2 * Copyright (c) 2005, Jon Seymour
4 * For more information about epoch theory on which this module is based,
5 * refer to http://blackcubes.dyndns.org/epoch/. That web page defines
6 * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales
7 * for some of the algorithms used here.
12 /* Provides arbitrary precision integers required to accurately represent
14 #include <openssl/bn.h>
25 #define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next)
27 static BN_CTX
*context
= NULL
;
28 static struct fraction
*one
= NULL
;
29 static struct fraction
*zero
= NULL
;
31 static BN_CTX
*get_BN_CTX()
34 context
= BN_CTX_new();
39 static struct fraction
*new_zero()
41 struct fraction
*result
= xmalloc(sizeof(*result
));
42 BN_init(&result
->numerator
);
43 BN_init(&result
->denominator
);
44 BN_zero(&result
->numerator
);
45 BN_one(&result
->denominator
);
49 static void clear_fraction(struct fraction
*fraction
)
51 BN_clear(&fraction
->numerator
);
52 BN_clear(&fraction
->denominator
);
55 static struct fraction
*divide(struct fraction
*result
, struct fraction
*fraction
, int divisor
)
60 BN_set_word(&bn_divisor
, divisor
);
62 BN_copy(&result
->numerator
, &fraction
->numerator
);
63 BN_mul(&result
->denominator
, &fraction
->denominator
, &bn_divisor
, get_BN_CTX());
65 BN_clear(&bn_divisor
);
69 static struct fraction
*init_fraction(struct fraction
*fraction
)
71 BN_init(&fraction
->numerator
);
72 BN_init(&fraction
->denominator
);
73 BN_zero(&fraction
->numerator
);
74 BN_one(&fraction
->denominator
);
78 static struct fraction
*get_one()
82 BN_one(&one
->numerator
);
87 static struct fraction
*get_zero()
95 static struct fraction
*copy(struct fraction
*to
, struct fraction
*from
)
97 BN_copy(&to
->numerator
, &from
->numerator
);
98 BN_copy(&to
->denominator
, &from
->denominator
);
102 static struct fraction
*add(struct fraction
*result
, struct fraction
*left
, struct fraction
*right
)
110 BN_mul(&a
, &left
->numerator
, &right
->denominator
, get_BN_CTX());
111 BN_mul(&b
, &left
->denominator
, &right
->numerator
, get_BN_CTX());
112 BN_mul(&result
->denominator
, &left
->denominator
, &right
->denominator
, get_BN_CTX());
113 BN_add(&result
->numerator
, &a
, &b
);
115 BN_gcd(&gcd
, &result
->denominator
, &result
->numerator
, get_BN_CTX());
116 BN_div(&result
->denominator
, NULL
, &result
->denominator
, &gcd
, get_BN_CTX());
117 BN_div(&result
->numerator
, NULL
, &result
->numerator
, &gcd
, get_BN_CTX());
126 static int compare(struct fraction
*left
, struct fraction
*right
)
134 BN_mul(&a
, &left
->numerator
, &right
->denominator
, get_BN_CTX());
135 BN_mul(&b
, &left
->denominator
, &right
->numerator
, get_BN_CTX());
137 result
= BN_cmp(&a
, &b
);
145 struct mass_counter
{
146 struct fraction seen
;
147 struct fraction pending
;
150 static struct mass_counter
*new_mass_counter(struct commit
*commit
, struct fraction
*pending
)
152 struct mass_counter
*mass_counter
= xmalloc(sizeof(*mass_counter
));
153 memset(mass_counter
, 0, sizeof(*mass_counter
));
155 init_fraction(&mass_counter
->seen
);
156 init_fraction(&mass_counter
->pending
);
158 copy(&mass_counter
->pending
, pending
);
159 copy(&mass_counter
->seen
, get_zero());
161 if (commit
->object
.util
) {
162 die("multiple attempts to initialize mass counter for %s",
163 sha1_to_hex(commit
->object
.sha1
));
166 commit
->object
.util
= mass_counter
;
171 static void free_mass_counter(struct mass_counter
*counter
)
173 clear_fraction(&counter
->seen
);
174 clear_fraction(&counter
->pending
);
179 * Finds the base commit of a list of commits.
181 * One property of the commit being searched for is that every commit reachable
182 * from the base commit is reachable from the commits in the starting list only
183 * via paths that include the base commit.
185 * This algorithm uses a conservation of mass approach to find the base commit.
187 * We start by injecting one unit of mass into the graph at each
188 * of the commits in the starting list. Injecting mass into a commit
189 * is achieved by adding to its pending mass counter and, if it is not already
190 * enqueued, enqueuing the commit in a list of pending commits, in latest
191 * commit date first order.
193 * The algorithm then preceeds to visit each commit in the pending queue.
194 * Upon each visit, the pending mass is added to the mass already seen for that
195 * commit and then divided into N equal portions, where N is the number of
196 * parents of the commit being visited. The divided portions are then injected
197 * into each of the parents.
199 * The algorithm continues until we discover a commit which has seen all the
200 * mass originally injected or until we run out of things to do.
202 * If we find a commit that has seen all the original mass, we have found
203 * the common base of all the commits in the starting list.
205 * The algorithm does _not_ depend on accurate timestamps for correct operation.
206 * However, reasonably sane (e.g. non-random) timestamps are required in order
207 * to prevent an exponential performance characteristic. The occasional
208 * timestamp inaccuracy will not dramatically affect performance but may
209 * result in more nodes being processed than strictly necessary.
211 * This procedure sets *boundary to the address of the base commit. It returns
212 * non-zero if, and only if, there was a problem parsing one of the
213 * commits discovered during the traversal.
215 static int find_base_for_list(struct commit_list
*list
, struct commit
**boundary
)
218 struct commit_list
*cleaner
= NULL
;
219 struct commit_list
*pending
= NULL
;
220 struct fraction injected
;
221 init_fraction(&injected
);
224 for (; list
; list
= list
->next
) {
225 struct commit
*item
= list
->item
;
227 if (item
->object
.util
) {
228 die("%s:%d:%s: logic error: this should not have happened - commit %s",
229 __FILE__
, __LINE__
, __FUNCTION__
,
230 sha1_to_hex(item
->object
.sha1
));
233 new_mass_counter(list
->item
, get_one());
234 add(&injected
, &injected
, get_one());
236 commit_list_insert(list
->item
, &cleaner
);
237 commit_list_insert(list
->item
, &pending
);
240 while (!*boundary
&& pending
&& !ret
) {
241 struct commit
*latest
= pop_commit(&pending
);
242 struct mass_counter
*latest_node
= (struct mass_counter
*) latest
->object
.util
;
245 if ((ret
= parse_commit(latest
)))
247 add(&latest_node
->seen
, &latest_node
->seen
, &latest_node
->pending
);
249 num_parents
= count_parents(latest
);
251 struct fraction distribution
;
252 struct commit_list
*parents
;
254 divide(init_fraction(&distribution
), &latest_node
->pending
, num_parents
);
256 for (parents
= latest
->parents
; parents
; parents
= parents
->next
) {
257 struct commit
*parent
= parents
->item
;
258 struct mass_counter
*parent_node
= (struct mass_counter
*) parent
->object
.util
;
261 parent_node
= new_mass_counter(parent
, &distribution
);
262 insert_by_date(&pending
, parent
);
263 commit_list_insert(parent
, &cleaner
);
265 if (!compare(&parent_node
->pending
, get_zero()))
266 insert_by_date(&pending
, parent
);
267 add(&parent_node
->pending
, &parent_node
->pending
, &distribution
);
271 clear_fraction(&distribution
);
274 if (!compare(&latest_node
->seen
, &injected
))
276 copy(&latest_node
->pending
, get_zero());
280 struct commit
*next
= pop_commit(&cleaner
);
281 free_mass_counter((struct mass_counter
*) next
->object
.util
);
282 next
->object
.util
= NULL
;
286 free_commit_list(pending
);
288 clear_fraction(&injected
);
294 * Finds the base of an minimal, non-linear epoch, headed at head, by
295 * applying the find_base_for_list to a list consisting of the parents
297 static int find_base(struct commit
*head
, struct commit
**boundary
)
300 struct commit_list
*pending
= NULL
;
301 struct commit_list
*next
;
303 for (next
= head
->parents
; next
; next
= next
->next
) {
304 commit_list_insert(next
->item
, &pending
);
306 ret
= find_base_for_list(pending
, boundary
);
307 free_commit_list(pending
);
313 * This procedure traverses to the boundary of the first epoch in the epoch
314 * sequence of the epoch headed at head_of_epoch. This is either the end of
315 * the maximal linear epoch or the base of a minimal non-linear epoch.
317 * The queue of pending nodes is sorted in reverse date order and each node
318 * is currently in the queue at most once.
320 static int find_next_epoch_boundary(struct commit
*head_of_epoch
, struct commit
**boundary
)
323 struct commit
*item
= head_of_epoch
;
325 ret
= parse_commit(item
);
329 if (HAS_EXACTLY_ONE_PARENT(item
)) {
331 * We are at the start of a maximimal linear epoch.
332 * Traverse to the end.
334 while (HAS_EXACTLY_ONE_PARENT(item
) && !ret
) {
335 item
= item
->parents
->item
;
336 ret
= parse_commit(item
);
342 * Otherwise, we are at the start of a minimal, non-linear
343 * epoch - find the common base of all parents.
345 ret
= find_base(item
, boundary
);
352 * Returns non-zero if parent is known to be a parent of child.
354 static int is_parent_of(struct commit
*parent
, struct commit
*child
)
356 struct commit_list
*parents
;
357 for (parents
= child
->parents
; parents
; parents
= parents
->next
) {
358 if (!memcmp(parent
->object
.sha1
, parents
->item
->object
.sha1
,
359 sizeof(parents
->item
->object
.sha1
)))
366 * Pushes an item onto the merge order stack. If the top of the stack is
367 * marked as being a possible "break", we check to see whether it actually
370 static void push_onto_merge_order_stack(struct commit_list
**stack
, struct commit
*item
)
372 struct commit_list
*top
= *stack
;
373 if (top
&& (top
->item
->object
.flags
& DISCONTINUITY
)) {
374 if (is_parent_of(top
->item
, item
)) {
375 top
->item
->object
.flags
&= ~DISCONTINUITY
;
378 commit_list_insert(item
, stack
);
382 * Marks all interesting, visited commits reachable from this commit
383 * as uninteresting. We stop recursing when we reach the epoch boundary,
384 * an unvisited node or a node that has already been marking uninteresting.
386 * This doesn't actually mark all ancestors between the start node and the
387 * epoch boundary uninteresting, but does ensure that they will eventually
388 * be marked uninteresting when the main sort_first_epoch() traversal
389 * eventually reaches them.
391 static void mark_ancestors_uninteresting(struct commit
*commit
)
393 unsigned int flags
= commit
->object
.flags
;
394 int visited
= flags
& VISITED
;
395 int boundary
= flags
& BOUNDARY
;
396 int uninteresting
= flags
& UNINTERESTING
;
397 struct commit_list
*next
;
399 commit
->object
.flags
|= UNINTERESTING
;
402 * We only need to recurse if
403 * we are not on the boundary and
404 * we have not already been marked uninteresting and
405 * we have already been visited.
407 * The main sort_first_epoch traverse will mark unreachable
408 * all uninteresting, unvisited parents as they are visited
409 * so there is no need to duplicate that traversal here.
411 * Similarly, if we are already marked uninteresting
412 * then either all ancestors have already been marked
413 * uninteresting or will be once the sort_first_epoch
414 * traverse reaches them.
417 if (uninteresting
|| boundary
|| !visited
)
420 for (next
= commit
->parents
; next
; next
= next
->next
)
421 mark_ancestors_uninteresting(next
->item
);
425 * Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head
428 static void sort_first_epoch(struct commit
*head
, struct commit_list
**stack
)
430 struct commit_list
*parents
;
431 struct commit_list
*reversed_parents
= NULL
;
433 head
->object
.flags
|= VISITED
;
436 * parse_commit() builds the parent list in reverse order with respect
437 * to the order of the git-commit-tree arguments. So we need to reverse
438 * this list to output the oldest (or most "local") commits last.
440 for (parents
= head
->parents
; parents
; parents
= parents
->next
)
441 commit_list_insert(parents
->item
, &reversed_parents
);
444 * TODO: By sorting the parents in a different order, we can alter the
445 * merge order to show contemporaneous changes in parallel branches
446 * occurring after "local" changes. This is useful for a developer
447 * when a developer wants to see all changes that were incorporated
448 * into the same merge as her own changes occur after her own
452 while (reversed_parents
) {
453 struct commit
*parent
= pop_commit(&reversed_parents
);
455 if (head
->object
.flags
& UNINTERESTING
) {
457 * Propagates the uninteresting bit to all parents.
458 * if we have already visited this parent, then
459 * the uninteresting bit will be propagated to each
460 * reachable commit that is still not marked
461 * uninteresting and won't otherwise be reached.
463 mark_ancestors_uninteresting(parent
);
466 if (!(parent
->object
.flags
& VISITED
)) {
467 if (parent
->object
.flags
& BOUNDARY
) {
469 die("something else is on the stack - %s",
470 sha1_to_hex((*stack
)->item
->object
.sha1
));
472 push_onto_merge_order_stack(stack
, parent
);
473 parent
->object
.flags
|= VISITED
;
476 sort_first_epoch(parent
, stack
);
477 if (reversed_parents
) {
479 * This indicates a possible
480 * discontinuity it may not be be
481 * actual discontinuity if the head
482 * of parent N happens to be the tail
485 * The next push onto the stack will
486 * resolve the question.
488 (*stack
)->item
->object
.flags
|= DISCONTINUITY
;
494 push_onto_merge_order_stack(stack
, head
);
498 * Emit the contents of the stack.
500 * The stack is freed and replaced by NULL.
502 * Sets the return value to STOP if no further output should be generated.
504 static int emit_stack(struct commit_list
**stack
, emitter_func emitter
)
506 unsigned int seen
= 0;
507 int action
= CONTINUE
;
509 while (*stack
&& (action
!= STOP
)) {
510 struct commit
*next
= pop_commit(stack
);
511 seen
|= next
->object
.flags
;
513 action
= (*emitter
) (next
);
517 free_commit_list(*stack
);
521 return (action
== STOP
|| (seen
& UNINTERESTING
)) ? STOP
: CONTINUE
;
525 * Sorts an arbitrary epoch into merge order by sorting each epoch
526 * of its epoch sequence into order.
528 * Note: this algorithm currently leaves traces of its execution in the
529 * object flags of nodes it discovers. This should probably be fixed.
531 static int sort_in_merge_order(struct commit
*head_of_epoch
, emitter_func emitter
)
533 struct commit
*next
= head_of_epoch
;
535 int action
= CONTINUE
;
537 ret
= parse_commit(head_of_epoch
);
539 while (next
&& next
->parents
&& !ret
&& (action
!= STOP
)) {
540 struct commit
*base
= NULL
;
542 ret
= find_next_epoch_boundary(next
, &base
);
545 next
->object
.flags
|= BOUNDARY
;
547 base
->object
.flags
|= BOUNDARY
;
549 if (HAS_EXACTLY_ONE_PARENT(next
)) {
550 while (HAS_EXACTLY_ONE_PARENT(next
)
553 if (next
->object
.flags
& UNINTERESTING
) {
556 action
= (*emitter
) (next
);
558 if (action
!= STOP
) {
559 next
= next
->parents
->item
;
560 ret
= parse_commit(next
);
565 struct commit_list
*stack
= NULL
;
566 sort_first_epoch(next
, &stack
);
567 action
= emit_stack(&stack
, emitter
);
572 if (next
&& (action
!= STOP
) && !ret
) {
580 * Sorts the nodes reachable from a starting list in merge order, we
581 * first find the base for the starting list and then sort all nodes
582 * in this subgraph using the sort_first_epoch algorithm. Once we have
583 * reached the base we can continue sorting using sort_in_merge_order.
585 int sort_list_in_merge_order(struct commit_list
*list
, emitter_func emitter
)
587 struct commit_list
*stack
= NULL
;
590 int action
= CONTINUE
;
591 struct commit_list
*reversed
= NULL
;
593 for (; list
; list
= list
->next
) {
594 struct commit
*next
= list
->item
;
596 if (!(next
->object
.flags
& UNINTERESTING
)) {
597 if (next
->object
.flags
& DUPCHECK
) {
598 fprintf(stderr
, "%s: duplicate commit %s ignored\n",
599 __FUNCTION__
, sha1_to_hex(next
->object
.sha1
));
601 next
->object
.flags
|= DUPCHECK
;
602 commit_list_insert(list
->item
, &reversed
);
607 if (!reversed
->next
) {
609 * If there is only one element in the list, we can sort it
610 * using sort_in_merge_order.
612 base
= reversed
->item
;
615 * Otherwise, we search for the base of the list.
617 ret
= find_base_for_list(reversed
, &base
);
621 base
->object
.flags
|= BOUNDARY
;
624 sort_first_epoch(pop_commit(&reversed
), &stack
);
627 * If we have more commits to push, then the
628 * first push for the next parent may (or may
629 * not) represent a discontinuity with respect
630 * to the parent currently on the top of
633 * Mark it for checking here, and check it
634 * with the next push. See sort_first_epoch()
637 stack
->item
->object
.flags
|= DISCONTINUITY
;
641 action
= emit_stack(&stack
, emitter
);
644 if (base
&& (action
!= STOP
)) {
645 ret
= sort_in_merge_order(base
, emitter
);