1 /* GLIB sliced memory - fast concurrent memory chunk allocator
2 * Copyright (C) 2005 Tim Janik
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "glibconfig.h"
22 #if defined HAVE_POSIX_MEMALIGN && defined POSIX_MEMALIGN_WITH_COMPLIANT_ALLOCS
23 # define HAVE_COMPLIANT_POSIX_MEMALIGN 1
26 #if defined(HAVE_COMPLIANT_POSIX_MEMALIGN) && !defined(_XOPEN_SOURCE)
27 #define _XOPEN_SOURCE 600 /* posix_memalign() */
29 #include <stdlib.h> /* posix_memalign() */
34 #include <unistd.h> /* sysconf() */
41 #include <stdio.h> /* fputs/fprintf */
46 #include "gmem.h" /* gslice.h */
47 #include "gstrfuncs.h"
49 #include "gtrashstack.h"
50 #include "gtestutils.h"
52 #include "glib_trace.h"
57 * SECTION:memory_slices
58 * @title: Memory Slices
59 * @short_description: efficient way to allocate groups of equal-sized
62 * Memory slices provide a space-efficient and multi-processing scalable
63 * way to allocate equal-sized pieces of memory, just like the original
64 * #GMemChunks (from GLib 2.8), while avoiding their excessive
65 * memory-waste, scalability and performance problems.
67 * To achieve these goals, the slice allocator uses a sophisticated,
68 * layered design that has been inspired by Bonwick's slab allocator
69 * ([Bonwick94](http://citeseer.ist.psu.edu/bonwick94slab.html)
70 * Jeff Bonwick, The slab allocator: An object-caching kernel
71 * memory allocator. USENIX 1994, and
72 * [Bonwick01](http://citeseer.ist.psu.edu/bonwick01magazines.html)
73 * Bonwick and Jonathan Adams, Magazines and vmem: Extending the
74 * slab allocator to many cpu's and arbitrary resources. USENIX 2001)
76 * It uses posix_memalign() to optimize allocations of many equally-sized
77 * chunks, and has per-thread free lists (the so-called magazine layer)
78 * to quickly satisfy allocation requests of already known structure sizes.
79 * This is accompanied by extra caching logic to keep freed memory around
80 * for some time before returning it to the system. Memory that is unused
81 * due to alignment constraints is used for cache colorization (random
82 * distribution of chunk addresses) to improve CPU cache utilization. The
83 * caching layer of the slice allocator adapts itself to high lock contention
84 * to improve scalability.
86 * The slice allocator can allocate blocks as small as two pointers, and
87 * unlike malloc(), it does not reserve extra space per block. For large block
88 * sizes, g_slice_new() and g_slice_alloc() will automatically delegate to the
89 * system malloc() implementation. For newly written code it is recommended
90 * to use the new `g_slice` API instead of g_malloc() and
91 * friends, as long as objects are not resized during their lifetime and the
92 * object size used at allocation time is still available when freeing.
94 * Here is an example for using the slice allocator:
95 * |[<!-- language="C" -->
99 * // Allocate 10000 blocks.
100 * for (i = 0; i < 10000; i++)
102 * mem[i] = g_slice_alloc (50);
104 * // Fill in the memory with some junk.
105 * for (j = 0; j < 50; j++)
109 * // Now free all of the blocks.
110 * for (i = 0; i < 10000; i++)
111 * g_slice_free1 (50, mem[i]);
114 * And here is an example for using the using the slice allocator
115 * with data structures:
116 * |[<!-- language="C" -->
119 * // Allocate one block, using the g_slice_new() macro.
120 * array = g_slice_new (GRealArray);
122 * // We can now use array just like a normal pointer to a structure.
123 * array->data = NULL;
126 * array->zero_terminated = (zero_terminated ? 1 : 0);
127 * array->clear = (clear ? 1 : 0);
128 * array->elt_size = elt_size;
130 * // We can free the block, so it can be reused.
131 * g_slice_free (GRealArray, array);
135 /* the GSlice allocator is split up into 4 layers, roughly modelled after the slab
136 * allocator and magazine extensions as outlined in:
137 * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel
138 * memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html
139 * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the
140 * slab allocator to many cpu's and arbitrary resources.
141 * USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html
143 * - the thread magazines. for each (aligned) chunk size, a magazine (a list)
144 * of recently freed and soon to be allocated chunks is maintained per thread.
145 * this way, most alloc/free requests can be quickly satisfied from per-thread
146 * free lists which only require one g_private_get() call to retrive the
148 * - the magazine cache. allocating and freeing chunks to/from threads only
149 * occours at magazine sizes from a global depot of magazines. the depot
150 * maintaines a 15 second working set of allocated magazines, so full
151 * magazines are not allocated and released too often.
152 * the chunk size dependent magazine sizes automatically adapt (within limits,
153 * see [3]) to lock contention to properly scale performance across a variety
155 * - the slab allocator. this allocator allocates slabs (blocks of memory) close
156 * to the system page size or multiples thereof which have to be page aligned.
157 * the blocks are divided into smaller chunks which are used to satisfy
158 * allocations from the upper layers. the space provided by the reminder of
159 * the chunk size division is used for cache colorization (random distribution
160 * of chunk addresses) to improve processor cache utilization. multiple slabs
161 * with the same chunk size are kept in a partially sorted ring to allow O(1)
162 * freeing and allocation of chunks (as long as the allocation of an entirely
163 * new slab can be avoided).
164 * - the page allocator. on most modern systems, posix_memalign(3) or
165 * memalign(3) should be available, so this is used to allocate blocks with
166 * system page size based alignments and sizes or multiples thereof.
167 * if no memalign variant is provided, valloc() is used instead and
168 * block sizes are limited to the system page size (no multiples thereof).
169 * as a fallback, on system without even valloc(), a malloc(3)-based page
170 * allocator with alloc-only behaviour is used.
173 * [1] some systems memalign(3) implementations may rely on boundary tagging for
174 * the handed out memory chunks. to avoid excessive page-wise fragmentation,
175 * we reserve 2 * sizeof (void*) per block size for the systems memalign(3),
176 * specified in NATIVE_MALLOC_PADDING.
177 * [2] using the slab allocator alone already provides for a fast and efficient
178 * allocator, it doesn't properly scale beyond single-threaded uses though.
179 * also, the slab allocator implements eager free(3)-ing, i.e. does not
180 * provide any form of caching or working set maintenance. so if used alone,
181 * it's vulnerable to trashing for sequences of balanced (alloc, free) pairs
182 * at certain thresholds.
183 * [3] magazine sizes are bound by an implementation specific minimum size and
184 * a chunk size specific maximum to limit magazine storage sizes to roughly
186 * [4] allocating ca. 8 chunks per block/page keeps a good balance between
187 * external and internal fragmentation (<= 12.5%). [Bonwick94]
190 /* --- macros and constants --- */
191 #define LARGEALIGNMENT (256)
192 #define P2ALIGNMENT (2 * sizeof (gsize)) /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */
193 #define ALIGN(size, base) ((base) * (gsize) (((size) + (base) - 1) / (base)))
194 #define NATIVE_MALLOC_PADDING P2ALIGNMENT /* per-page padding left for native malloc(3) see [1] */
195 #define SLAB_INFO_SIZE P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING)
196 #define MAX_MAGAZINE_SIZE (256) /* see [3] and allocator_get_magazine_threshold() for this */
197 #define MIN_MAGAZINE_SIZE (4)
198 #define MAX_STAMP_COUNTER (7) /* distributes the load of gettimeofday() */
199 #define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8) /* we want at last 8 chunks per page, see [4] */
200 #define MAX_SLAB_INDEX(al) (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1)
201 #define SLAB_INDEX(al, asize) ((asize) / P2ALIGNMENT - 1) /* asize must be P2ALIGNMENT aligned */
202 #define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT)
203 #define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE)
205 /* optimized version of ALIGN (size, P2ALIGNMENT) */
206 #if GLIB_SIZEOF_SIZE_T * 2 == 8 /* P2ALIGNMENT */
207 #define P2ALIGN(size) (((size) + 0x7) & ~(gsize) 0x7)
208 #elif GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */
209 #define P2ALIGN(size) (((size) + 0xf) & ~(gsize) 0xf)
211 #define P2ALIGN(size) ALIGN (size, P2ALIGNMENT)
214 /* special helpers to avoid gmessage.c dependency */
215 static void mem_error (const char *format
, ...) G_GNUC_PRINTF (1,2);
216 #define mem_assert(cond) do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0)
218 /* --- structures --- */
219 typedef struct _ChunkLink ChunkLink
;
220 typedef struct _SlabInfo SlabInfo
;
221 typedef struct _CachedMagazine CachedMagazine
;
229 SlabInfo
*next
, *prev
;
233 gsize count
; /* approximative chunks list length */
236 Magazine
*magazine1
; /* array of MAX_SLAB_INDEX (allocator) */
237 Magazine
*magazine2
; /* array of MAX_SLAB_INDEX (allocator) */
240 gboolean always_malloc
;
241 gboolean bypass_magazines
;
242 gboolean debug_blocks
;
243 gsize working_set_msecs
;
244 guint color_increment
;
247 /* const after initialization */
248 gsize min_page_size
, max_page_size
;
250 gsize max_slab_chunk_size_for_magazine_cache
;
252 GMutex magazine_mutex
;
253 ChunkLink
**magazines
; /* array of MAX_SLAB_INDEX (allocator) */
254 guint
*contention_counters
; /* array of MAX_SLAB_INDEX (allocator) */
260 SlabInfo
**slab_stack
; /* array of MAX_SLAB_INDEX (allocator) */
264 /* --- g-slice prototypes --- */
265 static gpointer
slab_allocator_alloc_chunk (gsize chunk_size
);
266 static void slab_allocator_free_chunk (gsize chunk_size
,
268 static void private_thread_memory_cleanup (gpointer data
);
269 static gpointer
allocator_memalign (gsize alignment
,
271 static void allocator_memfree (gsize memsize
,
273 static inline void magazine_cache_update_stamp (void);
274 static inline gsize
allocator_get_magazine_threshold (Allocator
*allocator
,
277 /* --- g-slice memory checker --- */
278 static void smc_notify_alloc (void *pointer
,
280 static int smc_notify_free (void *pointer
,
283 /* --- variables --- */
284 static GPrivate private_thread_memory
= G_PRIVATE_INIT (private_thread_memory_cleanup
);
285 static gsize sys_page_size
= 0;
286 static Allocator allocator
[1] = { { 0, }, };
287 static SliceConfig slice_config
= {
288 FALSE
, /* always_malloc */
289 FALSE
, /* bypass_magazines */
290 FALSE
, /* debug_blocks */
291 15 * 1000, /* working_set_msecs */
292 1, /* color increment, alt: 0x7fffffff */
294 static GMutex smc_tree_mutex
; /* mutex for G_SLICE=debug-blocks */
296 /* --- auxiliary funcitons --- */
298 g_slice_set_config (GSliceConfig ckey
,
301 g_return_if_fail (sys_page_size
== 0);
304 case G_SLICE_CONFIG_ALWAYS_MALLOC
:
305 slice_config
.always_malloc
= value
!= 0;
307 case G_SLICE_CONFIG_BYPASS_MAGAZINES
:
308 slice_config
.bypass_magazines
= value
!= 0;
310 case G_SLICE_CONFIG_WORKING_SET_MSECS
:
311 slice_config
.working_set_msecs
= value
;
313 case G_SLICE_CONFIG_COLOR_INCREMENT
:
314 slice_config
.color_increment
= value
;
320 g_slice_get_config (GSliceConfig ckey
)
324 case G_SLICE_CONFIG_ALWAYS_MALLOC
:
325 return slice_config
.always_malloc
;
326 case G_SLICE_CONFIG_BYPASS_MAGAZINES
:
327 return slice_config
.bypass_magazines
;
328 case G_SLICE_CONFIG_WORKING_SET_MSECS
:
329 return slice_config
.working_set_msecs
;
330 case G_SLICE_CONFIG_CHUNK_SIZES
:
331 return MAX_SLAB_INDEX (allocator
);
332 case G_SLICE_CONFIG_COLOR_INCREMENT
:
333 return slice_config
.color_increment
;
340 g_slice_get_config_state (GSliceConfig ckey
,
345 g_return_val_if_fail (n_values
!= NULL
, NULL
);
350 case G_SLICE_CONFIG_CONTENTION_COUNTER
:
351 array
[i
++] = SLAB_CHUNK_SIZE (allocator
, address
);
352 array
[i
++] = allocator
->contention_counters
[address
];
353 array
[i
++] = allocator_get_magazine_threshold (allocator
, address
);
355 return g_memdup (array
, sizeof (array
[0]) * *n_values
);
362 slice_config_init (SliceConfig
*config
)
366 *config
= slice_config
;
368 val
= getenv ("G_SLICE");
372 const GDebugKey keys
[] = {
373 { "always-malloc", 1 << 0 },
374 { "debug-blocks", 1 << 1 },
377 flags
= g_parse_debug_string (val
, keys
, G_N_ELEMENTS (keys
));
378 if (flags
& (1 << 0))
379 config
->always_malloc
= TRUE
;
380 if (flags
& (1 << 1))
381 config
->debug_blocks
= TRUE
;
385 /* G_SLICE was not specified, so check if valgrind is running and
386 * disable ourselves if it is.
388 * This way it's possible to force gslice to be enabled under
389 * valgrind just by setting G_SLICE to the empty string.
391 if (RUNNING_ON_VALGRIND
)
392 config
->always_malloc
= TRUE
;
397 g_slice_init_nomessage (void)
399 /* we may not use g_error() or friends here */
400 mem_assert (sys_page_size
== 0);
401 mem_assert (MIN_MAGAZINE_SIZE
>= 4);
405 SYSTEM_INFO system_info
;
406 GetSystemInfo (&system_info
);
407 sys_page_size
= system_info
.dwPageSize
;
410 sys_page_size
= sysconf (_SC_PAGESIZE
); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */
412 mem_assert (sys_page_size
>= 2 * LARGEALIGNMENT
);
413 mem_assert ((sys_page_size
& (sys_page_size
- 1)) == 0);
414 slice_config_init (&allocator
->config
);
415 allocator
->min_page_size
= sys_page_size
;
416 #if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN
417 /* allow allocation of pages up to 8KB (with 8KB alignment).
418 * this is useful because many medium to large sized structures
419 * fit less than 8 times (see [4]) into 4KB pages.
420 * we allow very small page sizes here, to reduce wastage in
421 * threads if only small allocations are required (this does
422 * bear the risk of increasing allocation times and fragmentation
425 allocator
->min_page_size
= MAX (allocator
->min_page_size
, 4096);
426 allocator
->max_page_size
= MAX (allocator
->min_page_size
, 8192);
427 allocator
->min_page_size
= MIN (allocator
->min_page_size
, 128);
429 /* we can only align to system page size */
430 allocator
->max_page_size
= sys_page_size
;
432 if (allocator
->config
.always_malloc
)
434 allocator
->contention_counters
= NULL
;
435 allocator
->magazines
= NULL
;
436 allocator
->slab_stack
= NULL
;
440 allocator
->contention_counters
= g_new0 (guint
, MAX_SLAB_INDEX (allocator
));
441 allocator
->magazines
= g_new0 (ChunkLink
*, MAX_SLAB_INDEX (allocator
));
442 allocator
->slab_stack
= g_new0 (SlabInfo
*, MAX_SLAB_INDEX (allocator
));
445 allocator
->mutex_counter
= 0;
446 allocator
->stamp_counter
= MAX_STAMP_COUNTER
; /* force initial update */
447 allocator
->last_stamp
= 0;
448 allocator
->color_accu
= 0;
449 magazine_cache_update_stamp();
450 /* values cached for performance reasons */
451 allocator
->max_slab_chunk_size_for_magazine_cache
= MAX_SLAB_CHUNK_SIZE (allocator
);
452 if (allocator
->config
.always_malloc
|| allocator
->config
.bypass_magazines
)
453 allocator
->max_slab_chunk_size_for_magazine_cache
= 0; /* non-optimized cases */
457 allocator_categorize (gsize aligned_chunk_size
)
459 /* speed up the likely path */
460 if (G_LIKELY (aligned_chunk_size
&& aligned_chunk_size
<= allocator
->max_slab_chunk_size_for_magazine_cache
))
461 return 1; /* use magazine cache */
463 if (!allocator
->config
.always_malloc
&&
464 aligned_chunk_size
&&
465 aligned_chunk_size
<= MAX_SLAB_CHUNK_SIZE (allocator
))
467 if (allocator
->config
.bypass_magazines
)
468 return 2; /* use slab allocator, see [2] */
469 return 1; /* use magazine cache */
471 return 0; /* use malloc() */
475 g_mutex_lock_a (GMutex
*mutex
,
476 guint
*contention_counter
)
478 gboolean contention
= FALSE
;
479 if (!g_mutex_trylock (mutex
))
481 g_mutex_lock (mutex
);
486 allocator
->mutex_counter
++;
487 if (allocator
->mutex_counter
>= 1) /* quickly adapt to contention */
489 allocator
->mutex_counter
= 0;
490 *contention_counter
= MIN (*contention_counter
+ 1, MAX_MAGAZINE_SIZE
);
493 else /* !contention */
495 allocator
->mutex_counter
--;
496 if (allocator
->mutex_counter
< -11) /* moderately recover magazine sizes */
498 allocator
->mutex_counter
= 0;
499 *contention_counter
= MAX (*contention_counter
, 1) - 1;
504 static inline ThreadMemory
*
505 thread_memory_from_self (void)
507 ThreadMemory
*tmem
= g_private_get (&private_thread_memory
);
508 if (G_UNLIKELY (!tmem
))
510 static GMutex init_mutex
;
513 g_mutex_lock (&init_mutex
);
514 if G_UNLIKELY (sys_page_size
== 0)
515 g_slice_init_nomessage ();
516 g_mutex_unlock (&init_mutex
);
518 n_magazines
= MAX_SLAB_INDEX (allocator
);
519 tmem
= g_malloc0 (sizeof (ThreadMemory
) + sizeof (Magazine
) * 2 * n_magazines
);
520 tmem
->magazine1
= (Magazine
*) (tmem
+ 1);
521 tmem
->magazine2
= &tmem
->magazine1
[n_magazines
];
522 g_private_set (&private_thread_memory
, tmem
);
527 static inline ChunkLink
*
528 magazine_chain_pop_head (ChunkLink
**magazine_chunks
)
530 /* magazine chains are linked via ChunkLink->next.
531 * each ChunkLink->data of the toplevel chain may point to a subchain,
532 * linked via ChunkLink->next. ChunkLink->data of the subchains just
533 * contains uninitialized junk.
535 ChunkLink
*chunk
= (*magazine_chunks
)->data
;
536 if (G_UNLIKELY (chunk
))
538 /* allocating from freed list */
539 (*magazine_chunks
)->data
= chunk
->next
;
543 chunk
= *magazine_chunks
;
544 *magazine_chunks
= chunk
->next
;
549 #if 0 /* useful for debugging */
551 magazine_count (ChunkLink
*head
)
558 ChunkLink
*child
= head
->data
;
560 for (child
= head
->data
; child
; child
= child
->next
)
569 allocator_get_magazine_threshold (Allocator
*allocator
,
572 /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE,
573 * which is required by the implementation. also, for moderately sized chunks
574 * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number
575 * of chunks available per page/2 to avoid excessive traffic in the magazine
576 * cache for small to medium sized structures.
577 * the upper bound of the magazine size is effectively provided by
578 * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that
579 * the content of a single magazine doesn't exceed ca. 16KB.
581 gsize chunk_size
= SLAB_CHUNK_SIZE (allocator
, ix
);
582 guint threshold
= MAX (MIN_MAGAZINE_SIZE
, allocator
->max_page_size
/ MAX (5 * chunk_size
, 5 * 32));
583 guint contention_counter
= allocator
->contention_counters
[ix
];
584 if (G_UNLIKELY (contention_counter
)) /* single CPU bias */
586 /* adapt contention counter thresholds to chunk sizes */
587 contention_counter
= contention_counter
* 64 / chunk_size
;
588 threshold
= MAX (threshold
, contention_counter
);
593 /* --- magazine cache --- */
595 magazine_cache_update_stamp (void)
597 if (allocator
->stamp_counter
>= MAX_STAMP_COUNTER
)
600 g_get_current_time (&tv
);
601 allocator
->last_stamp
= tv
.tv_sec
* 1000 + tv
.tv_usec
/ 1000; /* milli seconds */
602 allocator
->stamp_counter
= 0;
605 allocator
->stamp_counter
++;
608 static inline ChunkLink
*
609 magazine_chain_prepare_fields (ChunkLink
*magazine_chunks
)
615 /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */
616 /* ensure a magazine with at least 4 unused data pointers */
617 chunk1
= magazine_chain_pop_head (&magazine_chunks
);
618 chunk2
= magazine_chain_pop_head (&magazine_chunks
);
619 chunk3
= magazine_chain_pop_head (&magazine_chunks
);
620 chunk4
= magazine_chain_pop_head (&magazine_chunks
);
621 chunk4
->next
= magazine_chunks
;
622 chunk3
->next
= chunk4
;
623 chunk2
->next
= chunk3
;
624 chunk1
->next
= chunk2
;
628 /* access the first 3 fields of a specially prepared magazine chain */
629 #define magazine_chain_prev(mc) ((mc)->data)
630 #define magazine_chain_stamp(mc) ((mc)->next->data)
631 #define magazine_chain_uint_stamp(mc) GPOINTER_TO_UINT ((mc)->next->data)
632 #define magazine_chain_next(mc) ((mc)->next->next->data)
633 #define magazine_chain_count(mc) ((mc)->next->next->next->data)
636 magazine_cache_trim (Allocator
*allocator
,
640 /* g_mutex_lock (allocator->mutex); done by caller */
641 /* trim magazine cache from tail */
642 ChunkLink
*current
= magazine_chain_prev (allocator
->magazines
[ix
]);
643 ChunkLink
*trash
= NULL
;
644 while (ABS (stamp
- magazine_chain_uint_stamp (current
)) >= allocator
->config
.working_set_msecs
)
647 ChunkLink
*prev
= magazine_chain_prev (current
);
648 ChunkLink
*next
= magazine_chain_next (current
);
649 magazine_chain_next (prev
) = next
;
650 magazine_chain_prev (next
) = prev
;
651 /* clear special fields, put on trash stack */
652 magazine_chain_next (current
) = NULL
;
653 magazine_chain_count (current
) = NULL
;
654 magazine_chain_stamp (current
) = NULL
;
655 magazine_chain_prev (current
) = trash
;
657 /* fixup list head if required */
658 if (current
== allocator
->magazines
[ix
])
660 allocator
->magazines
[ix
] = NULL
;
665 g_mutex_unlock (&allocator
->magazine_mutex
);
669 const gsize chunk_size
= SLAB_CHUNK_SIZE (allocator
, ix
);
670 g_mutex_lock (&allocator
->slab_mutex
);
674 trash
= magazine_chain_prev (current
);
675 magazine_chain_prev (current
) = NULL
; /* clear special field */
678 ChunkLink
*chunk
= magazine_chain_pop_head (¤t
);
679 slab_allocator_free_chunk (chunk_size
, chunk
);
682 g_mutex_unlock (&allocator
->slab_mutex
);
687 magazine_cache_push_magazine (guint ix
,
688 ChunkLink
*magazine_chunks
,
689 gsize count
) /* must be >= MIN_MAGAZINE_SIZE */
691 ChunkLink
*current
= magazine_chain_prepare_fields (magazine_chunks
);
692 ChunkLink
*next
, *prev
;
693 g_mutex_lock (&allocator
->magazine_mutex
);
694 /* add magazine at head */
695 next
= allocator
->magazines
[ix
];
697 prev
= magazine_chain_prev (next
);
699 next
= prev
= current
;
700 magazine_chain_next (prev
) = current
;
701 magazine_chain_prev (next
) = current
;
702 magazine_chain_prev (current
) = prev
;
703 magazine_chain_next (current
) = next
;
704 magazine_chain_count (current
) = (gpointer
) count
;
706 magazine_cache_update_stamp();
707 magazine_chain_stamp (current
) = GUINT_TO_POINTER (allocator
->last_stamp
);
708 allocator
->magazines
[ix
] = current
;
709 /* free old magazines beyond a certain threshold */
710 magazine_cache_trim (allocator
, ix
, allocator
->last_stamp
);
711 /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */
715 magazine_cache_pop_magazine (guint ix
,
718 g_mutex_lock_a (&allocator
->magazine_mutex
, &allocator
->contention_counters
[ix
]);
719 if (!allocator
->magazines
[ix
])
721 guint magazine_threshold
= allocator_get_magazine_threshold (allocator
, ix
);
722 gsize i
, chunk_size
= SLAB_CHUNK_SIZE (allocator
, ix
);
723 ChunkLink
*chunk
, *head
;
724 g_mutex_unlock (&allocator
->magazine_mutex
);
725 g_mutex_lock (&allocator
->slab_mutex
);
726 head
= slab_allocator_alloc_chunk (chunk_size
);
729 for (i
= 1; i
< magazine_threshold
; i
++)
731 chunk
->next
= slab_allocator_alloc_chunk (chunk_size
);
736 g_mutex_unlock (&allocator
->slab_mutex
);
742 ChunkLink
*current
= allocator
->magazines
[ix
];
743 ChunkLink
*prev
= magazine_chain_prev (current
);
744 ChunkLink
*next
= magazine_chain_next (current
);
746 magazine_chain_next (prev
) = next
;
747 magazine_chain_prev (next
) = prev
;
748 allocator
->magazines
[ix
] = next
== current
? NULL
: next
;
749 g_mutex_unlock (&allocator
->magazine_mutex
);
750 /* clear special fields and hand out */
751 *countp
= (gsize
) magazine_chain_count (current
);
752 magazine_chain_prev (current
) = NULL
;
753 magazine_chain_next (current
) = NULL
;
754 magazine_chain_count (current
) = NULL
;
755 magazine_chain_stamp (current
) = NULL
;
760 /* --- thread magazines --- */
762 private_thread_memory_cleanup (gpointer data
)
764 ThreadMemory
*tmem
= data
;
765 const guint n_magazines
= MAX_SLAB_INDEX (allocator
);
767 for (ix
= 0; ix
< n_magazines
; ix
++)
771 mags
[0] = &tmem
->magazine1
[ix
];
772 mags
[1] = &tmem
->magazine2
[ix
];
773 for (j
= 0; j
< 2; j
++)
775 Magazine
*mag
= mags
[j
];
776 if (mag
->count
>= MIN_MAGAZINE_SIZE
)
777 magazine_cache_push_magazine (ix
, mag
->chunks
, mag
->count
);
780 const gsize chunk_size
= SLAB_CHUNK_SIZE (allocator
, ix
);
781 g_mutex_lock (&allocator
->slab_mutex
);
784 ChunkLink
*chunk
= magazine_chain_pop_head (&mag
->chunks
);
785 slab_allocator_free_chunk (chunk_size
, chunk
);
787 g_mutex_unlock (&allocator
->slab_mutex
);
795 thread_memory_magazine1_reload (ThreadMemory
*tmem
,
798 Magazine
*mag
= &tmem
->magazine1
[ix
];
799 mem_assert (mag
->chunks
== NULL
); /* ensure that we may reset mag->count */
801 mag
->chunks
= magazine_cache_pop_magazine (ix
, &mag
->count
);
805 thread_memory_magazine2_unload (ThreadMemory
*tmem
,
808 Magazine
*mag
= &tmem
->magazine2
[ix
];
809 magazine_cache_push_magazine (ix
, mag
->chunks
, mag
->count
);
815 thread_memory_swap_magazines (ThreadMemory
*tmem
,
818 Magazine xmag
= tmem
->magazine1
[ix
];
819 tmem
->magazine1
[ix
] = tmem
->magazine2
[ix
];
820 tmem
->magazine2
[ix
] = xmag
;
823 static inline gboolean
824 thread_memory_magazine1_is_empty (ThreadMemory
*tmem
,
827 return tmem
->magazine1
[ix
].chunks
== NULL
;
830 static inline gboolean
831 thread_memory_magazine2_is_full (ThreadMemory
*tmem
,
834 return tmem
->magazine2
[ix
].count
>= allocator_get_magazine_threshold (allocator
, ix
);
837 static inline gpointer
838 thread_memory_magazine1_alloc (ThreadMemory
*tmem
,
841 Magazine
*mag
= &tmem
->magazine1
[ix
];
842 ChunkLink
*chunk
= magazine_chain_pop_head (&mag
->chunks
);
843 if (G_LIKELY (mag
->count
> 0))
849 thread_memory_magazine2_free (ThreadMemory
*tmem
,
853 Magazine
*mag
= &tmem
->magazine2
[ix
];
854 ChunkLink
*chunk
= mem
;
856 chunk
->next
= mag
->chunks
;
861 /* --- API functions --- */
865 * @type: the type to allocate, typically a structure name
867 * A convenience macro to allocate a block of memory from the
870 * It calls g_slice_alloc() with `sizeof (@type)` and casts the
871 * returned pointer to a pointer of the given type, avoiding a type
872 * cast in the source code. Note that the underlying slice allocation
873 * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
874 * environment variable.
876 * This can never return %NULL as the minimum allocation size from
877 * `sizeof (@type)` is 1 byte.
879 * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
887 * @type: the type to allocate, typically a structure name
889 * A convenience macro to allocate a block of memory from the
890 * slice allocator and set the memory to 0.
892 * It calls g_slice_alloc0() with `sizeof (@type)`
893 * and casts the returned pointer to a pointer of the given type,
894 * avoiding a type cast in the source code.
895 * Note that the underlying slice allocation mechanism can
896 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
897 * environment variable.
899 * This can never return %NULL as the minimum allocation size from
900 * `sizeof (@type)` is 1 byte.
902 * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
910 * @type: the type to duplicate, typically a structure name
911 * @mem: (not nullable): the memory to copy into the allocated block
913 * A convenience macro to duplicate a block of memory using
914 * the slice allocator.
916 * It calls g_slice_copy() with `sizeof (@type)`
917 * and casts the returned pointer to a pointer of the given type,
918 * avoiding a type cast in the source code.
919 * Note that the underlying slice allocation mechanism can
920 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
921 * environment variable.
923 * This can never return %NULL.
925 * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
933 * @type: the type of the block to free, typically a structure name
934 * @mem: a pointer to the block to free
936 * A convenience macro to free a block of memory that has
937 * been allocated from the slice allocator.
939 * It calls g_slice_free1() using `sizeof (type)`
941 * Note that the exact release behaviour can be changed with the
942 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
943 * [`G_SLICE`][G_SLICE] for related debugging options.
945 * If @mem is %NULL, this macro does nothing.
951 * g_slice_free_chain:
952 * @type: the type of the @mem_chain blocks
953 * @mem_chain: a pointer to the first block of the chain
954 * @next: the field name of the next pointer in @type
956 * Frees a linked list of memory blocks of structure type @type.
957 * The memory blocks must be equal-sized, allocated via
958 * g_slice_alloc() or g_slice_alloc0() and linked together by
959 * a @next pointer (similar to #GSList). The name of the
960 * @next field in @type is passed as third argument.
961 * Note that the exact release behaviour can be changed with the
962 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
963 * [`G_SLICE`][G_SLICE] for related debugging options.
965 * If @mem_chain is %NULL, this function does nothing.
972 * @block_size: the number of bytes to allocate
974 * Allocates a block of memory from the slice allocator.
975 * The block adress handed out can be expected to be aligned
976 * to at least 1 * sizeof (void*),
977 * though in general slices are 2 * sizeof (void*) bytes aligned,
978 * if a malloc() fallback implementation is used instead,
979 * the alignment may be reduced in a libc dependent fashion.
980 * Note that the underlying slice allocation mechanism can
981 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
982 * environment variable.
984 * Returns: a pointer to the allocated memory block, which will be %NULL if and
985 * only if @mem_size is 0
990 g_slice_alloc (gsize mem_size
)
997 /* This gets the private structure for this thread. If the private
998 * structure does not yet exist, it is created.
1000 * This has a side effect of causing GSlice to be initialised, so it
1003 tmem
= thread_memory_from_self ();
1005 chunk_size
= P2ALIGN (mem_size
);
1006 acat
= allocator_categorize (chunk_size
);
1007 if (G_LIKELY (acat
== 1)) /* allocate through magazine layer */
1009 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1010 if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem
, ix
)))
1012 thread_memory_swap_magazines (tmem
, ix
);
1013 if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem
, ix
)))
1014 thread_memory_magazine1_reload (tmem
, ix
);
1016 mem
= thread_memory_magazine1_alloc (tmem
, ix
);
1018 else if (acat
== 2) /* allocate through slab allocator */
1020 g_mutex_lock (&allocator
->slab_mutex
);
1021 mem
= slab_allocator_alloc_chunk (chunk_size
);
1022 g_mutex_unlock (&allocator
->slab_mutex
);
1024 else /* delegate to system malloc */
1025 mem
= g_malloc (mem_size
);
1026 if (G_UNLIKELY (allocator
->config
.debug_blocks
))
1027 smc_notify_alloc (mem
, mem_size
);
1029 TRACE (GLIB_SLICE_ALLOC((void*)mem
, mem_size
));
1036 * @block_size: the number of bytes to allocate
1038 * Allocates a block of memory via g_slice_alloc() and initializes
1039 * the returned memory to 0. Note that the underlying slice allocation
1040 * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
1041 * environment variable.
1043 * Returns: a pointer to the allocated block, which will be %NULL if and only
1049 g_slice_alloc0 (gsize mem_size
)
1051 gpointer mem
= g_slice_alloc (mem_size
);
1053 memset (mem
, 0, mem_size
);
1059 * @block_size: the number of bytes to allocate
1060 * @mem_block: the memory to copy
1062 * Allocates a block of memory from the slice allocator
1063 * and copies @block_size bytes into it from @mem_block.
1065 * @mem_block must be non-%NULL if @block_size is non-zero.
1067 * Returns: a pointer to the allocated memory block, which will be %NULL if and
1068 * only if @mem_size is 0
1073 g_slice_copy (gsize mem_size
,
1074 gconstpointer mem_block
)
1076 gpointer mem
= g_slice_alloc (mem_size
);
1078 memcpy (mem
, mem_block
, mem_size
);
1084 * @block_size: the size of the block
1085 * @mem_block: a pointer to the block to free
1087 * Frees a block of memory.
1089 * The memory must have been allocated via g_slice_alloc() or
1090 * g_slice_alloc0() and the @block_size has to match the size
1091 * specified upon allocation. Note that the exact release behaviour
1092 * can be changed with the [`G_DEBUG=gc-friendly`][G_DEBUG] environment
1093 * variable, also see [`G_SLICE`][G_SLICE] for related debugging options.
1095 * If @mem_block is %NULL, this function does nothing.
1100 g_slice_free1 (gsize mem_size
,
1103 gsize chunk_size
= P2ALIGN (mem_size
);
1104 guint acat
= allocator_categorize (chunk_size
);
1105 if (G_UNLIKELY (!mem_block
))
1107 if (G_UNLIKELY (allocator
->config
.debug_blocks
) &&
1108 !smc_notify_free (mem_block
, mem_size
))
1110 if (G_LIKELY (acat
== 1)) /* allocate through magazine layer */
1112 ThreadMemory
*tmem
= thread_memory_from_self();
1113 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1114 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem
, ix
)))
1116 thread_memory_swap_magazines (tmem
, ix
);
1117 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem
, ix
)))
1118 thread_memory_magazine2_unload (tmem
, ix
);
1120 if (G_UNLIKELY (g_mem_gc_friendly
))
1121 memset (mem_block
, 0, chunk_size
);
1122 thread_memory_magazine2_free (tmem
, ix
, mem_block
);
1124 else if (acat
== 2) /* allocate through slab allocator */
1126 if (G_UNLIKELY (g_mem_gc_friendly
))
1127 memset (mem_block
, 0, chunk_size
);
1128 g_mutex_lock (&allocator
->slab_mutex
);
1129 slab_allocator_free_chunk (chunk_size
, mem_block
);
1130 g_mutex_unlock (&allocator
->slab_mutex
);
1132 else /* delegate to system malloc */
1134 if (G_UNLIKELY (g_mem_gc_friendly
))
1135 memset (mem_block
, 0, mem_size
);
1138 TRACE (GLIB_SLICE_FREE((void*)mem_block
, mem_size
));
1142 * g_slice_free_chain_with_offset:
1143 * @block_size: the size of the blocks
1144 * @mem_chain: a pointer to the first block of the chain
1145 * @next_offset: the offset of the @next field in the blocks
1147 * Frees a linked list of memory blocks of structure type @type.
1149 * The memory blocks must be equal-sized, allocated via
1150 * g_slice_alloc() or g_slice_alloc0() and linked together by a
1151 * @next pointer (similar to #GSList). The offset of the @next
1152 * field in each block is passed as third argument.
1153 * Note that the exact release behaviour can be changed with the
1154 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
1155 * [`G_SLICE`][G_SLICE] for related debugging options.
1157 * If @mem_chain is %NULL, this function does nothing.
1162 g_slice_free_chain_with_offset (gsize mem_size
,
1166 gpointer slice
= mem_chain
;
1167 /* while the thread magazines and the magazine cache are implemented so that
1168 * they can easily be extended to allow for free lists containing more free
1169 * lists for the first level nodes, which would allow O(1) freeing in this
1170 * function, the benefit of such an extension is questionable, because:
1171 * - the magazine size counts will become mere lower bounds which confuses
1172 * the code adapting to lock contention;
1173 * - freeing a single node to the thread magazines is very fast, so this
1174 * O(list_length) operation is multiplied by a fairly small factor;
1175 * - memory usage histograms on larger applications seem to indicate that
1176 * the amount of released multi node lists is negligible in comparison
1177 * to single node releases.
1178 * - the major performance bottle neck, namely g_private_get() or
1179 * g_mutex_lock()/g_mutex_unlock() has already been moved out of the
1180 * inner loop for freeing chained slices.
1182 gsize chunk_size
= P2ALIGN (mem_size
);
1183 guint acat
= allocator_categorize (chunk_size
);
1184 if (G_LIKELY (acat
== 1)) /* allocate through magazine layer */
1186 ThreadMemory
*tmem
= thread_memory_from_self();
1187 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1190 guint8
*current
= slice
;
1191 slice
= *(gpointer
*) (current
+ next_offset
);
1192 if (G_UNLIKELY (allocator
->config
.debug_blocks
) &&
1193 !smc_notify_free (current
, mem_size
))
1195 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem
, ix
)))
1197 thread_memory_swap_magazines (tmem
, ix
);
1198 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem
, ix
)))
1199 thread_memory_magazine2_unload (tmem
, ix
);
1201 if (G_UNLIKELY (g_mem_gc_friendly
))
1202 memset (current
, 0, chunk_size
);
1203 thread_memory_magazine2_free (tmem
, ix
, current
);
1206 else if (acat
== 2) /* allocate through slab allocator */
1208 g_mutex_lock (&allocator
->slab_mutex
);
1211 guint8
*current
= slice
;
1212 slice
= *(gpointer
*) (current
+ next_offset
);
1213 if (G_UNLIKELY (allocator
->config
.debug_blocks
) &&
1214 !smc_notify_free (current
, mem_size
))
1216 if (G_UNLIKELY (g_mem_gc_friendly
))
1217 memset (current
, 0, chunk_size
);
1218 slab_allocator_free_chunk (chunk_size
, current
);
1220 g_mutex_unlock (&allocator
->slab_mutex
);
1222 else /* delegate to system malloc */
1225 guint8
*current
= slice
;
1226 slice
= *(gpointer
*) (current
+ next_offset
);
1227 if (G_UNLIKELY (allocator
->config
.debug_blocks
) &&
1228 !smc_notify_free (current
, mem_size
))
1230 if (G_UNLIKELY (g_mem_gc_friendly
))
1231 memset (current
, 0, mem_size
);
1236 /* --- single page allocator --- */
1238 allocator_slab_stack_push (Allocator
*allocator
,
1242 /* insert slab at slab ring head */
1243 if (!allocator
->slab_stack
[ix
])
1245 sinfo
->next
= sinfo
;
1246 sinfo
->prev
= sinfo
;
1250 SlabInfo
*next
= allocator
->slab_stack
[ix
], *prev
= next
->prev
;
1256 allocator
->slab_stack
[ix
] = sinfo
;
1260 allocator_aligned_page_size (Allocator
*allocator
,
1263 gsize val
= 1 << g_bit_storage (n_bytes
- 1);
1264 val
= MAX (val
, allocator
->min_page_size
);
1269 allocator_add_slab (Allocator
*allocator
,
1275 gsize addr
, padding
, n_chunks
, color
= 0;
1276 gsize page_size
= allocator_aligned_page_size (allocator
, SLAB_BPAGE_SIZE (allocator
, chunk_size
));
1277 /* allocate 1 page for the chunks and the slab */
1278 gpointer aligned_memory
= allocator_memalign (page_size
, page_size
- NATIVE_MALLOC_PADDING
);
1279 guint8
*mem
= aligned_memory
;
1283 const gchar
*syserr
= strerror (errno
);
1284 mem_error ("failed to allocate %u bytes (alignment: %u): %s\n",
1285 (guint
) (page_size
- NATIVE_MALLOC_PADDING
), (guint
) page_size
, syserr
);
1287 /* mask page address */
1288 addr
= ((gsize
) mem
/ page_size
) * page_size
;
1289 /* assert alignment */
1290 mem_assert (aligned_memory
== (gpointer
) addr
);
1291 /* basic slab info setup */
1292 sinfo
= (SlabInfo
*) (mem
+ page_size
- SLAB_INFO_SIZE
);
1293 sinfo
->n_allocated
= 0;
1294 sinfo
->chunks
= NULL
;
1295 /* figure cache colorization */
1296 n_chunks
= ((guint8
*) sinfo
- mem
) / chunk_size
;
1297 padding
= ((guint8
*) sinfo
- mem
) - n_chunks
* chunk_size
;
1300 color
= (allocator
->color_accu
* P2ALIGNMENT
) % padding
;
1301 allocator
->color_accu
+= allocator
->config
.color_increment
;
1303 /* add chunks to free list */
1304 chunk
= (ChunkLink
*) (mem
+ color
);
1305 sinfo
->chunks
= chunk
;
1306 for (i
= 0; i
< n_chunks
- 1; i
++)
1308 chunk
->next
= (ChunkLink
*) ((guint8
*) chunk
+ chunk_size
);
1309 chunk
= chunk
->next
;
1311 chunk
->next
= NULL
; /* last chunk */
1312 /* add slab to slab ring */
1313 allocator_slab_stack_push (allocator
, ix
, sinfo
);
1317 slab_allocator_alloc_chunk (gsize chunk_size
)
1320 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1321 /* ensure non-empty slab */
1322 if (!allocator
->slab_stack
[ix
] || !allocator
->slab_stack
[ix
]->chunks
)
1323 allocator_add_slab (allocator
, ix
, chunk_size
);
1324 /* allocate chunk */
1325 chunk
= allocator
->slab_stack
[ix
]->chunks
;
1326 allocator
->slab_stack
[ix
]->chunks
= chunk
->next
;
1327 allocator
->slab_stack
[ix
]->n_allocated
++;
1328 /* rotate empty slabs */
1329 if (!allocator
->slab_stack
[ix
]->chunks
)
1330 allocator
->slab_stack
[ix
] = allocator
->slab_stack
[ix
]->next
;
1335 slab_allocator_free_chunk (gsize chunk_size
,
1340 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1341 gsize page_size
= allocator_aligned_page_size (allocator
, SLAB_BPAGE_SIZE (allocator
, chunk_size
));
1342 gsize addr
= ((gsize
) mem
/ page_size
) * page_size
;
1343 /* mask page address */
1344 guint8
*page
= (guint8
*) addr
;
1345 SlabInfo
*sinfo
= (SlabInfo
*) (page
+ page_size
- SLAB_INFO_SIZE
);
1346 /* assert valid chunk count */
1347 mem_assert (sinfo
->n_allocated
> 0);
1348 /* add chunk to free list */
1349 was_empty
= sinfo
->chunks
== NULL
;
1350 chunk
= (ChunkLink
*) mem
;
1351 chunk
->next
= sinfo
->chunks
;
1352 sinfo
->chunks
= chunk
;
1353 sinfo
->n_allocated
--;
1354 /* keep slab ring partially sorted, empty slabs at end */
1358 SlabInfo
*next
= sinfo
->next
, *prev
= sinfo
->prev
;
1361 if (allocator
->slab_stack
[ix
] == sinfo
)
1362 allocator
->slab_stack
[ix
] = next
== sinfo
? NULL
: next
;
1363 /* insert slab at head */
1364 allocator_slab_stack_push (allocator
, ix
, sinfo
);
1366 /* eagerly free complete unused slabs */
1367 if (!sinfo
->n_allocated
)
1370 SlabInfo
*next
= sinfo
->next
, *prev
= sinfo
->prev
;
1373 if (allocator
->slab_stack
[ix
] == sinfo
)
1374 allocator
->slab_stack
[ix
] = next
== sinfo
? NULL
: next
;
1376 allocator_memfree (page_size
, page
);
1380 /* --- memalign implementation --- */
1381 #ifdef HAVE_MALLOC_H
1382 #include <malloc.h> /* memalign() */
1386 * define HAVE_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works, <stdlib.h>
1387 * define HAVE_COMPLIANT_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works for sizes != 2^n, <stdlib.h>
1388 * define HAVE_MEMALIGN 1 // if free(memalign(3)) works, <malloc.h>
1389 * define HAVE_VALLOC 1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h>
1390 * if none is provided, we implement malloc(3)-based alloc-only page alignment
1393 #if !(HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC)
1394 static GTrashStack
*compat_valloc_trash
= NULL
;
1398 allocator_memalign (gsize alignment
,
1401 gpointer aligned_memory
= NULL
;
1403 #if HAVE_COMPLIANT_POSIX_MEMALIGN
1404 err
= posix_memalign (&aligned_memory
, alignment
, memsize
);
1407 aligned_memory
= memalign (alignment
, memsize
);
1411 aligned_memory
= valloc (memsize
);
1414 /* simplistic non-freeing page allocator */
1415 mem_assert (alignment
== sys_page_size
);
1416 mem_assert (memsize
<= sys_page_size
);
1417 if (!compat_valloc_trash
)
1419 const guint n_pages
= 16;
1420 guint8
*mem
= malloc (n_pages
* sys_page_size
);
1425 guint8
*amem
= (guint8
*) ALIGN ((gsize
) mem
, sys_page_size
);
1427 i
--; /* mem wasn't page aligned */
1429 g_trash_stack_push (&compat_valloc_trash
, amem
+ i
* sys_page_size
);
1432 aligned_memory
= g_trash_stack_pop (&compat_valloc_trash
);
1434 if (!aligned_memory
)
1436 return aligned_memory
;
1440 allocator_memfree (gsize memsize
,
1443 #if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC
1446 mem_assert (memsize
<= sys_page_size
);
1447 g_trash_stack_push (&compat_valloc_trash
, mem
);
1452 mem_error (const char *format
,
1457 /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */
1458 fputs ("\n***MEMORY-ERROR***: ", stderr
);
1459 pname
= g_get_prgname();
1460 fprintf (stderr
, "%s[%ld]: GSlice: ", pname
? pname
: "", (long)getpid());
1461 va_start (args
, format
);
1462 vfprintf (stderr
, format
, args
);
1464 fputs ("\n", stderr
);
1469 /* --- g-slice memory checker tree --- */
1470 typedef size_t SmcKType
; /* key type */
1471 typedef size_t SmcVType
; /* value type */
1476 static void smc_tree_insert (SmcKType key
,
1478 static gboolean
smc_tree_lookup (SmcKType key
,
1480 static gboolean
smc_tree_remove (SmcKType key
);
1483 /* --- g-slice memory checker implementation --- */
1485 smc_notify_alloc (void *pointer
,
1488 size_t adress
= (size_t) pointer
;
1490 smc_tree_insert (adress
, size
);
1495 smc_notify_ignore (void *pointer
)
1497 size_t adress
= (size_t) pointer
;
1499 smc_tree_remove (adress
);
1504 smc_notify_free (void *pointer
,
1507 size_t adress
= (size_t) pointer
;
1512 return 1; /* ignore */
1513 found_one
= smc_tree_lookup (adress
, &real_size
);
1516 fprintf (stderr
, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT
"\n", pointer
, size
);
1519 if (real_size
!= size
&& (real_size
|| size
))
1521 fprintf (stderr
, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT
" invalid-size=%" G_GSIZE_FORMAT
"\n", pointer
, real_size
, size
);
1524 if (!smc_tree_remove (adress
))
1526 fprintf (stderr
, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT
"\n", pointer
, size
);
1529 return 1; /* all fine */
1532 /* --- g-slice memory checker tree implementation --- */
1533 #define SMC_TRUNK_COUNT (4093 /* 16381 */) /* prime, to distribute trunk collisions (big, allocated just once) */
1534 #define SMC_BRANCH_COUNT (511) /* prime, to distribute branch collisions */
1535 #define SMC_TRUNK_EXTENT (SMC_BRANCH_COUNT * 2039) /* key address space per trunk, should distribute uniformly across BRANCH_COUNT */
1536 #define SMC_TRUNK_HASH(k) ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT) /* generate new trunk hash per megabyte (roughly) */
1537 #define SMC_BRANCH_HASH(k) (k % SMC_BRANCH_COUNT)
1541 unsigned int n_entries
;
1544 static SmcBranch
**smc_tree_root
= NULL
;
1547 smc_tree_abort (int errval
)
1549 const char *syserr
= strerror (errval
);
1550 mem_error ("MemChecker: failure in debugging tree: %s", syserr
);
1553 static inline SmcEntry
*
1554 smc_tree_branch_grow_L (SmcBranch
*branch
,
1557 unsigned int old_size
= branch
->n_entries
* sizeof (branch
->entries
[0]);
1558 unsigned int new_size
= old_size
+ sizeof (branch
->entries
[0]);
1560 mem_assert (index
<= branch
->n_entries
);
1561 branch
->entries
= (SmcEntry
*) realloc (branch
->entries
, new_size
);
1562 if (!branch
->entries
)
1563 smc_tree_abort (errno
);
1564 entry
= branch
->entries
+ index
;
1565 memmove (entry
+ 1, entry
, (branch
->n_entries
- index
) * sizeof (entry
[0]));
1566 branch
->n_entries
+= 1;
1570 static inline SmcEntry
*
1571 smc_tree_branch_lookup_nearest_L (SmcBranch
*branch
,
1574 unsigned int n_nodes
= branch
->n_entries
, offs
= 0;
1575 SmcEntry
*check
= branch
->entries
;
1577 while (offs
< n_nodes
)
1579 unsigned int i
= (offs
+ n_nodes
) >> 1;
1580 check
= branch
->entries
+ i
;
1581 cmp
= key
< check
->key
? -1 : key
!= check
->key
;
1583 return check
; /* return exact match */
1586 else /* (cmp > 0) */
1589 /* check points at last mismatch, cmp > 0 indicates greater key */
1590 return cmp
> 0 ? check
+ 1 : check
; /* return insertion position for inexact match */
1594 smc_tree_insert (SmcKType key
,
1597 unsigned int ix0
, ix1
;
1600 g_mutex_lock (&smc_tree_mutex
);
1601 ix0
= SMC_TRUNK_HASH (key
);
1602 ix1
= SMC_BRANCH_HASH (key
);
1605 smc_tree_root
= calloc (SMC_TRUNK_COUNT
, sizeof (smc_tree_root
[0]));
1607 smc_tree_abort (errno
);
1609 if (!smc_tree_root
[ix0
])
1611 smc_tree_root
[ix0
] = calloc (SMC_BRANCH_COUNT
, sizeof (smc_tree_root
[0][0]));
1612 if (!smc_tree_root
[ix0
])
1613 smc_tree_abort (errno
);
1615 entry
= smc_tree_branch_lookup_nearest_L (&smc_tree_root
[ix0
][ix1
], key
);
1616 if (!entry
|| /* need create */
1617 entry
>= smc_tree_root
[ix0
][ix1
].entries
+ smc_tree_root
[ix0
][ix1
].n_entries
|| /* need append */
1618 entry
->key
!= key
) /* need insert */
1619 entry
= smc_tree_branch_grow_L (&smc_tree_root
[ix0
][ix1
], entry
- smc_tree_root
[ix0
][ix1
].entries
);
1621 entry
->value
= value
;
1622 g_mutex_unlock (&smc_tree_mutex
);
1626 smc_tree_lookup (SmcKType key
,
1629 SmcEntry
*entry
= NULL
;
1630 unsigned int ix0
= SMC_TRUNK_HASH (key
), ix1
= SMC_BRANCH_HASH (key
);
1631 gboolean found_one
= FALSE
;
1633 g_mutex_lock (&smc_tree_mutex
);
1634 if (smc_tree_root
&& smc_tree_root
[ix0
])
1636 entry
= smc_tree_branch_lookup_nearest_L (&smc_tree_root
[ix0
][ix1
], key
);
1638 entry
< smc_tree_root
[ix0
][ix1
].entries
+ smc_tree_root
[ix0
][ix1
].n_entries
&&
1642 *value_p
= entry
->value
;
1645 g_mutex_unlock (&smc_tree_mutex
);
1650 smc_tree_remove (SmcKType key
)
1652 unsigned int ix0
= SMC_TRUNK_HASH (key
), ix1
= SMC_BRANCH_HASH (key
);
1653 gboolean found_one
= FALSE
;
1654 g_mutex_lock (&smc_tree_mutex
);
1655 if (smc_tree_root
&& smc_tree_root
[ix0
])
1657 SmcEntry
*entry
= smc_tree_branch_lookup_nearest_L (&smc_tree_root
[ix0
][ix1
], key
);
1659 entry
< smc_tree_root
[ix0
][ix1
].entries
+ smc_tree_root
[ix0
][ix1
].n_entries
&&
1662 unsigned int i
= entry
- smc_tree_root
[ix0
][ix1
].entries
;
1663 smc_tree_root
[ix0
][ix1
].n_entries
-= 1;
1664 memmove (entry
, entry
+ 1, (smc_tree_root
[ix0
][ix1
].n_entries
- i
) * sizeof (entry
[0]));
1665 if (!smc_tree_root
[ix0
][ix1
].n_entries
)
1667 /* avoid useless pressure on the memory system */
1668 free (smc_tree_root
[ix0
][ix1
].entries
);
1669 smc_tree_root
[ix0
][ix1
].entries
= NULL
;
1674 g_mutex_unlock (&smc_tree_mutex
);
1678 #ifdef G_ENABLE_DEBUG
1680 g_slice_debug_tree_statistics (void)
1682 g_mutex_lock (&smc_tree_mutex
);
1685 unsigned int i
, j
, t
= 0, o
= 0, b
= 0, su
= 0, ex
= 0, en
= 4294967295u;
1687 for (i
= 0; i
< SMC_TRUNK_COUNT
; i
++)
1688 if (smc_tree_root
[i
])
1691 for (j
= 0; j
< SMC_BRANCH_COUNT
; j
++)
1692 if (smc_tree_root
[i
][j
].n_entries
)
1695 su
+= smc_tree_root
[i
][j
].n_entries
;
1696 en
= MIN (en
, smc_tree_root
[i
][j
].n_entries
);
1697 ex
= MAX (ex
, smc_tree_root
[i
][j
].n_entries
);
1699 else if (smc_tree_root
[i
][j
].entries
)
1700 o
++; /* formerly used, now empty */
1703 tf
= MAX (t
, 1.0); /* max(1) to be a valid divisor */
1704 bf
= MAX (b
, 1.0); /* max(1) to be a valid divisor */
1705 fprintf (stderr
, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t
, b
, o
);
1706 fprintf (stderr
, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n",
1708 100.0 - (SMC_BRANCH_COUNT
- b
/ tf
) / (0.01 * SMC_BRANCH_COUNT
));
1709 fprintf (stderr
, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n",
1713 fprintf (stderr
, "GSlice: MemChecker: root=NULL\n");
1714 g_mutex_unlock (&smc_tree_mutex
);
1716 /* sample statistics (beast + GSLice + 24h scripted core & GUI activity):
1717 * PID %CPU %MEM VSZ RSS COMMAND
1718 * 8887 30.3 45.8 456068 414856 beast-0.7.1 empty.bse
1719 * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages
1720 * 114017 103714 2354 344 0 108676 0
1721 * $ cat /proc/8887/status
1732 * (gdb) print g_slice_debug_tree_statistics ()
1733 * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches
1734 * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization
1735 * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum
1738 #endif /* G_ENABLE_DEBUG */