1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997,1998,2002,2004,2005,2006,2007
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
24 extern double ____strtod_l_internal (const char *, char **, int, __locale_t
);
25 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
26 int, int, __locale_t
);
28 /* Configuration part. These macros are defined by `strtold.c',
29 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
30 `long double' and `float' versions of the reader. */
32 # include <math_ldbl_opt.h>
36 # define STRTOF wcstod_l
37 # define __STRTOF __wcstod_l
39 # define STRTOF strtod_l
40 # define __STRTOF __strtod_l
42 # define MPN2FLOAT __mpn_construct_double
43 # define FLOAT_HUGE_VAL HUGE_VAL
44 # define SET_MANTISSA(flt, mant) \
45 do { union ieee754_double u; \
47 if ((mant & 0xfffffffffffffULL) == 0) \
48 mant = 0x8000000000000ULL; \
49 u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
50 u.ieee.mantissa1 = (mant) & 0xffffffff; \
54 /* End of configuration part. */
60 #include "../locale/localeinfo.h"
66 /* The gmp headers need some configuration frobs. */
69 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
70 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
71 #include <gmp-mparam.h>
75 #include "fpioconst.h"
81 /* We use this code for the extended locale handling where the
82 function gets as an additional argument the locale which has to be
83 used. To access the values we have to redefine the _NL_CURRENT and
84 _NL_CURRENT_WORD macros. */
86 #define _NL_CURRENT(category, item) \
87 (current->values[_NL_ITEM_INDEX (item)].string)
88 #undef _NL_CURRENT_WORD
89 #define _NL_CURRENT_WORD(category, item) \
90 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
92 #if defined _LIBC || defined HAVE_WCHAR_H
98 # define STRING_TYPE wchar_t
99 # define CHAR_TYPE wint_t
100 # define L_(Ch) L##Ch
101 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
102 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
103 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
104 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
105 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
106 # define STRNCASECMP(S1, S2, N) \
107 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
108 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
110 # define STRING_TYPE char
111 # define CHAR_TYPE char
113 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
114 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
115 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
116 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
117 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
118 # define STRNCASECMP(S1, S2, N) \
119 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
120 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
124 /* Constants we need from float.h; select the set for the FLOAT precision. */
125 #define MANT_DIG PASTE(FLT,_MANT_DIG)
126 #define DIG PASTE(FLT,_DIG)
127 #define MAX_EXP PASTE(FLT,_MAX_EXP)
128 #define MIN_EXP PASTE(FLT,_MIN_EXP)
129 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
130 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
132 /* Extra macros required to get FLT expanded before the pasting. */
133 #define PASTE(a,b) PASTE1(a,b)
134 #define PASTE1(a,b) a##b
136 /* Function to construct a floating point number from an MP integer
137 containing the fraction bits, a base 2 exponent, and a sign flag. */
138 extern FLOAT
MPN2FLOAT (mp_srcptr mpn
, int exponent
, int negative
);
140 /* Definitions according to limb size used. */
141 #if BITS_PER_MP_LIMB == 32
142 # define MAX_DIG_PER_LIMB 9
143 # define MAX_FAC_PER_LIMB 1000000000UL
144 #elif BITS_PER_MP_LIMB == 64
145 # define MAX_DIG_PER_LIMB 19
146 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
148 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
152 /* Local data structure. */
153 static const mp_limb_t _tens_in_limb
[MAX_DIG_PER_LIMB
+ 1] =
155 1000, 10000, 100000L,
156 1000000L, 10000000L, 100000000L,
158 #if BITS_PER_MP_LIMB > 32
159 , 10000000000ULL, 100000000000ULL,
160 1000000000000ULL, 10000000000000ULL, 100000000000000ULL,
161 1000000000000000ULL, 10000000000000000ULL, 100000000000000000ULL,
162 1000000000000000000ULL, 10000000000000000000ULL
164 #if BITS_PER_MP_LIMB > 64
165 #error "Need to expand tens_in_limb table to" MAX_DIG_PER_LIMB
170 #define howmany(x,y) (((x)+((y)-1))/(y))
172 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
174 #define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
175 #define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
176 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
178 #define RETURN(val,end) \
179 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
180 return val; } while (0)
182 /* Maximum size necessary for mpn integers to hold floating point numbers. */
183 #define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
185 /* Declare an mpn integer variable that big. */
186 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
187 /* Copy an mpn integer value. */
188 #define MPN_ASSIGN(dst, src) \
189 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
192 /* Return a floating point number of the needed type according to the given
193 multi-precision number after possible rounding. */
195 round_and_return (mp_limb_t
*retval
, int exponent
, int negative
,
196 mp_limb_t round_limb
, mp_size_t round_bit
, int more_bits
)
198 if (exponent
< MIN_EXP
- 1)
200 mp_size_t shift
= MIN_EXP
- 1 - exponent
;
202 if (shift
> MANT_DIG
)
208 more_bits
|= (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0;
209 if (shift
== MANT_DIG
)
210 /* This is a special case to handle the very seldom case where
211 the mantissa will be empty after the shift. */
215 round_limb
= retval
[RETURN_LIMB_SIZE
- 1];
216 round_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
217 for (i
= 0; i
< RETURN_LIMB_SIZE
; ++i
)
218 more_bits
|= retval
[i
] != 0;
219 MPN_ZERO (retval
, RETURN_LIMB_SIZE
);
221 else if (shift
>= BITS_PER_MP_LIMB
)
225 round_limb
= retval
[(shift
- 1) / BITS_PER_MP_LIMB
];
226 round_bit
= (shift
- 1) % BITS_PER_MP_LIMB
;
227 for (i
= 0; i
< (shift
- 1) / BITS_PER_MP_LIMB
; ++i
)
228 more_bits
|= retval
[i
] != 0;
229 more_bits
|= ((round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1))
232 (void) __mpn_rshift (retval
, &retval
[shift
/ BITS_PER_MP_LIMB
],
233 RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
),
234 shift
% BITS_PER_MP_LIMB
);
235 MPN_ZERO (&retval
[RETURN_LIMB_SIZE
- (shift
/ BITS_PER_MP_LIMB
)],
236 shift
/ BITS_PER_MP_LIMB
);
240 round_limb
= retval
[0];
241 round_bit
= shift
- 1;
242 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, shift
);
244 /* This is a hook for the m68k long double format, where the
245 exponent bias is the same for normalized and denormalized
248 # define DENORM_EXP (MIN_EXP - 2)
250 exponent
= DENORM_EXP
;
253 if ((round_limb
& (((mp_limb_t
) 1) << round_bit
)) != 0
254 && (more_bits
|| (retval
[0] & 1) != 0
255 || (round_limb
& ((((mp_limb_t
) 1) << round_bit
) - 1)) != 0))
257 mp_limb_t cy
= __mpn_add_1 (retval
, retval
, RETURN_LIMB_SIZE
, 1);
259 if (((MANT_DIG
% BITS_PER_MP_LIMB
) == 0 && cy
) ||
260 ((MANT_DIG
% BITS_PER_MP_LIMB
) != 0 &&
261 (retval
[RETURN_LIMB_SIZE
- 1]
262 & (((mp_limb_t
) 1) << (MANT_DIG
% BITS_PER_MP_LIMB
))) != 0))
265 (void) __mpn_rshift (retval
, retval
, RETURN_LIMB_SIZE
, 1);
266 retval
[RETURN_LIMB_SIZE
- 1]
267 |= ((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
);
269 else if (exponent
== DENORM_EXP
270 && (retval
[RETURN_LIMB_SIZE
- 1]
271 & (((mp_limb_t
) 1) << ((MANT_DIG
- 1) % BITS_PER_MP_LIMB
)))
273 /* The number was denormalized but now normalized. */
274 exponent
= MIN_EXP
- 1;
277 if (exponent
> MAX_EXP
)
278 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
280 return MPN2FLOAT (retval
, exponent
, negative
);
284 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
285 into N. Return the size of the number limbs in NSIZE at the first
286 character od the string that is not part of the integer as the function
287 value. If the EXPONENT is small enough to be taken as an additional
288 factor for the resulting number (see code) multiply by it. */
289 static const STRING_TYPE
*
290 str_to_mpn (const STRING_TYPE
*str
, int digcnt
, mp_limb_t
*n
, mp_size_t
*nsize
,
292 #ifndef USE_WIDE_CHAR
293 , const char *decimal
, size_t decimal_len
, const char *thousands
298 /* Number of digits for actual limb. */
307 if (cnt
== MAX_DIG_PER_LIMB
)
317 cy
= __mpn_mul_1 (n
, n
, *nsize
, MAX_FAC_PER_LIMB
);
318 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
329 /* There might be thousands separators or radix characters in
330 the string. But these all can be ignored because we know the
331 format of the number is correct and we have an exact number
332 of characters to read. */
334 if (*str
< L
'0' || *str
> L
'9')
337 if (*str
< '0' || *str
> '9')
340 if (thousands
!= NULL
&& *str
== *thousands
341 && ({ for (inner
= 1; thousands
[inner
] != '\0'; ++inner
)
342 if (thousands
[inner
] != str
[inner
])
344 thousands
[inner
] == '\0'; }))
350 low
= low
* 10 + *str
++ - L_('0');
353 while (--digcnt
> 0);
355 if (*exponent
> 0 && cnt
+ *exponent
<= MAX_DIG_PER_LIMB
)
357 low
*= _tens_in_limb
[*exponent
];
358 start
= _tens_in_limb
[cnt
+ *exponent
];
362 start
= _tens_in_limb
[cnt
];
372 cy
= __mpn_mul_1 (n
, n
, *nsize
, start
);
373 cy
+= __mpn_add_1 (n
, n
, *nsize
, low
);
382 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
383 with the COUNT most significant bits of LIMB.
385 Tege doesn't like this function so I have to write it here myself. :)
388 __attribute ((always_inline
))
389 __mpn_lshift_1 (mp_limb_t
*ptr
, mp_size_t size
, unsigned int count
,
392 if (__builtin_constant_p (count
) && count
== BITS_PER_MP_LIMB
)
394 /* Optimize the case of shifting by exactly a word:
395 just copy words, with no actual bit-shifting. */
397 for (i
= size
- 1; i
> 0; --i
)
403 (void) __mpn_lshift (ptr
, ptr
, size
, count
);
404 ptr
[0] |= limb
>> (BITS_PER_MP_LIMB
- count
);
409 #define INTERNAL(x) INTERNAL1(x)
410 #define INTERNAL1(x) __##x##_internal
411 #ifndef ____STRTOF_INTERNAL
412 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
415 /* This file defines a function to check for correct grouping. */
416 #include "grouping.h"
419 /* Return a floating point number with the value of the given string NPTR.
420 Set *ENDPTR to the character after the last used one. If the number is
421 smaller than the smallest representable number, set `errno' to ERANGE and
422 return 0.0. If the number is too big to be represented, set `errno' to
423 ERANGE and return HUGE_VAL with the appropriate sign. */
425 ____STRTOF_INTERNAL (nptr
, endptr
, group
, loc
)
426 const STRING_TYPE
*nptr
;
427 STRING_TYPE
**endptr
;
431 int negative
; /* The sign of the number. */
432 MPN_VAR (num
); /* MP representation of the number. */
433 int exponent
; /* Exponent of the number. */
435 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
438 /* When we have to compute fractional digits we form a fraction with a
439 second multi-precision number (and we sometimes need a second for
440 temporary results). */
443 /* Representation for the return value. */
444 mp_limb_t retval
[RETURN_LIMB_SIZE
];
445 /* Number of bits currently in result value. */
448 /* Running pointer after the last character processed in the string. */
449 const STRING_TYPE
*cp
, *tp
;
450 /* Start of significant part of the number. */
451 const STRING_TYPE
*startp
, *start_of_digits
;
452 /* Points at the character following the integer and fractional digits. */
453 const STRING_TYPE
*expp
;
454 /* Total number of digit and number of digits in integer part. */
455 int dig_no
, int_no
, lead_zero
;
456 /* Contains the last character read. */
459 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
460 there. So define it ourselves if it remains undefined. */
462 typedef unsigned int wint_t;
464 /* The radix character of the current locale. */
471 /* The thousands character of the current locale. */
473 wchar_t thousands
= L
'\0';
475 const char *thousands
= NULL
;
477 /* The numeric grouping specification of the current locale,
478 in the format described in <locale.h>. */
479 const char *grouping
;
480 /* Used in several places. */
483 struct locale_data
*current
= loc
->__locales
[LC_NUMERIC
];
485 if (__builtin_expect (group
, 0))
487 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
488 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
492 /* Figure out the thousands separator character. */
494 thousands
= _NL_CURRENT_WORD (LC_NUMERIC
,
495 _NL_NUMERIC_THOUSANDS_SEP_WC
);
496 if (thousands
== L
'\0')
499 thousands
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
500 if (*thousands
== '\0')
511 /* Find the locale's decimal point character. */
513 decimal
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
514 assert (decimal
!= L
'\0');
515 # define decimal_len 1
517 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
518 decimal_len
= strlen (decimal
);
519 assert (decimal_len
> 0);
522 /* Prepare number representation. */
527 /* Parse string to get maximal legal prefix. We need the number of
528 characters of the integer part, the fractional part and the exponent. */
530 /* Ignore leading white space. */
535 /* Get sign of the result. */
541 else if (c
== L_('+'))
544 /* Return 0.0 if no legal string is found.
545 No character is used even if a sign was found. */
547 if (c
== (wint_t) decimal
548 && (wint_t) cp
[1] >= L
'0' && (wint_t) cp
[1] <= L
'9')
550 /* We accept it. This funny construct is here only to indent
551 the code correctly. */
554 for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
555 if (cp
[cnt
] != decimal
[cnt
])
557 if (decimal
[cnt
] == '\0' && cp
[cnt
] >= '0' && cp
[cnt
] <= '9')
559 /* We accept it. This funny construct is here only to indent
560 the code correctly. */
563 else if (c
< L_('0') || c
> L_('9'))
565 /* Check for `INF' or `INFINITY'. */
566 CHAR_TYPE lowc
= TOLOWER_C (c
);
568 if (lowc
== L_('i') && STRNCASECMP (cp
, L_("inf"), 3) == 0)
570 /* Return +/- infinity. */
572 *endptr
= (STRING_TYPE
*)
573 (cp
+ (STRNCASECMP (cp
+ 3, L_("inity"), 5) == 0
576 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
579 if (lowc
== L_('n') && STRNCASECMP (cp
, L_("nan"), 3) == 0)
586 /* Match `(n-char-sequence-digit)'. */
589 const STRING_TYPE
*startp
= cp
;
592 while ((*cp
>= L_('0') && *cp
<= L_('9'))
593 || ({ CHAR_TYPE lo
= TOLOWER (*cp
);
594 lo
>= L_('a') && lo
<= L_('z'); })
598 /* The closing brace is missing. Only match the NAN
603 /* This is a system-dependent way to specify the
604 bitmask used for the NaN. We expect it to be
605 a number which is put in the mantissa of the
608 unsigned long long int mant
;
610 mant
= STRTOULL (startp
+ 1, &endp
, 0);
612 SET_MANTISSA (retval
, mant
);
617 *endptr
= (STRING_TYPE
*) cp
;
622 /* It is really a text we do not recognize. */
626 /* First look whether we are faced with a hexadecimal number. */
627 if (c
== L_('0') && TOLOWER (cp
[1]) == L_('x'))
629 /* Okay, it is a hexa-decimal number. Remember this and skip
630 the characters. BTW: hexadecimal numbers must not be
638 /* Record the start of the digits, in case we will check their grouping. */
639 start_of_digits
= startp
= cp
;
641 /* Ignore leading zeroes. This helps us to avoid useless computations. */
643 while (c
== L
'0' || ((wint_t) thousands
!= L
'\0' && c
== (wint_t) thousands
))
646 if (__builtin_expect (thousands
== NULL
, 1))
651 /* We also have the multibyte thousands string. */
656 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
657 if (thousands
[cnt
] != cp
[cnt
])
659 if (thousands
[cnt
] != '\0')
668 /* If no other digit but a '0' is found the result is 0.0.
669 Return current read pointer. */
670 CHAR_TYPE lowc
= TOLOWER (c
);
671 if (!((c
>= L_('0') && c
<= L_('9'))
672 || (base
== 16 && lowc
>= L_('a') && lowc
<= L_('f'))
675 c
== (wint_t) decimal
677 ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
678 if (decimal
[cnt
] != cp
[cnt
])
680 decimal
[cnt
] == '\0'; })
682 /* '0x.' alone is not a valid hexadecimal number.
683 '.' alone is not valid either, but that has been checked
686 || cp
!= start_of_digits
687 || (cp
[decimal_len
] >= L_('0') && cp
[decimal_len
] <= L_('9'))
688 || ({ CHAR_TYPE lo
= TOLOWER (cp
[decimal_len
]);
689 lo
>= L_('a') && lo
<= L_('f'); })))
690 || (base
== 16 && (cp
!= start_of_digits
692 || (base
!= 16 && lowc
== L_('e'))))
695 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
698 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
701 /* If TP is at the start of the digits, there was no correctly
702 grouped prefix of the string; so no number found. */
703 RETURN (0.0, tp
== start_of_digits
? (base
== 16 ? cp
- 1 : nptr
) : tp
);
706 /* Remember first significant digit and read following characters until the
707 decimal point, exponent character or any non-FP number character. */
712 if ((c
>= L_('0') && c
<= L_('9'))
714 && ({ CHAR_TYPE lo
= TOLOWER (c
);
715 lo
>= L_('a') && lo
<= L_('f'); })))
720 if (__builtin_expect ((wint_t) thousands
== L
'\0', 1)
721 || c
!= (wint_t) thousands
)
722 /* Not a digit or separator: end of the integer part. */
725 if (__builtin_expect (thousands
== NULL
, 1))
729 for (cnt
= 0; thousands
[cnt
] != '\0'; ++cnt
)
730 if (thousands
[cnt
] != cp
[cnt
])
732 if (thousands
[cnt
] != '\0')
741 if (__builtin_expect (grouping
!= NULL
, 0) && cp
> start_of_digits
)
743 /* Check the grouping of the digits. */
745 tp
= __correctly_grouped_prefixwc (start_of_digits
, cp
, thousands
,
748 tp
= __correctly_grouped_prefixmb (start_of_digits
, cp
, thousands
,
753 /* Less than the entire string was correctly grouped. */
755 if (tp
== start_of_digits
)
756 /* No valid group of numbers at all: no valid number. */
760 /* The number is validly grouped, but consists
761 only of zeroes. The whole value is zero. */
764 /* Recompute DIG_NO so we won't read more digits than
765 are properly grouped. */
768 for (tp
= startp
; tp
< cp
; ++tp
)
769 if (*tp
>= L_('0') && *tp
<= L_('9'))
779 /* We have the number of digits in the integer part. Whether these
780 are all or any is really a fractional digit will be decided
783 lead_zero
= int_no
== 0 ? -1 : 0;
785 /* Read the fractional digits. A special case are the 'american
786 style' numbers like `16.' i.e. with decimal point but without
790 c
== (wint_t) decimal
792 ({ for (cnt
= 0; decimal
[cnt
] != '\0'; ++cnt
)
793 if (decimal
[cnt
] != cp
[cnt
])
795 decimal
[cnt
] == '\0'; })
801 while ((c
>= L_('0') && c
<= L_('9')) ||
802 (base
== 16 && ({ CHAR_TYPE lo
= TOLOWER (c
);
803 lo
>= L_('a') && lo
<= L_('f'); })))
805 if (c
!= L_('0') && lead_zero
== -1)
806 lead_zero
= dig_no
- int_no
;
812 /* Remember start of exponent (if any). */
817 if ((base
== 16 && lowc
== L_('p'))
818 || (base
!= 16 && lowc
== L_('e')))
820 int exp_negative
= 0;
828 else if (c
== L_('+'))
831 if (c
>= L_('0') && c
<= L_('9'))
835 /* Get the exponent limit. */
837 exp_limit
= (exp_negative
?
838 -MIN_EXP
+ MANT_DIG
+ 4 * int_no
:
839 MAX_EXP
- 4 * int_no
+ 4 * lead_zero
+ 3);
841 exp_limit
= (exp_negative
?
842 -MIN_10_EXP
+ MANT_DIG
+ int_no
:
843 MAX_10_EXP
- int_no
+ lead_zero
+ 1);
848 exponent
+= c
- L_('0');
850 if (__builtin_expect (exponent
> exp_limit
, 0))
851 /* The exponent is too large/small to represent a valid
856 /* We have to take care for special situation: a joker
857 might have written "0.0e100000" which is in fact
860 result
= negative
? -0.0 : 0.0;
863 /* Overflow or underflow. */
864 __set_errno (ERANGE
);
865 result
= (exp_negative
? 0.0 :
866 negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
);
869 /* Accept all following digits as part of the exponent. */
872 while (*cp
>= L_('0') && *cp
<= L_('9'));
880 while (c
>= L_('0') && c
<= L_('9'));
883 exponent
= -exponent
;
889 /* We don't want to have to work with trailing zeroes after the radix. */
892 while (expp
[-1] == L_('0'))
897 assert (dig_no
>= int_no
);
900 if (dig_no
== int_no
&& dig_no
> 0 && exponent
< 0)
903 while (! (base
== 16 ? ISXDIGIT (expp
[-1]) : ISDIGIT (expp
[-1])))
906 if (expp
[-1] != L_('0'))
912 exponent
+= base
== 16 ? 4 : 1;
914 while (dig_no
> 0 && exponent
< 0);
918 /* The whole string is parsed. Store the address of the next character. */
920 *endptr
= (STRING_TYPE
*) cp
;
923 return negative
? -0.0 : 0.0;
927 /* Find the decimal point */
929 while (*startp
!= decimal
)
934 if (*startp
== decimal
[0])
936 for (cnt
= 1; decimal
[cnt
] != '\0'; ++cnt
)
937 if (decimal
[cnt
] != startp
[cnt
])
939 if (decimal
[cnt
] == '\0')
945 startp
+= lead_zero
+ decimal_len
;
946 exponent
-= base
== 16 ? 4 * lead_zero
: lead_zero
;
950 /* If the BASE is 16 we can use a simpler algorithm. */
953 static const int nbits
[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
954 4, 4, 4, 4, 4, 4, 4, 4 };
955 int idx
= (MANT_DIG
- 1) / BITS_PER_MP_LIMB
;
956 int pos
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
959 while (!ISXDIGIT (*startp
))
961 while (*startp
== L_('0'))
963 if (ISDIGIT (*startp
))
964 val
= *startp
++ - L_('0');
966 val
= 10 + TOLOWER (*startp
++) - L_('a');
968 /* We cannot have a leading zero. */
971 if (pos
+ 1 >= 4 || pos
+ 1 >= bits
)
973 /* We don't have to care for wrapping. This is the normal
974 case so we add the first clause in the `if' expression as
975 an optimization. It is a compile-time constant and so does
976 not cost anything. */
977 retval
[idx
] = val
<< (pos
- bits
+ 1);
982 retval
[idx
--] = val
>> (bits
- pos
- 1);
983 retval
[idx
] = val
<< (BITS_PER_MP_LIMB
- (bits
- pos
- 1));
984 pos
= BITS_PER_MP_LIMB
- 1 - (bits
- pos
- 1);
987 /* Adjust the exponent for the bits we are shifting in. */
988 exponent
+= bits
- 1 + (int_no
- 1) * 4;
990 while (--dig_no
> 0 && idx
>= 0)
992 if (!ISXDIGIT (*startp
))
993 startp
+= decimal_len
;
994 if (ISDIGIT (*startp
))
995 val
= *startp
++ - L_('0');
997 val
= 10 + TOLOWER (*startp
++) - L_('a');
1001 retval
[idx
] |= val
<< (pos
- 4 + 1);
1006 retval
[idx
--] |= val
>> (4 - pos
- 1);
1007 val
<<= BITS_PER_MP_LIMB
- (4 - pos
- 1);
1009 return round_and_return (retval
, exponent
, negative
, val
,
1010 BITS_PER_MP_LIMB
- 1, dig_no
> 0);
1013 pos
= BITS_PER_MP_LIMB
- 1 - (4 - pos
- 1);
1017 /* We ran out of digits. */
1018 MPN_ZERO (retval
, idx
);
1020 return round_and_return (retval
, exponent
, negative
, 0, 0, 0);
1023 /* Now we have the number of digits in total and the integer digits as well
1024 as the exponent and its sign. We can decide whether the read digits are
1025 really integer digits or belong to the fractional part; i.e. we normalize
1028 register int incr
= (exponent
< 0 ? MAX (-int_no
, exponent
)
1029 : MIN (dig_no
- int_no
, exponent
));
1034 if (__builtin_expect (int_no
+ exponent
> MAX_10_EXP
+ 1, 0))
1036 __set_errno (ERANGE
);
1037 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
1040 if (__builtin_expect (exponent
< MIN_10_EXP
- (DIG
+ 1), 0))
1042 __set_errno (ERANGE
);
1048 /* Read the integer part as a multi-precision number to NUM. */
1049 startp
= str_to_mpn (startp
, int_no
, num
, &numsize
, &exponent
1050 #ifndef USE_WIDE_CHAR
1051 , decimal
, decimal_len
, thousands
1057 /* We now multiply the gained number by the given power of ten. */
1058 mp_limb_t
*psrc
= num
;
1059 mp_limb_t
*pdest
= den
;
1061 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1065 if ((exponent
& expbit
) != 0)
1067 size_t size
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1071 /* FIXME: not the whole multiplication has to be
1072 done. If we have the needed number of bits we
1073 only need the information whether more non-zero
1075 if (numsize
>= ttab
->arraysize
- _FPIO_CONST_OFFSET
)
1076 cy
= __mpn_mul (pdest
, psrc
, numsize
,
1077 &__tens
[ttab
->arrayoff
1078 + _FPIO_CONST_OFFSET
],
1081 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1082 + _FPIO_CONST_OFFSET
],
1083 size
, psrc
, numsize
);
1087 (void) SWAP (psrc
, pdest
);
1092 while (exponent
!= 0);
1095 memcpy (num
, den
, numsize
* sizeof (mp_limb_t
));
1098 /* Determine how many bits of the result we already have. */
1099 count_leading_zeros (bits
, num
[numsize
- 1]);
1100 bits
= numsize
* BITS_PER_MP_LIMB
- bits
;
1102 /* Now we know the exponent of the number in base two.
1103 Check it against the maximum possible exponent. */
1104 if (__builtin_expect (bits
> MAX_EXP
, 0))
1106 __set_errno (ERANGE
);
1107 return negative
? -FLOAT_HUGE_VAL
: FLOAT_HUGE_VAL
;
1110 /* We have already the first BITS bits of the result. Together with
1111 the information whether more non-zero bits follow this is enough
1112 to determine the result. */
1113 if (bits
> MANT_DIG
)
1116 const mp_size_t least_idx
= (bits
- MANT_DIG
) / BITS_PER_MP_LIMB
;
1117 const mp_size_t least_bit
= (bits
- MANT_DIG
) % BITS_PER_MP_LIMB
;
1118 const mp_size_t round_idx
= least_bit
== 0 ? least_idx
- 1
1120 const mp_size_t round_bit
= least_bit
== 0 ? BITS_PER_MP_LIMB
- 1
1124 memcpy (retval
, &num
[least_idx
],
1125 RETURN_LIMB_SIZE
* sizeof (mp_limb_t
));
1128 for (i
= least_idx
; i
< numsize
- 1; ++i
)
1129 retval
[i
- least_idx
] = (num
[i
] >> least_bit
)
1131 << (BITS_PER_MP_LIMB
- least_bit
));
1132 if (i
- least_idx
< RETURN_LIMB_SIZE
)
1133 retval
[RETURN_LIMB_SIZE
- 1] = num
[i
] >> least_bit
;
1136 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1137 for (i
= 0; num
[i
] == 0; ++i
)
1140 return round_and_return (retval
, bits
- 1, negative
,
1141 num
[round_idx
], round_bit
,
1142 int_no
< dig_no
|| i
< round_idx
);
1145 else if (dig_no
== int_no
)
1147 const mp_size_t target_bit
= (MANT_DIG
- 1) % BITS_PER_MP_LIMB
;
1148 const mp_size_t is_bit
= (bits
- 1) % BITS_PER_MP_LIMB
;
1150 if (target_bit
== is_bit
)
1152 memcpy (&retval
[RETURN_LIMB_SIZE
- numsize
], num
,
1153 numsize
* sizeof (mp_limb_t
));
1154 /* FIXME: the following loop can be avoided if we assume a
1155 maximal MANT_DIG value. */
1156 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1158 else if (target_bit
> is_bit
)
1160 (void) __mpn_lshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1161 num
, numsize
, target_bit
- is_bit
);
1162 /* FIXME: the following loop can be avoided if we assume a
1163 maximal MANT_DIG value. */
1164 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
);
1169 assert (numsize
< RETURN_LIMB_SIZE
);
1171 cy
= __mpn_rshift (&retval
[RETURN_LIMB_SIZE
- numsize
],
1172 num
, numsize
, is_bit
- target_bit
);
1173 retval
[RETURN_LIMB_SIZE
- numsize
- 1] = cy
;
1174 /* FIXME: the following loop can be avoided if we assume a
1175 maximal MANT_DIG value. */
1176 MPN_ZERO (retval
, RETURN_LIMB_SIZE
- numsize
- 1);
1179 return round_and_return (retval
, bits
- 1, negative
, 0, 0, 0);
1183 /* Store the bits we already have. */
1184 memcpy (retval
, num
, numsize
* sizeof (mp_limb_t
));
1185 #if RETURN_LIMB_SIZE > 1
1186 if (numsize
< RETURN_LIMB_SIZE
)
1187 # if RETURN_LIMB_SIZE == 2
1188 retval
[numsize
] = 0;
1190 MPN_ZERO (retval
+ numsize
, RETURN_LIMB_SIZE
- numsize
);
1195 /* We have to compute at least some of the fractional digits. */
1197 /* We construct a fraction and the result of the division gives us
1198 the needed digits. The denominator is 1.0 multiplied by the
1199 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1200 123e-6 gives 123 / 1000000. */
1206 mp_limb_t
*psrc
= den
;
1207 mp_limb_t
*pdest
= num
;
1208 const struct mp_power
*ttab
= &_fpioconst_pow10
[0];
1210 assert (dig_no
> int_no
&& exponent
<= 0);
1213 /* For the fractional part we need not process too many digits. One
1214 decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
1216 digits we should have enough bits for the result. The remaining
1217 decimal digits give us the information that more bits are following.
1218 This can be used while rounding. (Two added as a safety margin.) */
1219 if (dig_no
- int_no
> (MANT_DIG
- bits
+ 2) / 3 + 2)
1221 dig_no
= int_no
+ (MANT_DIG
- bits
+ 2) / 3 + 2;
1227 neg_exp
= dig_no
- int_no
- exponent
;
1229 /* Construct the denominator. */
1234 if ((neg_exp
& expbit
) != 0)
1241 densize
= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1242 memcpy (psrc
, &__tens
[ttab
->arrayoff
+ _FPIO_CONST_OFFSET
],
1243 densize
* sizeof (mp_limb_t
));
1247 cy
= __mpn_mul (pdest
, &__tens
[ttab
->arrayoff
1248 + _FPIO_CONST_OFFSET
],
1249 ttab
->arraysize
- _FPIO_CONST_OFFSET
,
1251 densize
+= ttab
->arraysize
- _FPIO_CONST_OFFSET
;
1254 (void) SWAP (psrc
, pdest
);
1260 while (neg_exp
!= 0);
1263 memcpy (den
, num
, densize
* sizeof (mp_limb_t
));
1265 /* Read the fractional digits from the string. */
1266 (void) str_to_mpn (startp
, dig_no
- int_no
, num
, &numsize
, &exponent
1267 #ifndef USE_WIDE_CHAR
1268 , decimal
, decimal_len
, thousands
1272 /* We now have to shift both numbers so that the highest bit in the
1273 denominator is set. In the same process we copy the numerator to
1274 a high place in the array so that the division constructs the wanted
1275 digits. This is done by a "quasi fix point" number representation.
1277 num: ddddddddddd . 0000000000000000000000
1279 den: ddddddddddd n >= m
1283 count_leading_zeros (cnt
, den
[densize
- 1]);
1287 /* Don't call `mpn_shift' with a count of zero since the specification
1288 does not allow this. */
1289 (void) __mpn_lshift (den
, den
, densize
, cnt
);
1290 cy
= __mpn_lshift (num
, num
, numsize
, cnt
);
1292 num
[numsize
++] = cy
;
1295 /* Now we are ready for the division. But it is not necessary to
1296 do a full multi-precision division because we only need a small
1297 number of bits for the result. So we do not use __mpn_divmod
1298 here but instead do the division here by hand and stop whenever
1299 the needed number of bits is reached. The code itself comes
1300 from the GNU MP Library by Torbj\"orn Granlund. */
1308 mp_limb_t d
, n
, quot
;
1313 assert (numsize
== 1 && n
< d
);
1317 udiv_qrnnd (quot
, n
, n
, 0, d
);
1324 cnt = BITS_PER_MP_LIMB; \
1326 count_leading_zeros (cnt, quot); \
1328 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1330 used = MANT_DIG + cnt; \
1331 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1332 bits = MANT_DIG + 1; \
1336 /* Note that we only clear the second element. */ \
1337 /* The conditional is determined at compile time. */ \
1338 if (RETURN_LIMB_SIZE > 1) \
1344 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1345 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1349 used = MANT_DIG - bits; \
1351 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1353 bits += BITS_PER_MP_LIMB
1357 while (bits
<= MANT_DIG
);
1359 return round_and_return (retval
, exponent
- 1, negative
,
1360 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1361 more_bits
|| n
!= 0);
1365 mp_limb_t d0
, d1
, n0
, n1
;
1372 if (numsize
< densize
)
1376 /* The numerator of the number occupies fewer bits than
1377 the denominator but the one limb is bigger than the
1378 high limb of the numerator. */
1385 exponent
-= BITS_PER_MP_LIMB
;
1388 if (bits
+ BITS_PER_MP_LIMB
<= MANT_DIG
)
1389 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1390 BITS_PER_MP_LIMB
, 0);
1393 used
= MANT_DIG
- bits
;
1395 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1397 bits
+= BITS_PER_MP_LIMB
;
1409 while (bits
<= MANT_DIG
)
1415 /* QUOT should be either 111..111 or 111..110. We need
1416 special treatment of this rare case as normal division
1417 would give overflow. */
1418 quot
= ~(mp_limb_t
) 0;
1421 if (r
< d1
) /* Carry in the addition? */
1423 add_ssaaaa (n1
, n0
, r
- d0
, 0, 0, d0
);
1426 n1
= d0
- (d0
!= 0);
1431 udiv_qrnnd (quot
, r
, n1
, n0
, d1
);
1432 umul_ppmm (n1
, n0
, d0
, quot
);
1436 if (n1
> r
|| (n1
== r
&& n0
> 0))
1438 /* The estimated QUOT was too large. */
1441 sub_ddmmss (n1
, n0
, n1
, n0
, 0, d0
);
1443 if (r
>= d1
) /* If not carry, test QUOT again. */
1446 sub_ddmmss (n1
, n0
, r
, 0, n1
, n0
);
1452 return round_and_return (retval
, exponent
- 1, negative
,
1453 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1454 more_bits
|| n1
!= 0 || n0
!= 0);
1459 mp_limb_t cy
, dX
, d1
, n0
, n1
;
1463 dX
= den
[densize
- 1];
1464 d1
= den
[densize
- 2];
1466 /* The division does not work if the upper limb of the two-limb
1467 numerator is greater than the denominator. */
1468 if (__mpn_cmp (num
, &den
[densize
- numsize
], numsize
) > 0)
1471 if (numsize
< densize
)
1473 mp_size_t empty
= densize
- numsize
;
1477 exponent
-= empty
* BITS_PER_MP_LIMB
;
1480 if (bits
+ empty
* BITS_PER_MP_LIMB
<= MANT_DIG
)
1482 /* We make a difference here because the compiler
1483 cannot optimize the `else' case that good and
1484 this reflects all currently used FLOAT types
1485 and GMP implementations. */
1486 #if RETURN_LIMB_SIZE <= 2
1487 assert (empty
== 1);
1488 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
,
1489 BITS_PER_MP_LIMB
, 0);
1491 for (i
= RETURN_LIMB_SIZE
- 1; i
>= empty
; --i
)
1492 retval
[i
] = retval
[i
- empty
];
1499 used
= MANT_DIG
- bits
;
1500 if (used
>= BITS_PER_MP_LIMB
)
1503 (void) __mpn_lshift (&retval
[used
1504 / BITS_PER_MP_LIMB
],
1505 retval
, RETURN_LIMB_SIZE
,
1506 used
% BITS_PER_MP_LIMB
);
1507 for (i
= used
/ BITS_PER_MP_LIMB
- 1; i
>= 0; --i
)
1511 __mpn_lshift_1 (retval
, RETURN_LIMB_SIZE
, used
, 0);
1513 bits
+= empty
* BITS_PER_MP_LIMB
;
1515 for (i
= numsize
; i
> 0; --i
)
1516 num
[i
+ empty
] = num
[i
- 1];
1517 MPN_ZERO (num
, empty
+ 1);
1522 assert (numsize
== densize
);
1523 for (i
= numsize
; i
> 0; --i
)
1524 num
[i
] = num
[i
- 1];
1530 while (bits
<= MANT_DIG
)
1533 /* This might over-estimate QUOT, but it's probably not
1534 worth the extra code here to find out. */
1535 quot
= ~(mp_limb_t
) 0;
1540 udiv_qrnnd (quot
, r
, n0
, num
[densize
- 1], dX
);
1541 umul_ppmm (n1
, n0
, d1
, quot
);
1543 while (n1
> r
|| (n1
== r
&& n0
> num
[densize
- 2]))
1547 if (r
< dX
) /* I.e. "carry in previous addition?" */
1554 /* Possible optimization: We already have (q * n0) and (1 * n1)
1555 after the calculation of QUOT. Taking advantage of this, we
1556 could make this loop make two iterations less. */
1558 cy
= __mpn_submul_1 (num
, den
, densize
+ 1, quot
);
1560 if (num
[densize
] != cy
)
1562 cy
= __mpn_add_n (num
, num
, den
, densize
);
1566 n0
= num
[densize
] = num
[densize
- 1];
1567 for (i
= densize
- 1; i
> 0; --i
)
1568 num
[i
] = num
[i
- 1];
1573 for (i
= densize
; num
[i
] == 0 && i
>= 0; --i
)
1575 return round_and_return (retval
, exponent
- 1, negative
,
1576 quot
, BITS_PER_MP_LIMB
- 1 - used
,
1577 more_bits
|| i
>= 0);
1584 #if defined _LIBC && !defined USE_WIDE_CHAR
1585 libc_hidden_def (____STRTOF_INTERNAL
)
1588 /* External user entry point. */
1591 #ifdef weak_function
1594 __STRTOF (nptr
, endptr
, loc
)
1595 const STRING_TYPE
*nptr
;
1596 STRING_TYPE
**endptr
;
1599 return ____STRTOF_INTERNAL (nptr
, endptr
, 0, loc
);
1601 weak_alias (__STRTOF
, STRTOF
)
1603 #ifdef LONG_DOUBLE_COMPAT
1604 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1605 # ifdef USE_WIDE_CHAR
1606 compat_symbol (libc
, __wcstod_l
, __wcstold_l
, GLIBC_2_1
);
1608 compat_symbol (libc
, __strtod_l
, __strtold_l
, GLIBC_2_1
);
1611 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1612 # ifdef USE_WIDE_CHAR
1613 compat_symbol (libc
, wcstod_l
, wcstold_l
, GLIBC_2_3
);
1615 compat_symbol (libc
, strtod_l
, strtold_l
, GLIBC_2_3
);