Further cleanup evaluate()
[glaurung_clone.git] / src / search.cpp
blob4b966f61958d54460f2988990832d648a0f990e2
1 /*
2 Glaurung, a UCI chess playing engine.
3 Copyright (C) 2004-2008 Tord Romstad
5 Glaurung is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation, either version 3 of the License, or
8 (at your option) any later version.
10 Glaurung is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
20 ////
21 //// Includes
22 ////
24 #include <cassert>
25 #include <fstream>
26 #include <iostream>
27 #include <sstream>
29 #include "book.h"
30 #include "evaluate.h"
31 #include "history.h"
32 #include "misc.h"
33 #include "movepick.h"
34 #include "san.h"
35 #include "search.h"
36 #include "thread.h"
37 #include "tt.h"
38 #include "ucioption.h"
41 ////
42 //// Local definitions
43 ////
45 namespace {
47 /// Types
49 // The RootMove class is used for moves at the root at the tree. For each
50 // root move, we store a score, a node count, and a PV (really a refutation
51 // in the case of moves which fail low).
53 struct RootMove {
55 RootMove();
56 bool operator<(const RootMove&); // used to sort
58 Move move;
59 Value score;
60 int64_t nodes, cumulativeNodes;
61 Move pv[PLY_MAX_PLUS_2];
65 // The RootMoveList class is essentially an array of RootMove objects, with
66 // a handful of methods for accessing the data in the individual moves.
68 class RootMoveList {
70 public:
71 RootMoveList(Position &pos, Move searchMoves[]);
72 inline Move get_move(int moveNum) const;
73 inline Value get_move_score(int moveNum) const;
74 inline void set_move_score(int moveNum, Value score);
75 inline void set_move_nodes(int moveNum, int64_t nodes);
76 void set_move_pv(int moveNum, const Move pv[]);
77 inline Move get_move_pv(int moveNum, int i) const;
78 inline int64_t get_move_cumulative_nodes(int moveNum) const;
79 inline int move_count() const;
80 Move scan_for_easy_move() const;
81 inline void sort();
82 void sort_multipv(int n);
84 private:
85 static const int MaxRootMoves = 500;
86 RootMove moves[MaxRootMoves];
87 int count;
91 /// Constants and variables
93 // Minimum number of full depth (i.e. non-reduced) moves at PV and non-PV
94 // nodes:
95 int LMRPVMoves = 15;
96 int LMRNonPVMoves = 4;
98 // Depth limit for use of dynamic threat detection:
99 Depth ThreatDepth = 5*OnePly;
101 // Depth limit for selective search:
102 Depth SelectiveDepth = 7*OnePly;
104 // Use internal iterative deepening?
105 const bool UseIIDAtPVNodes = true;
106 const bool UseIIDAtNonPVNodes = false;
108 // Internal iterative deepening margin. At Non-PV moves, when
109 // UseIIDAtNonPVNodes is true, we do an internal iterative deepening search
110 // when the static evaluation is at most IIDMargin below beta.
111 const Value IIDMargin = Value(0x100);
113 // Use easy moves?
114 const bool UseEasyMove = true;
116 // Easy move margin. An easy move candidate must be at least this much
117 // better than the second best move.
118 const Value EasyMoveMargin = Value(0x200);
120 // Problem margin. If the score of the first move at iteration N+1 has
121 // dropped by more than this since iteration N, the boolean variable
122 // "Problem" is set to true, which will make the program spend some extra
123 // time looking for a better move.
124 const Value ProblemMargin = Value(0x28);
126 // No problem margin. If the boolean "Problem" is true, and a new move
127 // is found at the root which is less than NoProblemMargin worse than the
128 // best move from the previous iteration, Problem is set back to false.
129 const Value NoProblemMargin = Value(0x14);
131 // Null move margin. A null move search will not be done if the approximate
132 // evaluation of the position is more than NullMoveMargin below beta.
133 const Value NullMoveMargin = Value(0x300);
135 // Pruning criterions. See the code and comments in ok_to_prune() to
136 // understand their precise meaning.
137 const bool PruneEscapeMoves = false;
138 const bool PruneDefendingMoves = false;
139 const bool PruneBlockingMoves = false;
141 // Use futility pruning?
142 bool UseQSearchFutilityPruning = true;
143 bool UseFutilityPruning = true;
145 // Margins for futility pruning in the quiescence search, at frontier
146 // nodes, and at pre-frontier nodes:
147 Value FutilityMargin0 = Value(0x80);
148 Value FutilityMargin1 = Value(0x100);
149 Value FutilityMargin2 = Value(0x300);
151 // Razoring
152 Depth RazorDepth = 4*OnePly;
153 Value RazorMargin = Value(0x300);
155 // Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes.
156 Depth CheckExtension[2] = {OnePly, OnePly};
157 Depth SingleReplyExtension[2] = {OnePly / 2, OnePly / 2};
158 Depth PawnPushTo7thExtension[2] = {OnePly / 2, OnePly / 2};
159 Depth PassedPawnExtension[2] = {Depth(0), Depth(0)};
160 Depth PawnEndgameExtension[2] = {OnePly, OnePly};
161 Depth MateThreatExtension[2] = {Depth(0), Depth(0)};
163 // Search depth at iteration 1:
164 const Depth InitialDepth = OnePly /*+ OnePly/2*/;
166 // Node counters
167 int NodesSincePoll;
168 int NodesBetweenPolls = 30000;
170 // Iteration counter:
171 int Iteration;
173 // Scores and number of times the best move changed for each iteration:
174 Value ValueByIteration[PLY_MAX_PLUS_2];
175 int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
177 // MultiPV mode:
178 int MultiPV = 1;
180 // Time managment variables
181 int SearchStartTime;
182 int MaxNodes, MaxDepth;
183 int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, TimeAdvantage;
184 Move BestRootMove, PonderMove, EasyMove;
185 int RootMoveNumber;
186 bool InfiniteSearch;
187 bool PonderSearch;
188 bool StopOnPonderhit;
189 bool AbortSearch;
190 bool Quit;
191 bool FailHigh;
192 bool Problem;
193 bool PonderingEnabled;
194 int ExactMaxTime;
196 // Show current line?
197 bool ShowCurrentLine = false;
199 // Log file
200 bool UseLogFile = false;
201 std::ofstream LogFile;
203 // MP related variables
204 Depth MinimumSplitDepth = 4*OnePly;
205 int MaxThreadsPerSplitPoint = 4;
206 Thread Threads[THREAD_MAX];
207 Lock MPLock;
208 bool AllThreadsShouldExit = false;
209 const int MaxActiveSplitPoints = 8;
210 SplitPoint SplitPointStack[THREAD_MAX][MaxActiveSplitPoints];
211 bool Idle = true;
213 #if !defined(_MSC_VER)
214 pthread_cond_t WaitCond;
215 pthread_mutex_t WaitLock;
216 #else
217 HANDLE SitIdleEvent[THREAD_MAX];
218 #endif
221 /// Functions
223 void id_loop(const Position &pos, Move searchMoves[]);
224 Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml);
225 Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta,
226 Depth depth, int ply, int threadID);
227 Value search(Position &pos, SearchStack ss[], Value beta,
228 Depth depth, int ply, bool allowNullmove, int threadID);
229 Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta,
230 Depth depth, int ply, int threadID);
231 void sp_search(SplitPoint *sp, int threadID);
232 void sp_search_pv(SplitPoint *sp, int threadID);
233 void init_search_stack(SearchStack ss[]);
234 void init_node(const Position &pos, SearchStack ss[], int ply, int threadID);
235 void update_pv(SearchStack ss[], int ply);
236 void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply);
237 bool connected_moves(const Position &pos, Move m1, Move m2);
238 Depth extension(const Position &pos, Move m, bool pvNode, bool check,
239 bool singleReply, bool mateThreat);
240 bool ok_to_do_nullmove(const Position &pos);
241 bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d);
242 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
243 bool ok_to_history(const Position &pos, Move m);
244 void update_history(const Position& pos, Move m, Depth depth,
245 Move movesSearched[], int moveCount);
247 bool fail_high_ply_1();
248 int current_search_time();
249 int nps();
250 void poll();
251 void ponderhit();
252 void print_current_line(SearchStack ss[], int ply, int threadID);
253 void wait_for_stop_or_ponderhit();
255 void idle_loop(int threadID, SplitPoint *waitSp);
256 void init_split_point_stack();
257 void destroy_split_point_stack();
258 bool thread_should_stop(int threadID);
259 bool thread_is_available(int slave, int master);
260 bool idle_thread_exists(int master);
261 bool split(const Position &pos, SearchStack *ss, int ply,
262 Value *alpha, Value *beta, Value *bestValue, Depth depth,
263 int *moves, MovePicker *mp, Bitboard dcCandidates, int master,
264 bool pvNode);
265 void wake_sleeping_threads();
267 #if !defined(_MSC_VER)
268 void *init_thread(void *threadID);
269 #else
270 DWORD WINAPI init_thread(LPVOID threadID);
271 #endif
276 ////
277 //// Global variables
278 ////
280 // The main transposition table
281 TranspositionTable TT = TranspositionTable(TTDefaultSize);
284 // Number of active threads:
285 int ActiveThreads = 1;
287 // Locks. In principle, there is no need for IOLock to be a global variable,
288 // but it could turn out to be useful for debugging.
289 Lock IOLock;
291 History H; // Should be made local?
294 ////
295 //// Functions
296 ////
298 /// think() is the external interface to Glaurung's search, and is called when
299 /// the program receives the UCI 'go' command. It initializes various
300 /// search-related global variables, and calls root_search()
302 void think(const Position &pos, bool infinite, bool ponder, int side_to_move,
303 int time[], int increment[], int movesToGo, int maxDepth,
304 int maxNodes, int maxTime, Move searchMoves[]) {
306 // Look for a book move:
307 if(!infinite && !ponder && get_option_value_bool("OwnBook")) {
308 Move bookMove;
309 if(get_option_value_string("Book File") != OpeningBook.file_name()) {
310 OpeningBook.close();
311 OpeningBook.open("book.bin");
313 bookMove = OpeningBook.get_move(pos);
314 if(bookMove != MOVE_NONE) {
315 std::cout << "bestmove " << bookMove << std::endl;
316 return;
320 // Initialize global search variables:
321 Idle = false;
322 SearchStartTime = get_system_time();
323 BestRootMove = MOVE_NONE;
324 PonderMove = MOVE_NONE;
325 EasyMove = MOVE_NONE;
326 for(int i = 0; i < THREAD_MAX; i++) {
327 Threads[i].nodes = 0ULL;
328 Threads[i].failHighPly1 = false;
330 NodesSincePoll = 0;
331 InfiniteSearch = infinite;
332 PonderSearch = ponder;
333 StopOnPonderhit = false;
334 AbortSearch = false;
335 Quit = false;
336 FailHigh = false;
337 Problem = false;
338 ExactMaxTime = maxTime;
340 // Read UCI option values:
341 TT.set_size(get_option_value_int("Hash"));
342 if(button_was_pressed("Clear Hash"))
343 TT.clear();
344 PonderingEnabled = get_option_value_bool("Ponder");
345 MultiPV = get_option_value_int("MultiPV");
347 CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)"));
348 CheckExtension[0] =
349 Depth(get_option_value_int("Check Extension (non-PV nodes)"));
350 SingleReplyExtension[1] = Depth(get_option_value_int("Single Reply Extension (PV nodes)"));
351 SingleReplyExtension[0] =
352 Depth(get_option_value_int("Single Reply Extension (non-PV nodes)"));
353 PawnPushTo7thExtension[1] =
354 Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)"));
355 PawnPushTo7thExtension[0] =
356 Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)"));
357 PassedPawnExtension[1] =
358 Depth(get_option_value_int("Passed Pawn Extension (PV nodes)"));
359 PassedPawnExtension[0] =
360 Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)"));
361 PawnEndgameExtension[1] =
362 Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)"));
363 PawnEndgameExtension[0] =
364 Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)"));
365 MateThreatExtension[1] =
366 Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
367 MateThreatExtension[0] =
368 Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
370 LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1;
371 LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1;
372 ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
373 SelectiveDepth = get_option_value_int("Selective Plies") * OnePly;
375 Chess960 = get_option_value_bool("UCI_Chess960");
376 ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine");
377 UseLogFile = get_option_value_bool("Use Search Log");
378 if(UseLogFile)
379 LogFile.open(get_option_value_string("Search Log Filename").c_str(),
380 std::ios::out | std::ios::app);
382 UseQSearchFutilityPruning =
383 get_option_value_bool("Futility Pruning (Quiescence Search)");
384 UseFutilityPruning =
385 get_option_value_bool("Futility Pruning (Main Search)");
387 FutilityMargin0 =
388 value_from_centipawns(get_option_value_int("Futility Margin 0"));
389 FutilityMargin1 =
390 value_from_centipawns(get_option_value_int("Futility Margin 1"));
391 FutilityMargin2 =
392 value_from_centipawns(get_option_value_int("Futility Margin 2"));
394 RazorDepth = (get_option_value_int("Maximum Razoring Depth") + 1) * OnePly;
395 RazorMargin = value_from_centipawns(get_option_value_int("Razoring Margin"));
397 MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly;
398 MaxThreadsPerSplitPoint =
399 get_option_value_int("Maximum Number of Threads per Split Point");
401 read_weights(pos.side_to_move());
403 int newActiveThreads = get_option_value_int("Threads");
404 if(newActiveThreads != ActiveThreads) {
405 ActiveThreads = newActiveThreads;
406 init_eval(ActiveThreads);
409 // Wake up sleeping threads:
410 wake_sleeping_threads();
412 for(int i = 1; i < ActiveThreads; i++)
413 assert(thread_is_available(i, 0));
415 // Set thinking time:
416 int myTime = time[side_to_move];
417 int myIncrement = increment[side_to_move];
418 int oppTime = time[1 - side_to_move];
420 TimeAdvantage = myTime - oppTime;
422 if(!movesToGo) { // Sudden death time control
423 if(increment) {
424 MaxSearchTime = myTime / 30 + myIncrement;
425 AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100);
427 else { // Blitz game without increment
428 MaxSearchTime = myTime / 40;
429 AbsoluteMaxSearchTime = myTime / 8;
432 else { // (x moves) / (y minutes)
433 if(movesToGo == 1) {
434 MaxSearchTime = myTime / 2;
435 AbsoluteMaxSearchTime = Min(myTime / 2, myTime - 500);
437 else {
438 MaxSearchTime = myTime / Min(movesToGo, 20);
439 AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3);
442 if(PonderingEnabled) {
443 MaxSearchTime += MaxSearchTime / 4;
444 MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime);
447 // Fixed depth or fixed number of nodes?
448 MaxDepth = maxDepth;
449 if(MaxDepth)
450 InfiniteSearch = true; // HACK
452 MaxNodes = maxNodes;
453 if(MaxNodes) {
454 NodesBetweenPolls = Min(MaxNodes, 30000);
455 InfiniteSearch = true; // HACK
457 else
458 NodesBetweenPolls = 30000;
461 // Write information to search log file:
462 if(UseLogFile) {
463 LogFile << "Searching: " << pos.to_fen() << '\n';
464 LogFile << "infinite: " << infinite << " ponder: " << ponder
465 << " time: " << myTime << " increment: " << myIncrement
466 << " moves to go: " << movesToGo << '\n';
469 // We're ready to start thinking. Call the iterative deepening loop
470 // function:
471 id_loop(pos, searchMoves);
473 if(UseLogFile)
474 LogFile.close();
476 if(Quit) {
477 OpeningBook.close();
478 stop_threads();
479 quit_eval();
480 exit(0);
483 Idle = true;
487 /// init_threads() is called during startup. It launches all helper threads,
488 /// and initializes the split point stack and the global locks and condition
489 /// objects.
491 void init_threads() {
492 volatile int i;
493 #if !defined(_MSC_VER)
494 pthread_t pthread[1];
495 #endif
497 for(i = 0; i < THREAD_MAX; i++)
498 Threads[i].activeSplitPoints = 0;
500 // Initialize global locks:
501 lock_init(&MPLock, NULL);
502 lock_init(&IOLock, NULL);
504 init_split_point_stack();
506 #if !defined(_MSC_VER)
507 pthread_mutex_init(&WaitLock, NULL);
508 pthread_cond_init(&WaitCond, NULL);
509 #else
510 for(i = 0; i < THREAD_MAX; i++)
511 SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0);
512 #endif
514 // All threads except the main thread should be initialized to idle state:
515 for(i = 1; i < THREAD_MAX; i++) {
516 Threads[i].stop = false;
517 Threads[i].workIsWaiting = false;
518 Threads[i].idle = true;
519 Threads[i].running = false;
522 // Launch the helper threads:
523 for(i = 1; i < THREAD_MAX; i++) {
524 #if !defined(_MSC_VER)
525 pthread_create(pthread, NULL, init_thread, (void*)(&i));
526 #else
528 DWORD iID[1];
529 CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID);
531 #endif
533 // Wait until the thread has finished launching:
534 while(!Threads[i].running);
539 /// stop_threads() is called when the program exits. It makes all the
540 /// helper threads exit cleanly.
542 void stop_threads() {
543 ActiveThreads = THREAD_MAX; // HACK
544 Idle = false; // HACK
545 wake_sleeping_threads();
546 AllThreadsShouldExit = true;
547 for(int i = 1; i < THREAD_MAX; i++) {
548 Threads[i].stop = true;
549 while(Threads[i].running);
551 destroy_split_point_stack();
555 /// nodes_searched() returns the total number of nodes searched so far in
556 /// the current search.
558 int64_t nodes_searched() {
559 int64_t result = 0ULL;
560 for(int i = 0; i < ActiveThreads; i++)
561 result += Threads[i].nodes;
562 return result;
566 namespace {
568 // id_loop() is the main iterative deepening loop. It calls root_search
569 // repeatedly with increasing depth until the allocated thinking time has
570 // been consumed, the user stops the search, or the maximum search depth is
571 // reached.
573 void id_loop(const Position &pos, Move searchMoves[]) {
574 Position p(pos);
575 SearchStack ss[PLY_MAX_PLUS_2];
577 // searchMoves are verified, copied, scored and sorted
578 RootMoveList rml(p, searchMoves);
580 // Initialize
581 TT.new_search();
582 H.clear();
583 init_search_stack(ss);
585 ValueByIteration[0] = Value(0);
586 ValueByIteration[1] = rml.get_move_score(0);
587 Iteration = 1;
589 EasyMove = rml.scan_for_easy_move();
591 // Iterative deepening loop
592 while(!AbortSearch && Iteration < PLY_MAX) {
594 // Initialize iteration
595 rml.sort();
596 Iteration++;
597 BestMoveChangesByIteration[Iteration] = 0;
598 if(Iteration <= 5)
599 ExtraSearchTime = 0;
601 std::cout << "info depth " << Iteration << std::endl;
603 // Search to the current depth
604 ValueByIteration[Iteration] = root_search(p, ss, rml);
606 // Erase the easy move if it differs from the new best move
607 if(ss[0].pv[0] != EasyMove)
608 EasyMove = MOVE_NONE;
610 Problem = false;
612 if(!InfiniteSearch) {
613 // Time to stop?
614 bool stopSearch = false;
616 // Stop search early if there is only a single legal move:
617 if(Iteration >= 6 && rml.move_count() == 1)
618 stopSearch = true;
620 // Stop search early when the last two iterations returned a mate
621 // score:
622 if(Iteration >= 6
623 && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
624 && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
625 stopSearch = true;
627 // Stop search early if one move seems to be much better than the
628 // rest:
629 int64_t nodes = nodes_searched();
630 if(Iteration >= 8 && EasyMove == ss[0].pv[0] &&
631 ((rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100 &&
632 current_search_time() > MaxSearchTime / 16) ||
633 (rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100 &&
634 current_search_time() > MaxSearchTime / 32)))
635 stopSearch = true;
637 // Add some extra time if the best move has changed during the last
638 // two iterations:
639 if(Iteration > 5 && Iteration <= 50)
640 ExtraSearchTime =
641 BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2) +
642 BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3);
644 // If we need some more and we are in time advantage take it.
645 if (ExtraSearchTime > 0 && TimeAdvantage > 2 * MaxSearchTime)
646 ExtraSearchTime += MaxSearchTime / 2;
648 // Stop search if most of MaxSearchTime is consumed at the end of the
649 // iteration. We probably don't have enough time to search the first
650 // move at the next iteration anyway.
651 if(current_search_time() > ((MaxSearchTime + ExtraSearchTime)*80) / 128)
652 stopSearch = true;
654 if(stopSearch) {
655 if(!PonderSearch)
656 break;
657 else
658 StopOnPonderhit = true;
662 // Write PV to transposition table, in case the relevant entries have
663 // been overwritten during the search:
664 TT.insert_pv(p, ss[0].pv);
666 if(MaxDepth && Iteration >= MaxDepth)
667 break;
670 rml.sort();
672 // If we are pondering, we shouldn't print the best move before we
673 // are told to do so
674 if(PonderSearch)
675 wait_for_stop_or_ponderhit();
676 else
677 // Print final search statistics
678 std::cout << "info nodes " << nodes_searched() << " nps " << nps()
679 << " time " << current_search_time()
680 << " hashfull " << TT.full() << std::endl;
682 // Print the best move and the ponder move to the standard output:
683 std::cout << "bestmove " << ss[0].pv[0];
684 if(ss[0].pv[1] != MOVE_NONE)
685 std::cout << " ponder " << ss[0].pv[1];
686 std::cout << std::endl;
688 if(UseLogFile) {
689 UndoInfo u;
690 LogFile << "Nodes: " << nodes_searched() << '\n';
691 LogFile << "Nodes/second: " << nps() << '\n';
692 LogFile << "Best move: " << move_to_san(p, ss[0].pv[0]) << '\n';
693 p.do_move(ss[0].pv[0], u);
694 LogFile << "Ponder move: " << move_to_san(p, ss[0].pv[1]) << '\n';
695 LogFile << std::endl;
700 // root_search() is the function which searches the root node. It is
701 // similar to search_pv except that it uses a different move ordering
702 // scheme (perhaps we should try to use this at internal PV nodes, too?)
703 // and prints some information to the standard output.
705 Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml) {
706 Value alpha = -VALUE_INFINITE, beta = VALUE_INFINITE, value;
707 Bitboard dcCandidates = pos.discovered_check_candidates(pos.side_to_move());
709 // Loop through all the moves in the root move list:
710 for(int i = 0; i < rml.move_count() && !AbortSearch; i++) {
711 int64_t nodes;
712 Move move;
713 UndoInfo u;
714 Depth ext, newDepth;
716 RootMoveNumber = i + 1;
717 FailHigh = false;
719 // Remember the node count before the move is searched. The node counts
720 // are used to sort the root moves at the next iteration.
721 nodes = nodes_searched();
723 // Pick the next root move, and print the move and the move number to
724 // the standard output:
725 move = ss[0].currentMove = rml.get_move(i);
726 if(current_search_time() >= 1000)
727 std::cout << "info currmove " << move
728 << " currmovenumber " << i + 1 << std::endl;
730 // Decide search depth for this move:
731 ext = extension(pos, move, true, pos.move_is_check(move), false, false);
732 newDepth = (Iteration-2)*OnePly + ext + InitialDepth;
734 // Make the move, and search it.
735 pos.do_move(move, u, dcCandidates);
737 if(i < MultiPV) {
738 value = -search_pv(pos, ss, -beta, VALUE_INFINITE, newDepth, 1, 0);
739 // If the value has dropped a lot compared to the last iteration,
740 // set the boolean variable Problem to true. This variable is used
741 // for time managment: When Problem is true, we try to complete the
742 // current iteration before playing a move.
743 Problem = (Iteration >= 2 &&
744 value <= ValueByIteration[Iteration-1] - ProblemMargin);
745 if(Problem && StopOnPonderhit)
746 StopOnPonderhit = false;
748 else {
749 value = -search(pos, ss, -alpha, newDepth, 1, true, 0);
750 if(value > alpha) {
751 // Fail high! Set the boolean variable FailHigh to true, and
752 // re-search the move with a big window. The variable FailHigh is
753 // used for time managment: We try to avoid aborting the search
754 // prematurely during a fail high research.
755 FailHigh = true;
756 value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
760 pos.undo_move(move, u);
762 // Finished searching the move. If AbortSearch is true, the search
763 // was aborted because the user interrupted the search or because we
764 // ran out of time. In this case, the return value of the search cannot
765 // be trusted, and we break out of the loop without updating the best
766 // move and/or PV:
767 if(AbortSearch)
768 break;
770 // Remember the node count for this move. The node counts are used to
771 // sort the root moves at the next iteration.
772 rml.set_move_nodes(i, nodes_searched() - nodes);
774 assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
776 if(value <= alpha && i >= MultiPV)
777 rml.set_move_score(i, -VALUE_INFINITE);
778 else {
779 // New best move!
781 // Update PV:
782 rml.set_move_score(i, value);
783 update_pv(ss, 0);
784 rml.set_move_pv(i, ss[0].pv);
786 if(MultiPV == 1) {
787 // We record how often the best move has been changed in each
788 // iteration. This information is used for time managment: When
789 // the best move changes frequently, we allocate some more time.
790 if(i > 0)
791 BestMoveChangesByIteration[Iteration]++;
793 // Print search information to the standard output:
794 std::cout << "info depth " << Iteration
795 << " score " << value_to_string(value)
796 << " time " << current_search_time()
797 << " nodes " << nodes_searched()
798 << " nps " << nps()
799 << " pv ";
800 for(int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
801 std::cout << ss[0].pv[j] << " ";
802 std::cout << std::endl;
804 if(UseLogFile)
805 LogFile << pretty_pv(pos, current_search_time(), Iteration,
806 nodes_searched(), value, ss[0].pv)
807 << std::endl;
809 alpha = value;
811 // Reset the global variable Problem to false if the value isn't too
812 // far below the final value from the last iteration.
813 if(value > ValueByIteration[Iteration - 1] - NoProblemMargin)
814 Problem = false;
816 else { // MultiPV > 1
817 rml.sort_multipv(i);
818 for(int j = 0; j < Min(MultiPV, rml.move_count()); j++) {
819 int k;
820 std::cout << "info multipv " << j + 1
821 << " score " << value_to_string(rml.get_move_score(j))
822 << " depth " << ((j <= i)? Iteration : Iteration - 1)
823 << " time " << current_search_time()
824 << " nodes " << nodes_searched()
825 << " nps " << nps()
826 << " pv ";
827 for(k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
828 std::cout << rml.get_move_pv(j, k) << " ";
829 std::cout << std::endl;
831 alpha = rml.get_move_score(Min(i, MultiPV-1));
835 return alpha;
839 // search_pv() is the main search function for PV nodes.
841 Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta,
842 Depth depth, int ply, int threadID) {
844 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
845 assert(beta > alpha && beta <= VALUE_INFINITE);
846 assert(ply >= 0 && ply < PLY_MAX);
847 assert(threadID >= 0 && threadID < ActiveThreads);
849 EvalInfo ei;
851 // Initialize, and make an early exit in case of an aborted search,
852 // an instant draw, maximum ply reached, etc.
853 Value oldAlpha = alpha;
855 if (AbortSearch || thread_should_stop(threadID))
856 return Value(0);
858 if (depth < OnePly)
859 return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID);
861 init_node(pos, ss, ply, threadID);
863 if (pos.is_draw())
864 return VALUE_DRAW;
866 if (ply >= PLY_MAX - 1)
867 return evaluate(pos, ei, threadID);
869 // Mate distance pruning
870 alpha = Max(value_mated_in(ply), alpha);
871 beta = Min(value_mate_in(ply+1), beta);
872 if (alpha >= beta)
873 return alpha;
875 // Transposition table lookup. At PV nodes, we don't use the TT for
876 // pruning, but only for move ordering.
877 const TTEntry* tte = TT.retrieve(pos);
879 Move ttMove = (tte ? tte->move() : MOVE_NONE);
881 // Go with internal iterative deepening if we don't have a TT move
882 if (UseIIDAtPVNodes && ttMove == MOVE_NONE && depth >= 5*OnePly)
884 search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID);
885 ttMove = ss[ply].pv[ply];
888 // Initialize a MovePicker object for the current position, and prepare
889 // to search all moves:
890 MovePicker mp = MovePicker(pos, true, ttMove, ss[ply].mateKiller,
891 ss[ply].killer1, ss[ply].killer2, depth);
893 Move move, movesSearched[256];
894 int moveCount = 0;
895 Value value, bestValue = -VALUE_INFINITE;
896 Bitboard dcCandidates = mp.discovered_check_candidates();
897 bool mateThreat = MateThreatExtension[1] > Depth(0)
898 && pos.has_mate_threat(opposite_color(pos.side_to_move()));
900 // Loop through all legal moves until no moves remain or a beta cutoff
901 // occurs.
902 while ( alpha < beta
903 && (move = mp.get_next_move()) != MOVE_NONE
904 && !thread_should_stop(threadID))
906 assert(move_is_ok(move));
908 bool singleReply = (pos.is_check() && mp.number_of_moves() == 1);
909 bool moveIsCheck = pos.move_is_check(move, dcCandidates);
910 bool moveIsCapture = pos.move_is_capture(move);
911 bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
913 movesSearched[moveCount++] = ss[ply].currentMove = move;
915 ss[ply].currentMoveCaptureValue = move_is_ep(move) ?
916 PawnValueMidgame : pos.midgame_value_of_piece_on(move_to(move));
918 // Decide the new search depth
919 Depth ext = extension(pos, move, true, moveIsCheck, singleReply, mateThreat);
920 Depth newDepth = depth - OnePly + ext;
922 // Make and search the move
923 UndoInfo u;
924 pos.do_move(move, u, dcCandidates);
926 if (moveCount == 1) // The first move in list is the PV
927 value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
928 else
930 // Try to reduce non-pv search depth by one ply if move seems not problematic,
931 // if the move fails high will be re-searched at full depth.
932 if ( depth >= 2*OnePly
933 && ext == Depth(0)
934 && moveCount >= LMRPVMoves
935 && !moveIsCapture
936 && !move_promotion(move)
937 && !moveIsPassedPawnPush
938 && !move_is_castle(move)
939 && move != ss[ply].killer1
940 && move != ss[ply].killer2)
942 ss[ply].reduction = OnePly;
943 value = -search(pos, ss, -alpha, newDepth-OnePly, ply+1, true, threadID);
945 else
946 value = alpha + 1; // Just to trigger next condition
948 if (value > alpha) // Go with full depth pv search
950 ss[ply].reduction = Depth(0);
951 value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID);
952 if (value > alpha && value < beta)
954 // When the search fails high at ply 1 while searching the first
955 // move at the root, set the flag failHighPly1. This is used for
956 // time managment: We don't want to stop the search early in
957 // such cases, because resolving the fail high at ply 1 could
958 // result in a big drop in score at the root.
959 if (ply == 1 && RootMoveNumber == 1)
960 Threads[threadID].failHighPly1 = true;
962 // A fail high occurred. Re-search at full window (pv search)
963 value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
964 Threads[threadID].failHighPly1 = false;
968 pos.undo_move(move, u);
970 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
972 // New best move?
973 if (value > bestValue)
975 bestValue = value;
976 if (value > alpha)
978 alpha = value;
979 update_pv(ss, ply);
980 if (value == value_mate_in(ply + 1))
981 ss[ply].mateKiller = move;
983 // If we are at ply 1, and we are searching the first root move at
984 // ply 0, set the 'Problem' variable if the score has dropped a lot
985 // (from the computer's point of view) since the previous iteration:
986 if (Iteration >= 2 && -value <= ValueByIteration[Iteration-1] - ProblemMargin)
987 Problem = true;
990 // Split?
991 if ( ActiveThreads > 1
992 && bestValue < beta
993 && depth >= MinimumSplitDepth
994 && Iteration <= 99
995 && idle_thread_exists(threadID)
996 && !AbortSearch
997 && !thread_should_stop(threadID)
998 && split(pos, ss, ply, &alpha, &beta, &bestValue, depth,
999 &moveCount, &mp, dcCandidates, threadID, true))
1000 break;
1003 // All legal moves have been searched. A special case: If there were
1004 // no legal moves, it must be mate or stalemate:
1005 if (moveCount == 0)
1006 return (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW);
1008 // If the search is not aborted, update the transposition table,
1009 // history counters, and killer moves.
1010 if (AbortSearch || thread_should_stop(threadID))
1011 return bestValue;
1013 if (bestValue <= oldAlpha)
1014 TT.store(pos, value_to_tt(bestValue, ply), depth, MOVE_NONE, VALUE_TYPE_UPPER);
1016 else if (bestValue >= beta)
1018 Move m = ss[ply].pv[ply];
1019 if (ok_to_history(pos, m)) // Only non capture moves are considered
1021 update_history(pos, m, depth, movesSearched, moveCount);
1022 if (m != ss[ply].killer1)
1024 ss[ply].killer2 = ss[ply].killer1;
1025 ss[ply].killer1 = m;
1028 TT.store(pos, value_to_tt(bestValue, ply), depth, m, VALUE_TYPE_LOWER);
1030 else
1031 TT.store(pos, value_to_tt(bestValue, ply), depth, ss[ply].pv[ply], VALUE_TYPE_EXACT);
1033 return bestValue;
1037 // search() is the search function for zero-width nodes.
1039 Value search(Position &pos, SearchStack ss[], Value beta, Depth depth,
1040 int ply, bool allowNullmove, int threadID) {
1042 assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
1043 assert(ply >= 0 && ply < PLY_MAX);
1044 assert(threadID >= 0 && threadID < ActiveThreads);
1046 EvalInfo ei;
1048 // Initialize, and make an early exit in case of an aborted search,
1049 // an instant draw, maximum ply reached, etc.
1050 if (AbortSearch || thread_should_stop(threadID))
1051 return Value(0);
1053 if (depth < OnePly)
1054 return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID);
1056 init_node(pos, ss, ply, threadID);
1058 if (pos.is_draw())
1059 return VALUE_DRAW;
1061 if (ply >= PLY_MAX - 1)
1062 return evaluate(pos, ei, threadID);
1064 // Mate distance pruning
1065 if (value_mated_in(ply) >= beta)
1066 return beta;
1068 if (value_mate_in(ply + 1) < beta)
1069 return beta - 1;
1071 // Transposition table lookup
1072 const TTEntry* tte = TT.retrieve(pos);
1074 Move ttMove = (tte ? tte->move() : MOVE_NONE);
1076 if (tte && ok_to_use_TT(tte, depth, beta, ply))
1078 ss[ply].currentMove = ttMove; // can be MOVE_NONE ?
1079 return value_from_tt(tte->value(), ply);
1082 Value approximateEval = quick_evaluate(pos);
1083 bool mateThreat = false;
1085 // Null move search
1086 if ( allowNullmove
1087 && !pos.is_check()
1088 && ok_to_do_nullmove(pos)
1089 && approximateEval >= beta - NullMoveMargin)
1091 ss[ply].currentMove = MOVE_NULL;
1093 UndoInfo u;
1094 pos.do_null_move(u);
1095 Value nullValue = -search(pos, ss, -(beta-1), depth-4*OnePly, ply+1, false, threadID);
1096 pos.undo_null_move(u);
1098 if (nullValue >= beta)
1100 if (depth < 6 * OnePly)
1101 return beta;
1103 // Do zugzwang verification search
1104 Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID);
1105 if (v >= beta)
1106 return beta;
1107 } else {
1108 // The null move failed low, which means that we may be faced with
1109 // some kind of threat. If the previous move was reduced, check if
1110 // the move that refuted the null move was somehow connected to the
1111 // move which was reduced. If a connection is found, return a fail
1112 // low score (which will cause the reduced move to fail high in the
1113 // parent node, which will trigger a re-search with full depth).
1114 if (nullValue == value_mated_in(ply + 2))
1115 mateThreat = true;
1117 ss[ply].threatMove = ss[ply + 1].currentMove;
1118 if ( depth < ThreatDepth
1119 && ss[ply - 1].reduction
1120 && connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove))
1121 return beta - 1;
1124 // Null move search not allowed, try razoring
1125 else if (depth < RazorDepth && approximateEval < beta - RazorMargin)
1127 Value v = qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID);
1128 if (v < beta)
1129 return v;
1132 // Go with internal iterative deepening if we don't have a TT move
1133 if (UseIIDAtNonPVNodes && ttMove == MOVE_NONE && depth >= 8*OnePly &&
1134 evaluate(pos, ei, threadID) >= beta - IIDMargin)
1136 search(pos, ss, beta, Min(depth/2, depth-2*OnePly), ply, false, threadID);
1137 ttMove = ss[ply].pv[ply];
1140 // Initialize a MovePicker object for the current position, and prepare
1141 // to search all moves:
1142 MovePicker mp = MovePicker(pos, false, ttMove, ss[ply].mateKiller,
1143 ss[ply].killer1, ss[ply].killer2, depth);
1145 Move move, movesSearched[256];
1146 int moveCount = 0;
1147 Value value, bestValue = -VALUE_INFINITE;
1148 Bitboard dcCandidates = mp.discovered_check_candidates();
1149 Value futilityValue = VALUE_NONE;
1150 bool isCheck = pos.is_check();
1151 bool useFutilityPruning = UseFutilityPruning
1152 && depth < SelectiveDepth
1153 && !isCheck;
1155 // Loop through all legal moves until no moves remain or a beta cutoff
1156 // occurs.
1157 while ( bestValue < beta
1158 && (move = mp.get_next_move()) != MOVE_NONE
1159 && !thread_should_stop(threadID))
1161 assert(move_is_ok(move));
1163 bool singleReply = (isCheck && mp.number_of_moves() == 1);
1164 bool moveIsCheck = pos.move_is_check(move, dcCandidates);
1165 bool moveIsCapture = pos.move_is_capture(move);
1166 bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
1168 movesSearched[moveCount++] = ss[ply].currentMove = move;
1170 // Decide the new search depth
1171 Depth ext = extension(pos, move, false, moveIsCheck, singleReply, mateThreat);
1172 Depth newDepth = depth - OnePly + ext;
1174 // Futility pruning
1175 if ( useFutilityPruning
1176 && ext == Depth(0)
1177 && !moveIsCapture
1178 && !moveIsPassedPawnPush
1179 && !move_promotion(move))
1181 if ( moveCount >= 2 + int(depth)
1182 && ok_to_prune(pos, move, ss[ply].threatMove, depth))
1183 continue;
1185 if (depth < 3 * OnePly && approximateEval < beta)
1187 if (futilityValue == VALUE_NONE)
1188 futilityValue = evaluate(pos, ei, threadID)
1189 + (depth < 2 * OnePly ? FutilityMargin1 : FutilityMargin2);
1191 if (futilityValue < beta)
1193 if (futilityValue > bestValue)
1194 bestValue = futilityValue;
1195 continue;
1200 // Make and search the move
1201 UndoInfo u;
1202 pos.do_move(move, u, dcCandidates);
1204 // Try to reduce non-pv search depth by one ply if move seems not problematic,
1205 // if the move fails high will be re-searched at full depth.
1206 if ( depth >= 2*OnePly
1207 && ext == Depth(0)
1208 && moveCount >= LMRNonPVMoves
1209 && !moveIsCapture
1210 && !move_promotion(move)
1211 && !moveIsPassedPawnPush
1212 && !move_is_castle(move)
1213 && move != ss[ply].killer1
1214 && move != ss[ply].killer2)
1216 ss[ply].reduction = OnePly;
1217 value = -search(pos, ss, -(beta-1), newDepth-OnePly, ply+1, true, threadID);
1219 else
1220 value = beta; // Just to trigger next condition
1222 if (value >= beta) // Go with full depth non-pv search
1224 ss[ply].reduction = Depth(0);
1225 value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID);
1227 pos.undo_move(move, u);
1229 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1231 // New best move?
1232 if (value > bestValue)
1234 bestValue = value;
1235 if (value >= beta)
1236 update_pv(ss, ply);
1238 if (value == value_mate_in(ply + 1))
1239 ss[ply].mateKiller = move;
1242 // Split?
1243 if ( ActiveThreads > 1
1244 && bestValue < beta
1245 && depth >= MinimumSplitDepth
1246 && Iteration <= 99
1247 && idle_thread_exists(threadID)
1248 && !AbortSearch
1249 && !thread_should_stop(threadID)
1250 && split(pos, ss, ply, &beta, &beta, &bestValue, depth, &moveCount,
1251 &mp, dcCandidates, threadID, false))
1252 break;
1255 // All legal moves have been searched. A special case: If there were
1256 // no legal moves, it must be mate or stalemate:
1257 if (moveCount == 0)
1258 return (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW);
1260 // If the search is not aborted, update the transposition table,
1261 // history counters, and killer moves.
1262 if (AbortSearch || thread_should_stop(threadID))
1263 return bestValue;
1265 if (bestValue < beta)
1266 TT.store(pos, value_to_tt(bestValue, ply), depth, MOVE_NONE, VALUE_TYPE_UPPER);
1267 else
1269 Move m = ss[ply].pv[ply];
1270 if (ok_to_history(pos, m)) // Only non capture moves are considered
1272 update_history(pos, m, depth, movesSearched, moveCount);
1273 if (m != ss[ply].killer1)
1275 ss[ply].killer2 = ss[ply].killer1;
1276 ss[ply].killer1 = m;
1279 TT.store(pos, value_to_tt(bestValue, ply), depth, m, VALUE_TYPE_LOWER);
1281 return bestValue;
1285 // qsearch() is the quiescence search function, which is called by the main
1286 // search function when the remaining depth is zero (or, to be more precise,
1287 // less than OnePly).
1289 Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta,
1290 Depth depth, int ply, int threadID) {
1292 assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
1293 assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
1294 assert(depth <= 0);
1295 assert(ply >= 0 && ply < PLY_MAX);
1296 assert(threadID >= 0 && threadID < ActiveThreads);
1298 EvalInfo ei;
1300 // Initialize, and make an early exit in case of an aborted search,
1301 // an instant draw, maximum ply reached, etc.
1302 if (AbortSearch || thread_should_stop(threadID))
1303 return Value(0);
1305 init_node(pos, ss, ply, threadID);
1307 if (pos.is_draw())
1308 return VALUE_DRAW;
1310 // Transposition table lookup
1311 const TTEntry* tte = TT.retrieve(pos);
1312 if (tte && ok_to_use_TT(tte, depth, beta, ply))
1313 return value_from_tt(tte->value(), ply);
1315 // Evaluate the position statically:
1316 Value staticValue = evaluate(pos, ei, threadID);
1318 if (ply == PLY_MAX - 1)
1319 return staticValue;
1321 // Initialize "stand pat score", and return it immediately if it is
1322 // at least beta.
1323 Value bestValue = (pos.is_check() ? -VALUE_INFINITE : staticValue);
1325 if (bestValue >= beta)
1326 return bestValue;
1328 if (bestValue > alpha)
1329 alpha = bestValue;
1331 // Initialize a MovePicker object for the current position, and prepare
1332 // to search the moves. Because the depth is <= 0 here, only captures,
1333 // queen promotions and checks (only if depth == 0) will be generated.
1334 MovePicker mp = MovePicker(pos, false, MOVE_NONE, MOVE_NONE, MOVE_NONE,
1335 MOVE_NONE, depth);
1336 Move move;
1337 int moveCount = 0;
1338 Bitboard dcCandidates = mp.discovered_check_candidates();
1339 bool isCheck = pos.is_check();
1341 // Loop through the moves until no moves remain or a beta cutoff
1342 // occurs.
1343 while ( alpha < beta
1344 && (move = mp.get_next_move()) != MOVE_NONE)
1346 assert(move_is_ok(move));
1348 bool moveIsCheck = pos.move_is_check(move, dcCandidates);
1349 bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
1351 moveCount++;
1352 ss[ply].currentMove = move;
1354 // Futility pruning
1355 if ( UseQSearchFutilityPruning
1356 && !isCheck
1357 && !moveIsCheck
1358 && !move_promotion(move)
1359 && !moveIsPassedPawnPush
1360 && beta - alpha == 1
1361 && pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame)
1363 Value futilityValue = staticValue
1364 + Max(pos.midgame_value_of_piece_on(move_to(move)),
1365 pos.endgame_value_of_piece_on(move_to(move)))
1366 + FutilityMargin0
1367 + ei.futilityMargin;
1369 if (futilityValue < alpha)
1371 if (futilityValue > bestValue)
1372 bestValue = futilityValue;
1373 continue;
1377 // Don't search captures and checks with negative SEE values.
1378 if ( !isCheck
1379 && !move_promotion(move)
1380 && (pos.midgame_value_of_piece_on(move_from(move)) >
1381 pos.midgame_value_of_piece_on(move_to(move)))
1382 && pos.see(move) < 0)
1383 continue;
1385 // Make and search the move.
1386 UndoInfo u;
1387 pos.do_move(move, u, dcCandidates);
1388 Value value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID);
1389 pos.undo_move(move, u);
1391 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1393 // New best move?
1394 if (value > bestValue)
1396 bestValue = value;
1397 if (value > alpha)
1399 alpha = value;
1400 update_pv(ss, ply);
1405 // All legal moves have been searched. A special case: If we're in check
1406 // and no legal moves were found, it is checkmate:
1407 if (pos.is_check() && moveCount == 0) // Mate!
1408 return value_mated_in(ply);
1410 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1412 // Update transposition table
1413 TT.store(pos, value_to_tt(bestValue, ply), depth, MOVE_NONE, VALUE_TYPE_EXACT);
1415 return bestValue;
1419 // sp_search() is used to search from a split point. This function is called
1420 // by each thread working at the split point. It is similar to the normal
1421 // search() function, but simpler. Because we have already probed the hash
1422 // table, done a null move search, and searched the first move before
1423 // splitting, we don't have to repeat all this work in sp_search(). We
1424 // also don't need to store anything to the hash table here: This is taken
1425 // care of after we return from the split point.
1427 void sp_search(SplitPoint *sp, int threadID) {
1429 assert(threadID >= 0 && threadID < ActiveThreads);
1430 assert(ActiveThreads > 1);
1432 Position pos = Position(sp->pos);
1433 SearchStack *ss = sp->sstack[threadID];
1434 Value value;
1435 Move move;
1436 bool isCheck = pos.is_check();
1437 bool useFutilityPruning = UseFutilityPruning
1438 && sp->depth < SelectiveDepth
1439 && !isCheck;
1441 while ( sp->bestValue < sp->beta
1442 && !thread_should_stop(threadID)
1443 && (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE)
1445 assert(move_is_ok(move));
1447 bool moveIsCheck = pos.move_is_check(move, sp->dcCandidates);
1448 bool moveIsCapture = pos.move_is_capture(move);
1449 bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
1451 lock_grab(&(sp->lock));
1452 int moveCount = ++sp->moves;
1453 lock_release(&(sp->lock));
1455 ss[sp->ply].currentMove = move;
1457 // Decide the new search depth.
1458 Depth ext = extension(pos, move, false, moveIsCheck, false, false);
1459 Depth newDepth = sp->depth - OnePly + ext;
1461 // Prune?
1462 if ( useFutilityPruning
1463 && ext == Depth(0)
1464 && !moveIsCapture
1465 && !moveIsPassedPawnPush
1466 && !move_promotion(move)
1467 && moveCount >= 2 + int(sp->depth)
1468 && ok_to_prune(pos, move, ss[sp->ply].threatMove, sp->depth))
1469 continue;
1471 // Make and search the move.
1472 UndoInfo u;
1473 pos.do_move(move, u, sp->dcCandidates);
1475 // Try to reduce non-pv search depth by one ply if move seems not problematic,
1476 // if the move fails high will be re-searched at full depth.
1477 if ( ext == Depth(0)
1478 && moveCount >= LMRNonPVMoves
1479 && !moveIsCapture
1480 && !moveIsPassedPawnPush
1481 && !move_promotion(move)
1482 && !move_is_castle(move)
1483 && move != ss[sp->ply].killer1
1484 && move != ss[sp->ply].killer2)
1486 ss[sp->ply].reduction = OnePly;
1487 value = -search(pos, ss, -(sp->beta-1), newDepth - OnePly, sp->ply+1, true, threadID);
1489 else
1490 value = sp->beta; // Just to trigger next condition
1492 if (value >= sp->beta) // Go with full depth non-pv search
1494 ss[sp->ply].reduction = Depth(0);
1495 value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID);
1497 pos.undo_move(move, u);
1499 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1501 if (thread_should_stop(threadID))
1502 break;
1504 // New best move?
1505 lock_grab(&(sp->lock));
1506 if (value > sp->bestValue && !thread_should_stop(threadID))
1508 sp->bestValue = value;
1509 if (sp->bestValue >= sp->beta)
1511 sp_update_pv(sp->parentSstack, ss, sp->ply);
1512 for (int i = 0; i < ActiveThreads; i++)
1513 if (i != threadID && (i == sp->master || sp->slaves[i]))
1514 Threads[i].stop = true;
1516 sp->finished = true;
1519 lock_release(&(sp->lock));
1522 lock_grab(&(sp->lock));
1524 // If this is the master thread and we have been asked to stop because of
1525 // a beta cutoff higher up in the tree, stop all slave threads:
1526 if (sp->master == threadID && thread_should_stop(threadID))
1527 for (int i = 0; i < ActiveThreads; i++)
1528 if (sp->slaves[i])
1529 Threads[i].stop = true;
1531 sp->cpus--;
1532 sp->slaves[threadID] = 0;
1534 lock_release(&(sp->lock));
1538 // sp_search_pv() is used to search from a PV split point. This function
1539 // is called by each thread working at the split point. It is similar to
1540 // the normal search_pv() function, but simpler. Because we have already
1541 // probed the hash table and searched the first move before splitting, we
1542 // don't have to repeat all this work in sp_search_pv(). We also don't
1543 // need to store anything to the hash table here: This is taken care of
1544 // after we return from the split point.
1546 void sp_search_pv(SplitPoint *sp, int threadID) {
1548 assert(threadID >= 0 && threadID < ActiveThreads);
1549 assert(ActiveThreads > 1);
1551 Position pos = Position(sp->pos);
1552 SearchStack *ss = sp->sstack[threadID];
1553 Value value;
1554 Move move;
1556 while ( sp->alpha < sp->beta
1557 && !thread_should_stop(threadID)
1558 && (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE)
1560 bool moveIsCheck = pos.move_is_check(move, sp->dcCandidates);
1561 bool moveIsCapture = pos.move_is_capture(move);
1562 bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
1564 assert(move_is_ok(move));
1566 ss[sp->ply].currentMoveCaptureValue = move_is_ep(move)?
1567 PawnValueMidgame : pos.midgame_value_of_piece_on(move_to(move));
1569 lock_grab(&(sp->lock));
1570 int moveCount = ++sp->moves;
1571 lock_release(&(sp->lock));
1573 ss[sp->ply].currentMove = move;
1575 // Decide the new search depth.
1576 Depth ext = extension(pos, move, true, moveIsCheck, false, false);
1577 Depth newDepth = sp->depth - OnePly + ext;
1579 // Make and search the move.
1580 UndoInfo u;
1581 pos.do_move(move, u, sp->dcCandidates);
1583 // Try to reduce non-pv search depth by one ply if move seems not problematic,
1584 // if the move fails high will be re-searched at full depth.
1585 if ( ext == Depth(0)
1586 && moveCount >= LMRPVMoves
1587 && !moveIsCapture
1588 && !moveIsPassedPawnPush
1589 && !move_promotion(move)
1590 && !move_is_castle(move)
1591 && move != ss[sp->ply].killer1
1592 && move != ss[sp->ply].killer2)
1594 ss[sp->ply].reduction = OnePly;
1595 value = -search(pos, ss, -sp->alpha, newDepth - OnePly, sp->ply+1, true, threadID);
1597 else
1598 value = sp->alpha + 1; // Just to trigger next condition
1600 if (value > sp->alpha) // Go with full depth non-pv search
1602 ss[sp->ply].reduction = Depth(0);
1603 value = -search(pos, ss, -sp->alpha, newDepth, sp->ply+1, true, threadID);
1605 if (value > sp->alpha && value < sp->beta)
1607 // When the search fails high at ply 1 while searching the first
1608 // move at the root, set the flag failHighPly1. This is used for
1609 // time managment: We don't want to stop the search early in
1610 // such cases, because resolving the fail high at ply 1 could
1611 // result in a big drop in score at the root.
1612 if (sp->ply == 1 && RootMoveNumber == 1)
1613 Threads[threadID].failHighPly1 = true;
1615 value = -search_pv(pos, ss, -sp->beta, -sp->alpha, newDepth, sp->ply+1, threadID);
1616 Threads[threadID].failHighPly1 = false;
1619 pos.undo_move(move, u);
1621 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1623 if (thread_should_stop(threadID))
1624 break;
1626 // New best move?
1627 lock_grab(&(sp->lock));
1628 if (value > sp->bestValue && !thread_should_stop(threadID))
1630 sp->bestValue = value;
1631 if (value > sp->alpha)
1633 sp->alpha = value;
1634 sp_update_pv(sp->parentSstack, ss, sp->ply);
1635 if (value == value_mate_in(sp->ply + 1))
1636 ss[sp->ply].mateKiller = move;
1638 if(value >= sp->beta)
1640 for(int i = 0; i < ActiveThreads; i++)
1641 if(i != threadID && (i == sp->master || sp->slaves[i]))
1642 Threads[i].stop = true;
1644 sp->finished = true;
1647 // If we are at ply 1, and we are searching the first root move at
1648 // ply 0, set the 'Problem' variable if the score has dropped a lot
1649 // (from the computer's point of view) since the previous iteration:
1650 if (Iteration >= 2 && -value <= ValueByIteration[Iteration-1] - ProblemMargin)
1651 Problem = true;
1653 lock_release(&(sp->lock));
1656 lock_grab(&(sp->lock));
1658 // If this is the master thread and we have been asked to stop because of
1659 // a beta cutoff higher up in the tree, stop all slave threads:
1660 if (sp->master == threadID && thread_should_stop(threadID))
1661 for (int i = 0; i < ActiveThreads; i++)
1662 if (sp->slaves[i])
1663 Threads[i].stop = true;
1665 sp->cpus--;
1666 sp->slaves[threadID] = 0;
1668 lock_release(&(sp->lock));
1672 /// The RootMove class
1674 // Constructor
1676 RootMove::RootMove() {
1677 nodes = cumulativeNodes = 0ULL;
1680 // RootMove::operator<() is the comparison function used when
1681 // sorting the moves. A move m1 is considered to be better
1682 // than a move m2 if it has a higher score, or if the moves
1683 // have equal score but m1 has the higher node count.
1685 bool RootMove::operator<(const RootMove& m) {
1687 if (score != m.score)
1688 return (score < m.score);
1690 return nodes <= m.nodes;
1693 /// The RootMoveList class
1695 // Constructor
1697 RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) {
1699 MoveStack mlist[MaxRootMoves];
1700 bool includeAllMoves = (searchMoves[0] == MOVE_NONE);
1702 // Generate all legal moves
1703 int lm_count = generate_legal_moves(pos, mlist);
1705 // Add each move to the moves[] array
1706 for (int i = 0; i < lm_count; i++)
1708 bool includeMove = includeAllMoves;
1710 for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++)
1711 includeMove = (searchMoves[k] == mlist[i].move);
1713 if (includeMove)
1715 // Find a quick score for the move
1716 UndoInfo u;
1717 SearchStack ss[PLY_MAX_PLUS_2];
1719 moves[count].move = mlist[i].move;
1720 moves[count].nodes = 0ULL;
1721 pos.do_move(moves[count].move, u);
1722 moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE,
1723 Depth(0), 1, 0);
1724 pos.undo_move(moves[count].move, u);
1725 moves[count].pv[0] = moves[i].move;
1726 moves[count].pv[1] = MOVE_NONE; // FIXME
1727 count++;
1730 sort();
1734 // Simple accessor methods for the RootMoveList class
1736 inline Move RootMoveList::get_move(int moveNum) const {
1737 return moves[moveNum].move;
1740 inline Value RootMoveList::get_move_score(int moveNum) const {
1741 return moves[moveNum].score;
1744 inline void RootMoveList::set_move_score(int moveNum, Value score) {
1745 moves[moveNum].score = score;
1748 inline void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) {
1749 moves[moveNum].nodes = nodes;
1750 moves[moveNum].cumulativeNodes += nodes;
1753 void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
1754 int j;
1755 for(j = 0; pv[j] != MOVE_NONE; j++)
1756 moves[moveNum].pv[j] = pv[j];
1757 moves[moveNum].pv[j] = MOVE_NONE;
1760 inline Move RootMoveList::get_move_pv(int moveNum, int i) const {
1761 return moves[moveNum].pv[i];
1764 inline int64_t RootMoveList::get_move_cumulative_nodes(int moveNum) const {
1765 return moves[moveNum].cumulativeNodes;
1768 inline int RootMoveList::move_count() const {
1769 return count;
1773 // RootMoveList::scan_for_easy_move() is called at the end of the first
1774 // iteration, and is used to detect an "easy move", i.e. a move which appears
1775 // to be much bester than all the rest. If an easy move is found, the move
1776 // is returned, otherwise the function returns MOVE_NONE. It is very
1777 // important that this function is called at the right moment: The code
1778 // assumes that the first iteration has been completed and the moves have
1779 // been sorted. This is done in RootMoveList c'tor.
1781 Move RootMoveList::scan_for_easy_move() const {
1783 assert(count);
1785 if (count == 1)
1786 return get_move(0);
1788 // moves are sorted so just consider the best and the second one
1789 if (get_move_score(0) > get_move_score(1) + EasyMoveMargin)
1790 return get_move(0);
1792 return MOVE_NONE;
1795 // RootMoveList::sort() sorts the root move list at the beginning of a new
1796 // iteration.
1798 inline void RootMoveList::sort() {
1800 sort_multipv(count - 1); // all items
1804 // RootMoveList::sort_multipv() sorts the first few moves in the root move
1805 // list by their scores and depths. It is used to order the different PVs
1806 // correctly in MultiPV mode.
1808 void RootMoveList::sort_multipv(int n) {
1810 for (int i = 1; i <= n; i++)
1812 RootMove rm = moves[i];
1813 int j;
1814 for (j = i; j > 0 && moves[j-1] < rm; j--)
1815 moves[j] = moves[j-1];
1816 moves[j] = rm;
1821 // init_search_stack() initializes a search stack at the beginning of a
1822 // new search from the root.
1824 void init_search_stack(SearchStack ss[]) {
1825 for(int i = 0; i < 3; i++) {
1826 ss[i].pv[i] = MOVE_NONE;
1827 ss[i].pv[i+1] = MOVE_NONE;
1828 ss[i].currentMove = MOVE_NONE;
1829 ss[i].mateKiller = MOVE_NONE;
1830 ss[i].killer1 = MOVE_NONE;
1831 ss[i].killer2 = MOVE_NONE;
1832 ss[i].threatMove = MOVE_NONE;
1833 ss[i].reduction = Depth(0);
1838 // init_node() is called at the beginning of all the search functions
1839 // (search(), search_pv(), qsearch(), and so on) and initializes the search
1840 // stack object corresponding to the current node. Once every
1841 // NodesBetweenPolls nodes, init_node() also calls poll(), which polls
1842 // for user input and checks whether it is time to stop the search.
1844 void init_node(const Position &pos, SearchStack ss[], int ply, int threadID) {
1845 assert(ply >= 0 && ply < PLY_MAX);
1846 assert(threadID >= 0 && threadID < ActiveThreads);
1848 Threads[threadID].nodes++;
1850 if(threadID == 0) {
1851 NodesSincePoll++;
1852 if(NodesSincePoll >= NodesBetweenPolls) {
1853 poll();
1854 NodesSincePoll = 0;
1858 ss[ply].pv[ply] = ss[ply].pv[ply+1] = ss[ply].currentMove = MOVE_NONE;
1859 ss[ply+2].mateKiller = MOVE_NONE;
1860 ss[ply+2].killer1 = ss[ply+2].killer2 = MOVE_NONE;
1861 ss[ply].threatMove = MOVE_NONE;
1862 ss[ply].reduction = Depth(0);
1863 ss[ply].currentMoveCaptureValue = Value(0);
1865 if(Threads[threadID].printCurrentLine)
1866 print_current_line(ss, ply, threadID);
1870 // update_pv() is called whenever a search returns a value > alpha. It
1871 // updates the PV in the SearchStack object corresponding to the current
1872 // node.
1874 void update_pv(SearchStack ss[], int ply) {
1875 assert(ply >= 0 && ply < PLY_MAX);
1877 ss[ply].pv[ply] = ss[ply].currentMove;
1878 int p;
1879 for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++)
1880 ss[ply].pv[p] = ss[ply+1].pv[p];
1881 ss[ply].pv[p] = MOVE_NONE;
1885 // sp_update_pv() is a variant of update_pv for use at split points. The
1886 // difference between the two functions is that sp_update_pv also updates
1887 // the PV at the parent node.
1889 void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply) {
1890 assert(ply >= 0 && ply < PLY_MAX);
1892 ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
1893 int p;
1894 for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++)
1895 ss[ply].pv[p] = pss[ply].pv[p] = ss[ply+1].pv[p];
1896 ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE;
1900 // connected_moves() tests whether two moves are 'connected' in the sense
1901 // that the first move somehow made the second move possible (for instance
1902 // if the moving piece is the same in both moves). The first move is
1903 // assumed to be the move that was made to reach the current position, while
1904 // the second move is assumed to be a move from the current position.
1906 bool connected_moves(const Position &pos, Move m1, Move m2) {
1907 Square f1, t1, f2, t2;
1909 assert(move_is_ok(m1));
1910 assert(move_is_ok(m2));
1912 if(m2 == MOVE_NONE)
1913 return false;
1915 // Case 1: The moving piece is the same in both moves.
1916 f2 = move_from(m2);
1917 t1 = move_to(m1);
1918 if(f2 == t1)
1919 return true;
1921 // Case 2: The destination square for m2 was vacated by m1.
1922 t2 = move_to(m2);
1923 f1 = move_from(m1);
1924 if(t2 == f1)
1925 return true;
1927 // Case 3: Moving through the vacated square:
1928 if(piece_is_slider(pos.piece_on(f2)) &&
1929 bit_is_set(squares_between(f2, t2), f1))
1930 return true;
1932 // Case 4: The destination square for m2 is attacked by the moving piece
1933 // in m1:
1934 if(pos.piece_attacks_square(t1, t2))
1935 return true;
1937 // Case 5: Discovered check, checking piece is the piece moved in m1:
1938 if(piece_is_slider(pos.piece_on(t1)) &&
1939 bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())),
1940 f2) &&
1941 !bit_is_set(squares_between(t2, pos.king_square(pos.side_to_move())),
1942 t2)) {
1943 Bitboard occ = pos.occupied_squares();
1944 Color us = pos.side_to_move();
1945 Square ksq = pos.king_square(us);
1946 clear_bit(&occ, f2);
1947 if(pos.type_of_piece_on(t1) == BISHOP) {
1948 if(bit_is_set(bishop_attacks_bb(ksq, occ), t1))
1949 return true;
1951 else if(pos.type_of_piece_on(t1) == ROOK) {
1952 if(bit_is_set(rook_attacks_bb(ksq, occ), t1))
1953 return true;
1955 else {
1956 assert(pos.type_of_piece_on(t1) == QUEEN);
1957 if(bit_is_set(queen_attacks_bb(ksq, occ), t1))
1958 return true;
1962 return false;
1966 // extension() decides whether a move should be searched with normal depth,
1967 // or with extended depth. Certain classes of moves (checking moves, in
1968 // particular) are searched with bigger depth than ordinary moves.
1970 Depth extension(const Position &pos, Move m, bool pvNode,
1971 bool check, bool singleReply, bool mateThreat) {
1972 Depth result = Depth(0);
1974 if(check)
1975 result += CheckExtension[pvNode];
1976 if(singleReply)
1977 result += SingleReplyExtension[pvNode];
1978 if(pos.move_is_pawn_push_to_7th(m))
1979 result += PawnPushTo7thExtension[pvNode];
1980 if(pos.move_is_passed_pawn_push(m))
1981 result += PassedPawnExtension[pvNode];
1982 if(mateThreat)
1983 result += MateThreatExtension[pvNode];
1984 if(pos.midgame_value_of_piece_on(move_to(m)) >= RookValueMidgame
1985 && (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
1986 - pos.midgame_value_of_piece_on(move_to(m)) == Value(0))
1987 && !move_promotion(m))
1988 result += PawnEndgameExtension[pvNode];
1989 if(pvNode && pos.move_is_capture(m)
1990 && pos.type_of_piece_on(move_to(m)) != PAWN && pos.see(m) >= 0)
1991 result += OnePly/2;
1993 return Min(result, OnePly);
1997 // ok_to_do_nullmove() looks at the current position and decides whether
1998 // doing a 'null move' should be allowed. In order to avoid zugzwang
1999 // problems, null moves are not allowed when the side to move has very
2000 // little material left. Currently, the test is a bit too simple: Null
2001 // moves are avoided only when the side to move has only pawns left. It's
2002 // probably a good idea to avoid null moves in at least some more
2003 // complicated endgames, e.g. KQ vs KR. FIXME
2005 bool ok_to_do_nullmove(const Position &pos) {
2006 if(pos.non_pawn_material(pos.side_to_move()) == Value(0))
2007 return false;
2008 return true;
2012 // ok_to_prune() tests whether it is safe to forward prune a move. Only
2013 // non-tactical moves late in the move list close to the leaves are
2014 // candidates for pruning.
2016 bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d) {
2017 Square mfrom, mto, tfrom, tto;
2019 assert(move_is_ok(m));
2020 assert(threat == MOVE_NONE || move_is_ok(threat));
2021 assert(!move_promotion(m));
2022 assert(!pos.move_is_check(m));
2023 assert(!pos.move_is_capture(m));
2024 assert(!pos.move_is_passed_pawn_push(m));
2025 assert(d >= OnePly);
2027 mfrom = move_from(m);
2028 mto = move_to(m);
2029 tfrom = move_from(threat);
2030 tto = move_to(threat);
2032 // Case 1: Castling moves are never pruned.
2033 if(move_is_castle(m))
2034 return false;
2036 // Case 2: Don't prune moves which move the threatened piece
2037 if(!PruneEscapeMoves && threat != MOVE_NONE && mfrom == tto)
2038 return false;
2040 // Case 3: If the threatened piece has value less than or equal to the
2041 // value of the threatening piece, don't prune move which defend it.
2042 if(!PruneDefendingMoves && threat != MOVE_NONE
2043 && (piece_value_midgame(pos.piece_on(tfrom))
2044 >= piece_value_midgame(pos.piece_on(tto)))
2045 && pos.move_attacks_square(m, tto))
2046 return false;
2048 // Case 4: Don't prune moves with good history.
2049 if(!H.ok_to_prune(pos.piece_on(move_from(m)), m, d))
2050 return false;
2052 // Case 5: If the moving piece in the threatened move is a slider, don't
2053 // prune safe moves which block its ray.
2054 if(!PruneBlockingMoves && threat != MOVE_NONE
2055 && piece_is_slider(pos.piece_on(tfrom))
2056 && bit_is_set(squares_between(tfrom, tto), mto) && pos.see(m) >= 0)
2057 return false;
2059 return true;
2063 // ok_to_use_TT() returns true if a transposition table score
2064 // can be used at a given point in search.
2066 bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
2068 Value v = value_from_tt(tte->value(), ply);
2070 return ( tte->depth() >= depth
2071 || v >= Max(value_mate_in(100), beta)
2072 || v < Min(value_mated_in(100), beta))
2074 && ( (is_lower_bound(tte->type()) && v >= beta)
2075 || (is_upper_bound(tte->type()) && v < beta));
2079 // ok_to_history() returns true if a move m can be stored
2080 // in history. Should be a non capturing move.
2082 bool ok_to_history(const Position& pos, Move m) {
2084 return pos.square_is_empty(move_to(m))
2085 && !move_promotion(m)
2086 && !move_is_ep(m);
2090 // update_history() registers a good move that produced a beta-cutoff
2091 // in history and marks as failures all the other moves of that ply.
2093 void update_history(const Position& pos, Move m, Depth depth,
2094 Move movesSearched[], int moveCount) {
2096 H.success(pos.piece_on(move_from(m)), m, depth);
2098 for (int i = 0; i < moveCount - 1; i++)
2099 if (ok_to_history(pos, movesSearched[i]) && m != movesSearched[i])
2100 H.failure(pos.piece_on(move_from(movesSearched[i])), movesSearched[i]);
2103 // fail_high_ply_1() checks if some thread is currently resolving a fail
2104 // high at ply 1 at the node below the first root node. This information
2105 // is used for time managment.
2107 bool fail_high_ply_1() {
2108 for(int i = 0; i < ActiveThreads; i++)
2109 if(Threads[i].failHighPly1)
2110 return true;
2111 return false;
2115 // current_search_time() returns the number of milliseconds which have passed
2116 // since the beginning of the current search.
2118 int current_search_time() {
2119 return get_system_time() - SearchStartTime;
2123 // nps() computes the current nodes/second count.
2125 int nps() {
2126 int t = current_search_time();
2127 return (t > 0)? int((nodes_searched() * 1000) / t) : 0;
2131 // poll() performs two different functions: It polls for user input, and it
2132 // looks at the time consumed so far and decides if it's time to abort the
2133 // search.
2135 void poll() {
2137 static int lastInfoTime;
2138 int t = current_search_time();
2140 // Poll for input
2141 if (Bioskey())
2143 // We are line oriented, don't read single chars
2144 std::string command;
2145 if (!std::getline(std::cin, command))
2146 command = "quit";
2148 if (command == "quit")
2150 AbortSearch = true;
2151 PonderSearch = false;
2152 Quit = true;
2154 else if(command == "stop")
2156 AbortSearch = true;
2157 PonderSearch = false;
2159 else if(command == "ponderhit")
2160 ponderhit();
2162 // Print search information
2163 if (t < 1000)
2164 lastInfoTime = 0;
2166 else if (lastInfoTime > t)
2167 // HACK: Must be a new search where we searched less than
2168 // NodesBetweenPolls nodes during the first second of search.
2169 lastInfoTime = 0;
2171 else if (t - lastInfoTime >= 1000)
2173 lastInfoTime = t;
2174 lock_grab(&IOLock);
2175 std::cout << "info nodes " << nodes_searched() << " nps " << nps()
2176 << " time " << t << " hashfull " << TT.full() << std::endl;
2177 lock_release(&IOLock);
2178 if (ShowCurrentLine)
2179 Threads[0].printCurrentLine = true;
2181 // Should we stop the search?
2182 if (PonderSearch)
2183 return;
2185 bool overTime = t > AbsoluteMaxSearchTime
2186 || (RootMoveNumber == 1 && t > MaxSearchTime + ExtraSearchTime)
2187 || ( !FailHigh && !fail_high_ply_1() && !Problem
2188 && t > 6*(MaxSearchTime + ExtraSearchTime));
2190 if ( (Iteration >= 2 && (!InfiniteSearch && overTime))
2191 || (ExactMaxTime && t >= ExactMaxTime)
2192 || (Iteration >= 3 && MaxNodes && nodes_searched() >= MaxNodes))
2193 AbortSearch = true;
2197 // ponderhit() is called when the program is pondering (i.e. thinking while
2198 // it's the opponent's turn to move) in order to let the engine know that
2199 // it correctly predicted the opponent's move.
2201 void ponderhit() {
2202 int t = current_search_time();
2203 PonderSearch = false;
2204 if(Iteration >= 2 &&
2205 (!InfiniteSearch && (StopOnPonderhit ||
2206 t > AbsoluteMaxSearchTime ||
2207 (RootMoveNumber == 1 &&
2208 t > MaxSearchTime + ExtraSearchTime) ||
2209 (!FailHigh && !fail_high_ply_1() && !Problem &&
2210 t > 6*(MaxSearchTime + ExtraSearchTime)))))
2211 AbortSearch = true;
2215 // print_current_line() prints the current line of search for a given
2216 // thread. Called when the UCI option UCI_ShowCurrLine is 'true'.
2218 void print_current_line(SearchStack ss[], int ply, int threadID) {
2219 assert(ply >= 0 && ply < PLY_MAX);
2220 assert(threadID >= 0 && threadID < ActiveThreads);
2222 if(!Threads[threadID].idle) {
2223 lock_grab(&IOLock);
2224 std::cout << "info currline " << (threadID + 1);
2225 for(int p = 0; p < ply; p++)
2226 std::cout << " " << ss[p].currentMove;
2227 std::cout << std::endl;
2228 lock_release(&IOLock);
2230 Threads[threadID].printCurrentLine = false;
2231 if(threadID + 1 < ActiveThreads)
2232 Threads[threadID + 1].printCurrentLine = true;
2236 // wait_for_stop_or_ponderhit() is called when the maximum depth is reached
2237 // while the program is pondering. The point is to work around a wrinkle in
2238 // the UCI protocol: When pondering, the engine is not allowed to give a
2239 // "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
2240 // We simply wait here until one of these commands is sent, and return,
2241 // after which the bestmove and pondermove will be printed (in id_loop()).
2243 void wait_for_stop_or_ponderhit() {
2244 std::string command;
2246 while(true) {
2247 if(!std::getline(std::cin, command))
2248 command = "quit";
2250 if(command == "quit") {
2251 OpeningBook.close();
2252 stop_threads();
2253 quit_eval();
2254 exit(0);
2256 else if(command == "ponderhit" || command == "stop")
2257 break;
2262 // idle_loop() is where the threads are parked when they have no work to do.
2263 // The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint
2264 // object for which the current thread is the master.
2266 void idle_loop(int threadID, SplitPoint *waitSp) {
2267 assert(threadID >= 0 && threadID < THREAD_MAX);
2269 Threads[threadID].running = true;
2271 while(true) {
2272 if(AllThreadsShouldExit && threadID != 0)
2273 break;
2275 // If we are not thinking, wait for a condition to be signaled instead
2276 // of wasting CPU time polling for work:
2277 while(threadID != 0 && (Idle || threadID >= ActiveThreads)) {
2278 #if !defined(_MSC_VER)
2279 pthread_mutex_lock(&WaitLock);
2280 if(Idle || threadID >= ActiveThreads)
2281 pthread_cond_wait(&WaitCond, &WaitLock);
2282 pthread_mutex_unlock(&WaitLock);
2283 #else
2284 WaitForSingleObject(SitIdleEvent[threadID], INFINITE);
2285 #endif
2288 // If this thread has been assigned work, launch a search:
2289 if(Threads[threadID].workIsWaiting) {
2290 Threads[threadID].workIsWaiting = false;
2291 if(Threads[threadID].splitPoint->pvNode)
2292 sp_search_pv(Threads[threadID].splitPoint, threadID);
2293 else
2294 sp_search(Threads[threadID].splitPoint, threadID);
2295 Threads[threadID].idle = true;
2298 // If this thread is the master of a split point and all threads have
2299 // finished their work at this split point, return from the idle loop:
2300 if(waitSp != NULL && waitSp->cpus == 0)
2301 return;
2304 Threads[threadID].running = false;
2308 // init_split_point_stack() is called during program initialization, and
2309 // initializes all split point objects.
2311 void init_split_point_stack() {
2312 for(int i = 0; i < THREAD_MAX; i++)
2313 for(int j = 0; j < MaxActiveSplitPoints; j++) {
2314 SplitPointStack[i][j].parent = NULL;
2315 lock_init(&(SplitPointStack[i][j].lock), NULL);
2320 // destroy_split_point_stack() is called when the program exits, and
2321 // destroys all locks in the precomputed split point objects.
2323 void destroy_split_point_stack() {
2324 for(int i = 0; i < THREAD_MAX; i++)
2325 for(int j = 0; j < MaxActiveSplitPoints; j++)
2326 lock_destroy(&(SplitPointStack[i][j].lock));
2330 // thread_should_stop() checks whether the thread with a given threadID has
2331 // been asked to stop, directly or indirectly. This can happen if a beta
2332 // cutoff has occured in thre thread's currently active split point, or in
2333 // some ancestor of the current split point.
2335 bool thread_should_stop(int threadID) {
2336 assert(threadID >= 0 && threadID < ActiveThreads);
2338 SplitPoint *sp;
2340 if(Threads[threadID].stop)
2341 return true;
2342 if(ActiveThreads <= 2)
2343 return false;
2344 for(sp = Threads[threadID].splitPoint; sp != NULL; sp = sp->parent)
2345 if(sp->finished) {
2346 Threads[threadID].stop = true;
2347 return true;
2349 return false;
2353 // thread_is_available() checks whether the thread with threadID "slave" is
2354 // available to help the thread with threadID "master" at a split point. An
2355 // obvious requirement is that "slave" must be idle. With more than two
2356 // threads, this is not by itself sufficient: If "slave" is the master of
2357 // some active split point, it is only available as a slave to the other
2358 // threads which are busy searching the split point at the top of "slave"'s
2359 // split point stack (the "helpful master concept" in YBWC terminology).
2361 bool thread_is_available(int slave, int master) {
2362 assert(slave >= 0 && slave < ActiveThreads);
2363 assert(master >= 0 && master < ActiveThreads);
2364 assert(ActiveThreads > 1);
2366 if(!Threads[slave].idle || slave == master)
2367 return false;
2369 if(Threads[slave].activeSplitPoints == 0)
2370 // No active split points means that the thread is available as a slave
2371 // for any other thread.
2372 return true;
2374 if(ActiveThreads == 2)
2375 return true;
2377 // Apply the "helpful master" concept if possible.
2378 if(SplitPointStack[slave][Threads[slave].activeSplitPoints-1].slaves[master])
2379 return true;
2381 return false;
2385 // idle_thread_exists() tries to find an idle thread which is available as
2386 // a slave for the thread with threadID "master".
2388 bool idle_thread_exists(int master) {
2389 assert(master >= 0 && master < ActiveThreads);
2390 assert(ActiveThreads > 1);
2392 for(int i = 0; i < ActiveThreads; i++)
2393 if(thread_is_available(i, master))
2394 return true;
2395 return false;
2399 // split() does the actual work of distributing the work at a node between
2400 // several threads at PV nodes. If it does not succeed in splitting the
2401 // node (because no idle threads are available, or because we have no unused
2402 // split point objects), the function immediately returns false. If
2403 // splitting is possible, a SplitPoint object is initialized with all the
2404 // data that must be copied to the helper threads (the current position and
2405 // search stack, alpha, beta, the search depth, etc.), and we tell our
2406 // helper threads that they have been assigned work. This will cause them
2407 // to instantly leave their idle loops and call sp_search_pv(). When all
2408 // threads have returned from sp_search_pv (or, equivalently, when
2409 // splitPoint->cpus becomes 0), split() returns true.
2411 bool split(const Position &p, SearchStack *sstck, int ply,
2412 Value *alpha, Value *beta, Value *bestValue,
2413 Depth depth, int *moves,
2414 MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode) {
2415 assert(p.is_ok());
2416 assert(sstck != NULL);
2417 assert(ply >= 0 && ply < PLY_MAX);
2418 assert(*bestValue >= -VALUE_INFINITE && *bestValue <= *alpha);
2419 assert(!pvNode || *alpha < *beta);
2420 assert(*beta <= VALUE_INFINITE);
2421 assert(depth > Depth(0));
2422 assert(master >= 0 && master < ActiveThreads);
2423 assert(ActiveThreads > 1);
2425 SplitPoint *splitPoint;
2426 int i;
2428 lock_grab(&MPLock);
2430 // If no other thread is available to help us, or if we have too many
2431 // active split points, don't split:
2432 if(!idle_thread_exists(master) ||
2433 Threads[master].activeSplitPoints >= MaxActiveSplitPoints) {
2434 lock_release(&MPLock);
2435 return false;
2438 // Pick the next available split point object from the split point stack:
2439 splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints;
2440 Threads[master].activeSplitPoints++;
2442 // Initialize the split point object:
2443 splitPoint->parent = Threads[master].splitPoint;
2444 splitPoint->finished = false;
2445 splitPoint->ply = ply;
2446 splitPoint->depth = depth;
2447 splitPoint->alpha = pvNode? *alpha : (*beta - 1);
2448 splitPoint->beta = *beta;
2449 splitPoint->pvNode = pvNode;
2450 splitPoint->dcCandidates = dcCandidates;
2451 splitPoint->bestValue = *bestValue;
2452 splitPoint->master = master;
2453 splitPoint->mp = mp;
2454 splitPoint->moves = *moves;
2455 splitPoint->cpus = 1;
2456 splitPoint->pos.copy(p);
2457 splitPoint->parentSstack = sstck;
2458 for(i = 0; i < ActiveThreads; i++)
2459 splitPoint->slaves[i] = 0;
2461 // Copy the current position and the search stack to the master thread:
2462 memcpy(splitPoint->sstack[master], sstck, (ply+1)*sizeof(SearchStack));
2463 Threads[master].splitPoint = splitPoint;
2465 // Make copies of the current position and search stack for each thread:
2466 for(i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint;
2467 i++)
2468 if(thread_is_available(i, master)) {
2469 memcpy(splitPoint->sstack[i], sstck, (ply+1)*sizeof(SearchStack));
2470 Threads[i].splitPoint = splitPoint;
2471 splitPoint->slaves[i] = 1;
2472 splitPoint->cpus++;
2475 // Tell the threads that they have work to do. This will make them leave
2476 // their idle loop.
2477 for(i = 0; i < ActiveThreads; i++)
2478 if(i == master || splitPoint->slaves[i]) {
2479 Threads[i].workIsWaiting = true;
2480 Threads[i].idle = false;
2481 Threads[i].stop = false;
2484 lock_release(&MPLock);
2486 // Everything is set up. The master thread enters the idle loop, from
2487 // which it will instantly launch a search, because its workIsWaiting
2488 // slot is 'true'. We send the split point as a second parameter to the
2489 // idle loop, which means that the main thread will return from the idle
2490 // loop when all threads have finished their work at this split point
2491 // (i.e. when // splitPoint->cpus == 0).
2492 idle_loop(master, splitPoint);
2494 // We have returned from the idle loop, which means that all threads are
2495 // finished. Update alpha, beta and bestvalue, and return:
2496 lock_grab(&MPLock);
2497 if(pvNode) *alpha = splitPoint->alpha;
2498 *beta = splitPoint->beta;
2499 *bestValue = splitPoint->bestValue;
2500 Threads[master].stop = false;
2501 Threads[master].idle = false;
2502 Threads[master].activeSplitPoints--;
2503 Threads[master].splitPoint = splitPoint->parent;
2504 lock_release(&MPLock);
2506 return true;
2510 // wake_sleeping_threads() wakes up all sleeping threads when it is time
2511 // to start a new search from the root.
2513 void wake_sleeping_threads() {
2514 if(ActiveThreads > 1) {
2515 for(int i = 1; i < ActiveThreads; i++) {
2516 Threads[i].idle = true;
2517 Threads[i].workIsWaiting = false;
2519 #if !defined(_MSC_VER)
2520 pthread_mutex_lock(&WaitLock);
2521 pthread_cond_broadcast(&WaitCond);
2522 pthread_mutex_unlock(&WaitLock);
2523 #else
2524 for(int i = 1; i < THREAD_MAX; i++)
2525 SetEvent(SitIdleEvent[i]);
2526 #endif
2531 // init_thread() is the function which is called when a new thread is
2532 // launched. It simply calls the idle_loop() function with the supplied
2533 // threadID. There are two versions of this function; one for POSIX threads
2534 // and one for Windows threads.
2536 #if !defined(_MSC_VER)
2538 void *init_thread(void *threadID) {
2539 idle_loop(*(int *)threadID, NULL);
2540 return NULL;
2543 #else
2545 DWORD WINAPI init_thread(LPVOID threadID) {
2546 idle_loop(*(int *)threadID, NULL);
2547 return NULL;
2550 #endif