASTBINS - 1 + i].count;
5407 sizes[NFASTBINS - 1 + i].total += r_size;
5408 sizes[NFASTBINS - 1 + i].from
5409 = MIN (sizes[NFASTBINS - 1 + i].from, r_size);
5410 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
5411 r_size);
5413 r = r->fd;
5416 if (sizes[NFASTBINS - 1 + i].count == 0)
5417 sizes[NFASTBINS - 1 + i].from = 0;
5418 nblocks += sizes[NFASTBINS - 1 + i].count;
5419 avail += sizes[NFASTBINS - 1 + i].total;
5422 __libc_lock_unlock (ar_ptr->mutex);
5424 total_nfastblocks += nfastblocks;
5425 total_fastavail += fastavail;
5427 total_nblocks += nblocks;
5428 total_avail += avail;
5430 for (size_t i = 0; i < nsizes; ++i)
5431 if (sizes[i].count != 0 && i != NFASTBINS)
5432 fprintf (fp, " \
5433 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5434 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
5436 if (sizes[NFASTBINS].count != 0)
5437 fprintf (fp, "\
5438 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
5439 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
5440 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
5442 total_system += ar_ptr->system_mem;
5443 total_max_system += ar_ptr->max_system_mem;
5445 fprintf (fp,
5446 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5447 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5448 "<system type=\"current\" size=\"%zu\"/>\n"
5449 "<system type=\"max\" size=\"%zu\"/>\n",
5450 nfastblocks, fastavail, nblocks, avail,
5451 ar_ptr->system_mem, ar_ptr->max_system_mem);
5453 if (ar_ptr != &main_arena)
5455 heap_info *heap = heap_for_ptr (top (ar_ptr));
5456 fprintf (fp,
5457 "<aspace type=\"total\" size=\"%zu\"/>\n"
5458 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5459 heap->size, heap->mprotect_size);
5460 total_aspace += heap->size;
5461 total_aspace_mprotect += heap->mprotect_size;
5463 else
5465 fprintf (fp,
5466 "<aspace type=\"total\" size=\"%zu\"/>\n"
5467 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
5468 ar_ptr->system_mem, ar_ptr->system_mem);
5469 total_aspace += ar_ptr->system_mem;
5470 total_aspace_mprotect += ar_ptr->system_mem;
5473 fputs ("</heap>\n", fp);
5474 ar_ptr = ar_ptr->next;
5476 while (ar_ptr != &main_arena);
5478 fprintf (fp,
5479 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
5480 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
5481 "<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n"
5482 "<system type=\"current\" size=\"%zu\"/>\n"
5483 "<system type=\"max\" size=\"%zu\"/>\n"
5484 "<aspace type=\"total\" size=\"%zu\"/>\n"
5485 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
5486 "</malloc>\n",
5487 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
5488 mp_.n_mmaps, mp_.mmapped_mem,
5489 total_system, total_max_system,
5490 total_aspace, total_aspace_mprotect);
5492 return 0;
5494 weak_alias (__malloc_info, malloc_info)
5497 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
5498 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
5499 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
5500 strong_alias (__libc_memalign, __memalign)
5501 weak_alias (__libc_memalign, memalign)
5502 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
5503 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
5504 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
5505 strong_alias (__libc_mallinfo, __mallinfo)
5506 weak_alias (__libc_mallinfo, mallinfo)
5507 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
5509 weak_alias (__malloc_stats, malloc_stats)
5510 weak_alias (__malloc_usable_size, malloc_usable_size)
5511 weak_alias (__malloc_trim, malloc_trim)
5513 #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_26)
5514 compat_symbol (libc, __libc_free, cfree, GLIBC_2_0);
5515 #endif
5517 /* ------------------------------------------------------------
5518 History:
5520 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
5524 * Local variables:
5525 * c-basic-offset: 2
5526 * End: