8 #include "string-list.h"
12 * Use a non-balancing simple 16-tree structure with struct int_node as
13 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
14 * 16-array of pointers to its children.
15 * The bottom 2 bits of each pointer is used to identify the pointer type
16 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
17 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
18 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
19 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
21 * The root node is a statically allocated struct int_node.
28 * Leaf nodes come in two variants, note entries and subtree entries,
29 * distinguished by the LSb of the leaf node pointer (see above).
30 * As a note entry, the key is the SHA1 of the referenced object, and the
31 * value is the SHA1 of the note object.
32 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
33 * referenced object, using the last byte of the key to store the length of
34 * the prefix. The value is the SHA1 of the tree object containing the notes
38 unsigned char key_sha1
[20];
39 unsigned char val_sha1
[20];
43 * A notes tree may contain entries that are not notes, and that do not follow
44 * the naming conventions of notes. There are typically none/few of these, but
45 * we still need to keep track of them. Keep a simple linked list sorted alpha-
46 * betically on the non-note path. The list is populated when parsing tree
47 * objects in load_subtree(), and the non-notes are correctly written back into
48 * the tree objects produced by write_notes_tree().
51 struct non_note
*next
; /* grounded (last->next == NULL) */
54 unsigned char sha1
[20];
57 #define PTR_TYPE_NULL 0
58 #define PTR_TYPE_INTERNAL 1
59 #define PTR_TYPE_NOTE 2
60 #define PTR_TYPE_SUBTREE 3
62 #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
63 #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
64 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
66 #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
68 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
69 (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
71 struct notes_tree default_notes_tree
;
73 static struct string_list display_notes_refs
;
74 static struct notes_tree
**display_notes_trees
;
76 static void load_subtree(struct notes_tree
*t
, struct leaf_node
*subtree
,
77 struct int_node
*node
, unsigned int n
);
80 * Search the tree until the appropriate location for the given key is found:
81 * 1. Start at the root node, with n = 0
82 * 2. If a[0] at the current level is a matching subtree entry, unpack that
83 * subtree entry and remove it; restart search at the current level.
84 * 3. Use the nth nibble of the key as an index into a:
85 * - If a[n] is an int_node, recurse from #2 into that node and increment n
86 * - If a matching subtree entry, unpack that subtree entry (and remove it);
87 * restart search at the current level.
88 * - Otherwise, we have found one of the following:
89 * - a subtree entry which does not match the key
90 * - a note entry which may or may not match the key
91 * - an unused leaf node (NULL)
92 * In any case, set *tree and *n, and return pointer to the tree location.
94 static void **note_tree_search(struct notes_tree
*t
, struct int_node
**tree
,
95 unsigned char *n
, const unsigned char *key_sha1
)
99 void *p
= (*tree
)->a
[0];
101 if (GET_PTR_TYPE(p
) == PTR_TYPE_SUBTREE
) {
102 l
= (struct leaf_node
*) CLR_PTR_TYPE(p
);
103 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1
, l
->key_sha1
)) {
104 /* unpack tree and resume search */
105 (*tree
)->a
[0] = NULL
;
106 load_subtree(t
, l
, *tree
, *n
);
108 return note_tree_search(t
, tree
, n
, key_sha1
);
112 i
= GET_NIBBLE(*n
, key_sha1
);
114 switch (GET_PTR_TYPE(p
)) {
115 case PTR_TYPE_INTERNAL
:
116 *tree
= CLR_PTR_TYPE(p
);
118 return note_tree_search(t
, tree
, n
, key_sha1
);
119 case PTR_TYPE_SUBTREE
:
120 l
= (struct leaf_node
*) CLR_PTR_TYPE(p
);
121 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1
, l
->key_sha1
)) {
122 /* unpack tree and resume search */
123 (*tree
)->a
[i
] = NULL
;
124 load_subtree(t
, l
, *tree
, *n
);
126 return note_tree_search(t
, tree
, n
, key_sha1
);
130 return &((*tree
)->a
[i
]);
135 * To find a leaf_node:
136 * Search to the tree location appropriate for the given key:
137 * If a note entry with matching key, return the note entry, else return NULL.
139 static struct leaf_node
*note_tree_find(struct notes_tree
*t
,
140 struct int_node
*tree
, unsigned char n
,
141 const unsigned char *key_sha1
)
143 void **p
= note_tree_search(t
, &tree
, &n
, key_sha1
);
144 if (GET_PTR_TYPE(*p
) == PTR_TYPE_NOTE
) {
145 struct leaf_node
*l
= (struct leaf_node
*) CLR_PTR_TYPE(*p
);
146 if (!hashcmp(key_sha1
, l
->key_sha1
))
153 * To insert a leaf_node:
154 * Search to the tree location appropriate for the given leaf_node's key:
155 * - If location is unused (NULL), store the tweaked pointer directly there
156 * - If location holds a note entry that matches the note-to-be-inserted, then
157 * combine the two notes (by calling the given combine_notes function).
158 * - If location holds a note entry that matches the subtree-to-be-inserted,
159 * then unpack the subtree-to-be-inserted into the location.
160 * - If location holds a matching subtree entry, unpack the subtree at that
161 * location, and restart the insert operation from that level.
162 * - Else, create a new int_node, holding both the node-at-location and the
163 * node-to-be-inserted, and store the new int_node into the location.
165 static void note_tree_insert(struct notes_tree
*t
, struct int_node
*tree
,
166 unsigned char n
, struct leaf_node
*entry
, unsigned char type
,
167 combine_notes_fn combine_notes
)
169 struct int_node
*new_node
;
171 void **p
= note_tree_search(t
, &tree
, &n
, entry
->key_sha1
);
173 assert(GET_PTR_TYPE(entry
) == 0); /* no type bits set */
174 l
= (struct leaf_node
*) CLR_PTR_TYPE(*p
);
175 switch (GET_PTR_TYPE(*p
)) {
178 *p
= SET_PTR_TYPE(entry
, type
);
183 if (!hashcmp(l
->key_sha1
, entry
->key_sha1
)) {
184 /* skip concatenation if l == entry */
185 if (!hashcmp(l
->val_sha1
, entry
->val_sha1
))
188 if (combine_notes(l
->val_sha1
, entry
->val_sha1
))
189 die("failed to combine notes %s and %s"
191 sha1_to_hex(l
->val_sha1
),
192 sha1_to_hex(entry
->val_sha1
),
193 sha1_to_hex(l
->key_sha1
));
198 case PTR_TYPE_SUBTREE
:
199 if (!SUBTREE_SHA1_PREFIXCMP(l
->key_sha1
,
202 load_subtree(t
, entry
, tree
, n
);
209 case PTR_TYPE_SUBTREE
:
210 if (!SUBTREE_SHA1_PREFIXCMP(entry
->key_sha1
, l
->key_sha1
)) {
211 /* unpack 'l' and restart insert */
213 load_subtree(t
, l
, tree
, n
);
215 note_tree_insert(t
, tree
, n
, entry
, type
,
222 /* non-matching leaf_node */
223 assert(GET_PTR_TYPE(*p
) == PTR_TYPE_NOTE
||
224 GET_PTR_TYPE(*p
) == PTR_TYPE_SUBTREE
);
225 new_node
= (struct int_node
*) xcalloc(sizeof(struct int_node
), 1);
226 note_tree_insert(t
, new_node
, n
+ 1, l
, GET_PTR_TYPE(*p
),
228 *p
= SET_PTR_TYPE(new_node
, PTR_TYPE_INTERNAL
);
229 note_tree_insert(t
, new_node
, n
+ 1, entry
, type
, combine_notes
);
233 * How to consolidate an int_node:
234 * If there are > 1 non-NULL entries, give up and return non-zero.
235 * Otherwise replace the int_node at the given index in the given parent node
236 * with the only entry (or a NULL entry if no entries) from the given tree,
239 static int note_tree_consolidate(struct int_node
*tree
,
240 struct int_node
*parent
, unsigned char index
)
245 assert(tree
&& parent
);
246 assert(CLR_PTR_TYPE(parent
->a
[index
]) == tree
);
248 for (i
= 0; i
< 16; i
++) {
249 if (GET_PTR_TYPE(tree
->a
[i
]) != PTR_TYPE_NULL
) {
250 if (p
) /* more than one entry */
256 /* replace tree with p in parent[index] */
257 parent
->a
[index
] = p
;
263 * To remove a leaf_node:
264 * Search to the tree location appropriate for the given leaf_node's key:
265 * - If location does not hold a matching entry, abort and do nothing.
266 * - Copy the matching entry's value into the given entry.
267 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
268 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
270 static void note_tree_remove(struct notes_tree
*t
,
271 struct int_node
*tree
, unsigned char n
,
272 struct leaf_node
*entry
)
275 struct int_node
*parent_stack
[20];
277 void **p
= note_tree_search(t
, &tree
, &n
, entry
->key_sha1
);
279 assert(GET_PTR_TYPE(entry
) == 0); /* no type bits set */
280 if (GET_PTR_TYPE(*p
) != PTR_TYPE_NOTE
)
281 return; /* type mismatch, nothing to remove */
282 l
= (struct leaf_node
*) CLR_PTR_TYPE(*p
);
283 if (hashcmp(l
->key_sha1
, entry
->key_sha1
))
284 return; /* key mismatch, nothing to remove */
286 /* we have found a matching entry */
287 hashcpy(entry
->val_sha1
, l
->val_sha1
);
289 *p
= SET_PTR_TYPE(NULL
, PTR_TYPE_NULL
);
291 /* consolidate this tree level, and parent levels, if possible */
293 return; /* cannot consolidate top level */
294 /* first, build stack of ancestors between root and current node */
295 parent_stack
[0] = t
->root
;
296 for (i
= 0; i
< n
; i
++) {
297 j
= GET_NIBBLE(i
, entry
->key_sha1
);
298 parent_stack
[i
+ 1] = CLR_PTR_TYPE(parent_stack
[i
]->a
[j
]);
300 assert(i
== n
&& parent_stack
[i
] == tree
);
301 /* next, unwind stack until note_tree_consolidate() is done */
303 !note_tree_consolidate(parent_stack
[i
], parent_stack
[i
- 1],
304 GET_NIBBLE(i
- 1, entry
->key_sha1
)))
308 /* Free the entire notes data contained in the given tree */
309 static void note_tree_free(struct int_node
*tree
)
312 for (i
= 0; i
< 16; i
++) {
313 void *p
= tree
->a
[i
];
314 switch (GET_PTR_TYPE(p
)) {
315 case PTR_TYPE_INTERNAL
:
316 note_tree_free(CLR_PTR_TYPE(p
));
319 case PTR_TYPE_SUBTREE
:
320 free(CLR_PTR_TYPE(p
));
326 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
327 * - hex - Partial SHA1 segment in ASCII hex format
328 * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40
329 * - sha1 - Partial SHA1 value is written here
330 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
331 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
332 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
333 * Pads sha1 with NULs up to sha1_len (not included in returned length).
335 static int get_sha1_hex_segment(const char *hex
, unsigned int hex_len
,
336 unsigned char *sha1
, unsigned int sha1_len
)
338 unsigned int i
, len
= hex_len
>> 1;
339 if (hex_len
% 2 != 0 || len
> sha1_len
)
341 for (i
= 0; i
< len
; i
++) {
342 unsigned int val
= (hexval(hex
[0]) << 4) | hexval(hex
[1]);
348 for (; i
< sha1_len
; i
++)
353 static int non_note_cmp(const struct non_note
*a
, const struct non_note
*b
)
355 return strcmp(a
->path
, b
->path
);
358 static void add_non_note(struct notes_tree
*t
, const char *path
,
359 unsigned int mode
, const unsigned char *sha1
)
361 struct non_note
*p
= t
->prev_non_note
, *n
;
362 n
= (struct non_note
*) xmalloc(sizeof(struct non_note
));
364 n
->path
= xstrdup(path
);
366 hashcpy(n
->sha1
, sha1
);
367 t
->prev_non_note
= n
;
369 if (!t
->first_non_note
) {
370 t
->first_non_note
= n
;
374 if (non_note_cmp(p
, n
) < 0)
376 else if (non_note_cmp(t
->first_non_note
, n
) <= 0)
377 p
= t
->first_non_note
;
379 /* n sorts before t->first_non_note */
380 n
->next
= t
->first_non_note
;
381 t
->first_non_note
= n
;
385 /* n sorts equal or after p */
386 while (p
->next
&& non_note_cmp(p
->next
, n
) <= 0)
389 if (non_note_cmp(p
, n
) == 0) { /* n ~= p; overwrite p with n */
390 assert(strcmp(p
->path
, n
->path
) == 0);
392 hashcpy(p
->sha1
, n
->sha1
);
394 t
->prev_non_note
= p
;
398 /* n sorts between p and p->next */
403 static void load_subtree(struct notes_tree
*t
, struct leaf_node
*subtree
,
404 struct int_node
*node
, unsigned int n
)
406 unsigned char object_sha1
[20];
407 unsigned int prefix_len
;
409 struct tree_desc desc
;
410 struct name_entry entry
;
415 buf
= fill_tree_descriptor(&desc
, subtree
->val_sha1
);
417 die("Could not read %s for notes-index",
418 sha1_to_hex(subtree
->val_sha1
));
420 prefix_len
= subtree
->key_sha1
[19];
421 assert(prefix_len
* 2 >= n
);
422 memcpy(object_sha1
, subtree
->key_sha1
, prefix_len
);
423 while (tree_entry(&desc
, &entry
)) {
424 path_len
= strlen(entry
.path
);
425 len
= get_sha1_hex_segment(entry
.path
, path_len
,
426 object_sha1
+ prefix_len
, 20 - prefix_len
);
428 goto handle_non_note
; /* entry.path is not a SHA1 */
432 * If object SHA1 is complete (len == 20), assume note object
433 * If object SHA1 is incomplete (len < 20), and current
434 * component consists of 2 hex chars, assume note subtree
437 type
= PTR_TYPE_NOTE
;
438 l
= (struct leaf_node
*)
439 xcalloc(sizeof(struct leaf_node
), 1);
440 hashcpy(l
->key_sha1
, object_sha1
);
441 hashcpy(l
->val_sha1
, entry
.sha1
);
443 if (!S_ISDIR(entry
.mode
) || path_len
!= 2)
444 goto handle_non_note
; /* not subtree */
445 l
->key_sha1
[19] = (unsigned char) len
;
446 type
= PTR_TYPE_SUBTREE
;
448 note_tree_insert(t
, node
, n
, l
, type
,
449 combine_notes_concatenate
);
455 * Determine full path for this non-note entry:
456 * The filename is already found in entry.path, but the
457 * directory part of the path must be deduced from the subtree
458 * containing this entry. We assume here that the overall notes
459 * tree follows a strict byte-based progressive fanout
460 * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
461 * e.g. 4/36 fanout). This means that if a non-note is found at
462 * path "dead/beef", the following code will register it as
463 * being found on "de/ad/beef".
464 * On the other hand, if you use such non-obvious non-note
465 * paths in the middle of a notes tree, you deserve what's
466 * coming to you ;). Note that for non-notes that are not
467 * SHA1-like at the top level, there will be no problems.
469 * To conclude, it is strongly advised to make sure non-notes
470 * have at least one non-hex character in the top-level path
474 char non_note_path
[PATH_MAX
];
475 char *p
= non_note_path
;
476 const char *q
= sha1_to_hex(subtree
->key_sha1
);
478 for (i
= 0; i
< prefix_len
; i
++) {
483 strcpy(p
, entry
.path
);
484 add_non_note(t
, non_note_path
, entry
.mode
, entry
.sha1
);
491 * Determine optimal on-disk fanout for this part of the notes tree
493 * Given a (sub)tree and the level in the internal tree structure, determine
494 * whether or not the given existing fanout should be expanded for this
497 * Values of the 'fanout' variable:
498 * - 0: No fanout (all notes are stored directly in the root notes tree)
501 * - 3: 2/2/2/34 fanout
504 static unsigned char determine_fanout(struct int_node
*tree
, unsigned char n
,
505 unsigned char fanout
)
508 * The following is a simple heuristic that works well in practice:
509 * For each even-numbered 16-tree level (remember that each on-disk
510 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
511 * entries at that tree level. If all of them are either int_nodes or
512 * subtree entries, then there are likely plenty of notes below this
513 * level, so we return an incremented fanout.
516 if ((n
% 2) || (n
> 2 * fanout
))
518 for (i
= 0; i
< 16; i
++) {
519 switch (GET_PTR_TYPE(tree
->a
[i
])) {
520 case PTR_TYPE_SUBTREE
:
521 case PTR_TYPE_INTERNAL
:
530 static void construct_path_with_fanout(const unsigned char *sha1
,
531 unsigned char fanout
, char *path
)
533 unsigned int i
= 0, j
= 0;
534 const char *hex_sha1
= sha1_to_hex(sha1
);
537 path
[i
++] = hex_sha1
[j
++];
538 path
[i
++] = hex_sha1
[j
++];
542 strcpy(path
+ i
, hex_sha1
+ j
);
545 static int for_each_note_helper(struct notes_tree
*t
, struct int_node
*tree
,
546 unsigned char n
, unsigned char fanout
, int flags
,
547 each_note_fn fn
, void *cb_data
)
553 static char path
[40 + 19 + 1]; /* hex SHA1 + 19 * '/' + NUL */
555 fanout
= determine_fanout(tree
, n
, fanout
);
556 for (i
= 0; i
< 16; i
++) {
559 switch (GET_PTR_TYPE(p
)) {
560 case PTR_TYPE_INTERNAL
:
561 /* recurse into int_node */
562 ret
= for_each_note_helper(t
, CLR_PTR_TYPE(p
), n
+ 1,
563 fanout
, flags
, fn
, cb_data
);
565 case PTR_TYPE_SUBTREE
:
566 l
= (struct leaf_node
*) CLR_PTR_TYPE(p
);
568 * Subtree entries in the note tree represent parts of
569 * the note tree that have not yet been explored. There
570 * is a direct relationship between subtree entries at
571 * level 'n' in the tree, and the 'fanout' variable:
572 * Subtree entries at level 'n <= 2 * fanout' should be
573 * preserved, since they correspond exactly to a fanout
574 * directory in the on-disk structure. However, subtree
575 * entries at level 'n > 2 * fanout' should NOT be
576 * preserved, but rather consolidated into the above
577 * notes tree level. We achieve this by unconditionally
578 * unpacking subtree entries that exist below the
579 * threshold level at 'n = 2 * fanout'.
581 if (n
<= 2 * fanout
&&
582 flags
& FOR_EACH_NOTE_YIELD_SUBTREES
) {
583 /* invoke callback with subtree */
584 unsigned int path_len
=
585 l
->key_sha1
[19] * 2 + fanout
;
586 assert(path_len
< 40 + 19);
587 construct_path_with_fanout(l
->key_sha1
, fanout
,
589 /* Create trailing slash, if needed */
590 if (path
[path_len
- 1] != '/')
591 path
[path_len
++] = '/';
592 path
[path_len
] = '\0';
593 ret
= fn(l
->key_sha1
, l
->val_sha1
, path
,
596 if (n
> fanout
* 2 ||
597 !(flags
& FOR_EACH_NOTE_DONT_UNPACK_SUBTREES
)) {
598 /* unpack subtree and resume traversal */
600 load_subtree(t
, l
, tree
, n
);
606 l
= (struct leaf_node
*) CLR_PTR_TYPE(p
);
607 construct_path_with_fanout(l
->key_sha1
, fanout
, path
);
608 ret
= fn(l
->key_sha1
, l
->val_sha1
, path
, cb_data
);
617 struct tree_write_stack
{
618 struct tree_write_stack
*next
;
620 char path
[2]; /* path to subtree in next, if any */
623 static inline int matches_tree_write_stack(struct tree_write_stack
*tws
,
624 const char *full_path
)
626 return full_path
[0] == tws
->path
[0] &&
627 full_path
[1] == tws
->path
[1] &&
631 static void write_tree_entry(struct strbuf
*buf
, unsigned int mode
,
632 const char *path
, unsigned int path_len
, const
635 strbuf_addf(buf
, "%o %.*s%c", mode
, path_len
, path
, '\0');
636 strbuf_add(buf
, sha1
, 20);
639 static void tree_write_stack_init_subtree(struct tree_write_stack
*tws
,
642 struct tree_write_stack
*n
;
644 assert(tws
->path
[0] == '\0' && tws
->path
[1] == '\0');
645 n
= (struct tree_write_stack
*)
646 xmalloc(sizeof(struct tree_write_stack
));
648 strbuf_init(&n
->buf
, 256 * (32 + 40)); /* assume 256 entries per tree */
649 n
->path
[0] = n
->path
[1] = '\0';
651 tws
->path
[0] = path
[0];
652 tws
->path
[1] = path
[1];
655 static int tree_write_stack_finish_subtree(struct tree_write_stack
*tws
)
658 struct tree_write_stack
*n
= tws
->next
;
661 ret
= tree_write_stack_finish_subtree(n
);
664 ret
= write_sha1_file(n
->buf
.buf
, n
->buf
.len
, tree_type
, s
);
667 strbuf_release(&n
->buf
);
670 write_tree_entry(&tws
->buf
, 040000, tws
->path
, 2, s
);
671 tws
->path
[0] = tws
->path
[1] = '\0';
676 static int write_each_note_helper(struct tree_write_stack
*tws
,
677 const char *path
, unsigned int mode
,
678 const unsigned char *sha1
)
680 size_t path_len
= strlen(path
);
684 /* Determine common part of tree write stack */
685 while (tws
&& 3 * n
< path_len
&&
686 matches_tree_write_stack(tws
, path
+ 3 * n
)) {
691 /* tws point to last matching tree_write_stack entry */
692 ret
= tree_write_stack_finish_subtree(tws
);
696 /* Start subtrees needed to satisfy path */
697 while (3 * n
+ 2 < path_len
&& path
[3 * n
+ 2] == '/') {
698 tree_write_stack_init_subtree(tws
, path
+ 3 * n
);
703 /* There should be no more directory components in the given path */
704 assert(memchr(path
+ 3 * n
, '/', path_len
- (3 * n
)) == NULL
);
706 /* Finally add given entry to the current tree object */
707 write_tree_entry(&tws
->buf
, mode
, path
+ 3 * n
, path_len
- (3 * n
),
713 struct write_each_note_data
{
714 struct tree_write_stack
*root
;
715 struct non_note
*next_non_note
;
718 static int write_each_non_note_until(const char *note_path
,
719 struct write_each_note_data
*d
)
721 struct non_note
*n
= d
->next_non_note
;
723 while (n
&& (!note_path
|| (cmp
= strcmp(n
->path
, note_path
)) <= 0)) {
724 if (note_path
&& cmp
== 0)
725 ; /* do nothing, prefer note to non-note */
727 ret
= write_each_note_helper(d
->root
, n
->path
, n
->mode
,
734 d
->next_non_note
= n
;
738 static int write_each_note(const unsigned char *object_sha1
,
739 const unsigned char *note_sha1
, char *note_path
,
742 struct write_each_note_data
*d
=
743 (struct write_each_note_data
*) cb_data
;
744 size_t note_path_len
= strlen(note_path
);
745 unsigned int mode
= 0100644;
747 if (note_path
[note_path_len
- 1] == '/') {
750 note_path
[note_path_len
] = '\0';
753 assert(note_path_len
<= 40 + 19);
755 /* Weave non-note entries into note entries */
756 return write_each_non_note_until(note_path
, d
) ||
757 write_each_note_helper(d
->root
, note_path
, mode
, note_sha1
);
760 struct note_delete_list
{
761 struct note_delete_list
*next
;
762 const unsigned char *sha1
;
765 static int prune_notes_helper(const unsigned char *object_sha1
,
766 const unsigned char *note_sha1
, char *note_path
,
769 struct note_delete_list
**l
= (struct note_delete_list
**) cb_data
;
770 struct note_delete_list
*n
;
772 if (has_sha1_file(object_sha1
))
773 return 0; /* nothing to do for this note */
775 /* failed to find object => prune this note */
776 n
= (struct note_delete_list
*) xmalloc(sizeof(*n
));
778 n
->sha1
= object_sha1
;
783 int combine_notes_concatenate(unsigned char *cur_sha1
,
784 const unsigned char *new_sha1
)
786 char *cur_msg
= NULL
, *new_msg
= NULL
, *buf
;
787 unsigned long cur_len
, new_len
, buf_len
;
788 enum object_type cur_type
, new_type
;
791 /* read in both note blob objects */
792 if (!is_null_sha1(new_sha1
))
793 new_msg
= read_sha1_file(new_sha1
, &new_type
, &new_len
);
794 if (!new_msg
|| !new_len
|| new_type
!= OBJ_BLOB
) {
798 if (!is_null_sha1(cur_sha1
))
799 cur_msg
= read_sha1_file(cur_sha1
, &cur_type
, &cur_len
);
800 if (!cur_msg
|| !cur_len
|| cur_type
!= OBJ_BLOB
) {
803 hashcpy(cur_sha1
, new_sha1
);
807 /* we will separate the notes by a newline anyway */
808 if (cur_msg
[cur_len
- 1] == '\n')
811 /* concatenate cur_msg and new_msg into buf */
812 buf_len
= cur_len
+ 1 + new_len
;
813 buf
= (char *) xmalloc(buf_len
);
814 memcpy(buf
, cur_msg
, cur_len
);
816 memcpy(buf
+ cur_len
+ 1, new_msg
, new_len
);
820 /* create a new blob object from buf */
821 ret
= write_sha1_file(buf
, buf_len
, blob_type
, cur_sha1
);
826 int combine_notes_overwrite(unsigned char *cur_sha1
,
827 const unsigned char *new_sha1
)
829 hashcpy(cur_sha1
, new_sha1
);
833 int combine_notes_ignore(unsigned char *cur_sha1
,
834 const unsigned char *new_sha1
)
839 static int string_list_add_one_ref(const char *path
, const unsigned char *sha1
,
842 struct string_list
*refs
= cb
;
843 if (!unsorted_string_list_has_string(refs
, path
))
844 string_list_append(refs
, path
);
848 void string_list_add_refs_by_glob(struct string_list
*list
, const char *glob
)
850 if (has_glob_specials(glob
)) {
851 for_each_glob_ref(string_list_add_one_ref
, glob
, list
);
853 unsigned char sha1
[20];
854 if (get_sha1(glob
, sha1
))
855 warning("notes ref %s is invalid", glob
);
856 if (!unsorted_string_list_has_string(list
, glob
))
857 string_list_append(list
, glob
);
861 void string_list_add_refs_from_colon_sep(struct string_list
*list
,
864 struct strbuf globbuf
= STRBUF_INIT
;
865 struct strbuf
**split
;
868 strbuf_addstr(&globbuf
, globs
);
869 split
= strbuf_split(&globbuf
, ':');
871 for (i
= 0; split
[i
]; i
++) {
874 if (split
[i
]->buf
[split
[i
]->len
-1] == ':')
875 strbuf_setlen(split
[i
], split
[i
]->len
-1);
876 string_list_add_refs_by_glob(list
, split
[i
]->buf
);
879 strbuf_list_free(split
);
880 strbuf_release(&globbuf
);
883 static int notes_display_config(const char *k
, const char *v
, void *cb
)
887 if (*load_refs
&& !strcmp(k
, "notes.displayref")) {
889 config_error_nonbool(k
);
890 string_list_add_refs_by_glob(&display_notes_refs
, v
);
896 static const char *default_notes_ref(void)
898 const char *notes_ref
= NULL
;
900 notes_ref
= getenv(GIT_NOTES_REF_ENVIRONMENT
);
902 notes_ref
= notes_ref_name
; /* value of core.notesRef config */
904 notes_ref
= GIT_NOTES_DEFAULT_REF
;
908 void init_notes(struct notes_tree
*t
, const char *notes_ref
,
909 combine_notes_fn combine_notes
, int flags
)
911 unsigned char sha1
[20], object_sha1
[20];
913 struct leaf_node root_tree
;
916 t
= &default_notes_tree
;
917 assert(!t
->initialized
);
920 notes_ref
= default_notes_ref();
923 combine_notes
= combine_notes_concatenate
;
925 t
->root
= (struct int_node
*) xcalloc(sizeof(struct int_node
), 1);
926 t
->first_non_note
= NULL
;
927 t
->prev_non_note
= NULL
;
928 t
->ref
= notes_ref
? xstrdup(notes_ref
) : NULL
;
929 t
->combine_notes
= combine_notes
;
933 if (flags
& NOTES_INIT_EMPTY
|| !notes_ref
||
934 read_ref(notes_ref
, object_sha1
))
936 if (get_tree_entry(object_sha1
, "", sha1
, &mode
))
937 die("Failed to read notes tree referenced by %s (%s)",
938 notes_ref
, object_sha1
);
940 hashclr(root_tree
.key_sha1
);
941 hashcpy(root_tree
.val_sha1
, sha1
);
942 load_subtree(t
, &root_tree
, t
->root
, 0);
945 struct notes_tree
**load_notes_trees(struct string_list
*refs
)
947 struct string_list_item
*item
;
949 struct notes_tree
**trees
;
950 trees
= xmalloc((refs
->nr
+1) * sizeof(struct notes_tree
*));
951 for_each_string_list_item(item
, refs
) {
952 struct notes_tree
*t
= xcalloc(1, sizeof(struct notes_tree
));
953 init_notes(t
, item
->string
, combine_notes_ignore
, 0);
954 trees
[counter
++] = t
;
956 trees
[counter
] = NULL
;
960 void init_display_notes(struct display_notes_opt
*opt
)
962 char *display_ref_env
;
963 int load_config_refs
= 0;
964 display_notes_refs
.strdup_strings
= 1;
966 assert(!display_notes_trees
);
968 if (!opt
|| !opt
->suppress_default_notes
) {
969 string_list_append(&display_notes_refs
, default_notes_ref());
970 display_ref_env
= getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT
);
971 if (display_ref_env
) {
972 string_list_add_refs_from_colon_sep(&display_notes_refs
,
974 load_config_refs
= 0;
976 load_config_refs
= 1;
979 git_config(notes_display_config
, &load_config_refs
);
981 if (opt
&& opt
->extra_notes_refs
) {
982 struct string_list_item
*item
;
983 for_each_string_list_item(item
, opt
->extra_notes_refs
)
984 string_list_add_refs_by_glob(&display_notes_refs
,
988 display_notes_trees
= load_notes_trees(&display_notes_refs
);
989 string_list_clear(&display_notes_refs
, 0);
992 void add_note(struct notes_tree
*t
, const unsigned char *object_sha1
,
993 const unsigned char *note_sha1
, combine_notes_fn combine_notes
)
998 t
= &default_notes_tree
;
999 assert(t
->initialized
);
1002 combine_notes
= t
->combine_notes
;
1003 l
= (struct leaf_node
*) xmalloc(sizeof(struct leaf_node
));
1004 hashcpy(l
->key_sha1
, object_sha1
);
1005 hashcpy(l
->val_sha1
, note_sha1
);
1006 note_tree_insert(t
, t
->root
, 0, l
, PTR_TYPE_NOTE
, combine_notes
);
1009 int remove_note(struct notes_tree
*t
, const unsigned char *object_sha1
)
1014 t
= &default_notes_tree
;
1015 assert(t
->initialized
);
1016 hashcpy(l
.key_sha1
, object_sha1
);
1017 hashclr(l
.val_sha1
);
1018 note_tree_remove(t
, t
->root
, 0, &l
);
1019 if (is_null_sha1(l
.val_sha1
)) // no note was removed
1025 const unsigned char *get_note(struct notes_tree
*t
,
1026 const unsigned char *object_sha1
)
1028 struct leaf_node
*found
;
1031 t
= &default_notes_tree
;
1032 assert(t
->initialized
);
1033 found
= note_tree_find(t
, t
->root
, 0, object_sha1
);
1034 return found
? found
->val_sha1
: NULL
;
1037 int for_each_note(struct notes_tree
*t
, int flags
, each_note_fn fn
,
1041 t
= &default_notes_tree
;
1042 assert(t
->initialized
);
1043 return for_each_note_helper(t
, t
->root
, 0, 0, flags
, fn
, cb_data
);
1046 int write_notes_tree(struct notes_tree
*t
, unsigned char *result
)
1048 struct tree_write_stack root
;
1049 struct write_each_note_data cb_data
;
1053 t
= &default_notes_tree
;
1054 assert(t
->initialized
);
1056 /* Prepare for traversal of current notes tree */
1057 root
.next
= NULL
; /* last forward entry in list is grounded */
1058 strbuf_init(&root
.buf
, 256 * (32 + 40)); /* assume 256 entries */
1059 root
.path
[0] = root
.path
[1] = '\0';
1060 cb_data
.root
= &root
;
1061 cb_data
.next_non_note
= t
->first_non_note
;
1063 /* Write tree objects representing current notes tree */
1064 ret
= for_each_note(t
, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES
|
1065 FOR_EACH_NOTE_YIELD_SUBTREES
,
1066 write_each_note
, &cb_data
) ||
1067 write_each_non_note_until(NULL
, &cb_data
) ||
1068 tree_write_stack_finish_subtree(&root
) ||
1069 write_sha1_file(root
.buf
.buf
, root
.buf
.len
, tree_type
, result
);
1070 strbuf_release(&root
.buf
);
1074 void prune_notes(struct notes_tree
*t
, int flags
)
1076 struct note_delete_list
*l
= NULL
;
1079 t
= &default_notes_tree
;
1080 assert(t
->initialized
);
1082 for_each_note(t
, 0, prune_notes_helper
, &l
);
1085 if (flags
& NOTES_PRUNE_VERBOSE
)
1086 printf("%s\n", sha1_to_hex(l
->sha1
));
1087 if (!(flags
& NOTES_PRUNE_DRYRUN
))
1088 remove_note(t
, l
->sha1
);
1093 void free_notes(struct notes_tree
*t
)
1096 t
= &default_notes_tree
;
1098 note_tree_free(t
->root
);
1100 while (t
->first_non_note
) {
1101 t
->prev_non_note
= t
->first_non_note
->next
;
1102 free(t
->first_non_note
->path
);
1103 free(t
->first_non_note
);
1104 t
->first_non_note
= t
->prev_non_note
;
1107 memset(t
, 0, sizeof(struct notes_tree
));
1110 void format_note(struct notes_tree
*t
, const unsigned char *object_sha1
,
1111 struct strbuf
*sb
, const char *output_encoding
, int flags
)
1113 static const char utf8
[] = "utf-8";
1114 const unsigned char *sha1
;
1116 unsigned long linelen
, msglen
;
1117 enum object_type type
;
1120 t
= &default_notes_tree
;
1121 if (!t
->initialized
)
1122 init_notes(t
, NULL
, NULL
, 0);
1124 sha1
= get_note(t
, object_sha1
);
1128 if (!(msg
= read_sha1_file(sha1
, &type
, &msglen
)) || !msglen
||
1134 if (output_encoding
&& *output_encoding
&&
1135 strcmp(utf8
, output_encoding
)) {
1136 char *reencoded
= reencode_string(msg
, output_encoding
, utf8
);
1140 msglen
= strlen(msg
);
1144 /* we will end the annotation by a newline anyway */
1145 if (msglen
&& msg
[msglen
- 1] == '\n')
1148 if (flags
& NOTES_SHOW_HEADER
) {
1149 const char *ref
= t
->ref
;
1150 if (!ref
|| !strcmp(ref
, GIT_NOTES_DEFAULT_REF
)) {
1151 strbuf_addstr(sb
, "\nNotes:\n");
1153 if (!prefixcmp(ref
, "refs/"))
1155 if (!prefixcmp(ref
, "notes/"))
1157 strbuf_addf(sb
, "\nNotes (%s):\n", ref
);
1161 for (msg_p
= msg
; msg_p
< msg
+ msglen
; msg_p
+= linelen
+ 1) {
1162 linelen
= strchrnul(msg_p
, '\n') - msg_p
;
1164 if (flags
& NOTES_INDENT
)
1165 strbuf_addstr(sb
, " ");
1166 strbuf_add(sb
, msg_p
, linelen
);
1167 strbuf_addch(sb
, '\n');
1173 void format_display_notes(const unsigned char *object_sha1
,
1174 struct strbuf
*sb
, const char *output_encoding
, int flags
)
1177 assert(display_notes_trees
);
1178 for (i
= 0; display_notes_trees
[i
]; i
++)
1179 format_note(display_notes_trees
[i
], object_sha1
, sb
,
1180 output_encoding
, flags
);
1183 int copy_note(struct notes_tree
*t
,
1184 const unsigned char *from_obj
, const unsigned char *to_obj
,
1185 int force
, combine_notes_fn combine_fn
)
1187 const unsigned char *note
= get_note(t
, from_obj
);
1188 const unsigned char *existing_note
= get_note(t
, to_obj
);
1190 if (!force
&& existing_note
)
1194 add_note(t
, to_obj
, note
, combine_fn
);
1195 else if (existing_note
)
1196 add_note(t
, to_obj
, null_sha1
, combine_fn
);