2 * Copyright (c) 2005, Jon Seymour
4 * For more information about epoch theory on which this module is based,
5 * refer to http://blackcubes.dyndns.org/epoch/. That web page defines
6 * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales
7 * for some of the algorithms used here.
12 /* Provides arbitrary precision integers required to accurately represent
14 #include <openssl/bn.h>
25 #define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next)
27 static BN_CTX
*context
= NULL
;
28 static struct fraction
*one
= NULL
;
29 static struct fraction
*zero
= NULL
;
31 static BN_CTX
*get_BN_CTX(void)
34 context
= BN_CTX_new();
39 static struct fraction
*new_zero(void)
41 struct fraction
*result
= xmalloc(sizeof(*result
));
42 BN_init(&result
->numerator
);
43 BN_init(&result
->denominator
);
44 BN_zero(&result
->numerator
);
45 BN_one(&result
->denominator
);
49 static void clear_fraction(struct fraction
*fraction
)
51 BN_clear(&fraction
->numerator
);
52 BN_clear(&fraction
->denominator
);
55 static struct fraction
*divide(struct fraction
*result
, struct fraction
*fraction
, int divisor
)
60 BN_set_word(&bn_divisor
, divisor
);
62 BN_copy(&result
->numerator
, &fraction
->numerator
);
63 BN_mul(&result
->denominator
, &fraction
->denominator
, &bn_divisor
, get_BN_CTX());
65 BN_clear(&bn_divisor
);
69 static struct fraction
*init_fraction(struct fraction
*fraction
)
71 BN_init(&fraction
->numerator
);
72 BN_init(&fraction
->denominator
);
73 BN_zero(&fraction
->numerator
);
74 BN_one(&fraction
->denominator
);
78 static struct fraction
*get_one(void)
82 BN_one(&one
->numerator
);
87 static struct fraction
*get_zero(void)
95 static struct fraction
*copy(struct fraction
*to
, struct fraction
*from
)
97 BN_copy(&to
->numerator
, &from
->numerator
);
98 BN_copy(&to
->denominator
, &from
->denominator
);
102 static struct fraction
*add(struct fraction
*result
, struct fraction
*left
, struct fraction
*right
)
110 BN_mul(&a
, &left
->numerator
, &right
->denominator
, get_BN_CTX());
111 BN_mul(&b
, &left
->denominator
, &right
->numerator
, get_BN_CTX());
112 BN_mul(&result
->denominator
, &left
->denominator
, &right
->denominator
, get_BN_CTX());
113 BN_add(&result
->numerator
, &a
, &b
);
115 BN_gcd(&gcd
, &result
->denominator
, &result
->numerator
, get_BN_CTX());
116 BN_div(&result
->denominator
, NULL
, &result
->denominator
, &gcd
, get_BN_CTX());
117 BN_div(&result
->numerator
, NULL
, &result
->numerator
, &gcd
, get_BN_CTX());
126 static int compare(struct fraction
*left
, struct fraction
*right
)
134 BN_mul(&a
, &left
->numerator
, &right
->denominator
, get_BN_CTX());
135 BN_mul(&b
, &left
->denominator
, &right
->numerator
, get_BN_CTX());
137 result
= BN_cmp(&a
, &b
);
145 struct mass_counter
{
146 struct fraction seen
;
147 struct fraction pending
;
150 static struct mass_counter
*new_mass_counter(struct commit
*commit
, struct fraction
*pending
)
152 struct mass_counter
*mass_counter
= xmalloc(sizeof(*mass_counter
));
153 memset(mass_counter
, 0, sizeof(*mass_counter
));
155 init_fraction(&mass_counter
->seen
);
156 init_fraction(&mass_counter
->pending
);
158 copy(&mass_counter
->pending
, pending
);
159 copy(&mass_counter
->seen
, get_zero());
161 if (commit
->object
.util
) {
162 die("multiple attempts to initialize mass counter for %s",
163 sha1_to_hex(commit
->object
.sha1
));
166 commit
->object
.util
= mass_counter
;
171 static void free_mass_counter(struct mass_counter
*counter
)
173 clear_fraction(&counter
->seen
);
174 clear_fraction(&counter
->pending
);
179 * Finds the base commit of a list of commits.
181 * One property of the commit being searched for is that every commit reachable
182 * from the base commit is reachable from the commits in the starting list only
183 * via paths that include the base commit.
185 * This algorithm uses a conservation of mass approach to find the base commit.
187 * We start by injecting one unit of mass into the graph at each
188 * of the commits in the starting list. Injecting mass into a commit
189 * is achieved by adding to its pending mass counter and, if it is not already
190 * enqueued, enqueuing the commit in a list of pending commits, in latest
191 * commit date first order.
193 * The algorithm then preceeds to visit each commit in the pending queue.
194 * Upon each visit, the pending mass is added to the mass already seen for that
195 * commit and then divided into N equal portions, where N is the number of
196 * parents of the commit being visited. The divided portions are then injected
197 * into each of the parents.
199 * The algorithm continues until we discover a commit which has seen all the
200 * mass originally injected or until we run out of things to do.
202 * If we find a commit that has seen all the original mass, we have found
203 * the common base of all the commits in the starting list.
205 * The algorithm does _not_ depend on accurate timestamps for correct operation.
206 * However, reasonably sane (e.g. non-random) timestamps are required in order
207 * to prevent an exponential performance characteristic. The occasional
208 * timestamp inaccuracy will not dramatically affect performance but may
209 * result in more nodes being processed than strictly necessary.
211 * This procedure sets *boundary to the address of the base commit. It returns
212 * non-zero if, and only if, there was a problem parsing one of the
213 * commits discovered during the traversal.
215 static int find_base_for_list(struct commit_list
*list
, struct commit
**boundary
)
218 struct commit_list
*cleaner
= NULL
;
219 struct commit_list
*pending
= NULL
;
220 struct fraction injected
;
221 init_fraction(&injected
);
224 for (; list
; list
= list
->next
) {
225 struct commit
*item
= list
->item
;
227 if (!item
->object
.util
) {
228 new_mass_counter(list
->item
, get_one());
229 add(&injected
, &injected
, get_one());
231 commit_list_insert(list
->item
, &cleaner
);
232 commit_list_insert(list
->item
, &pending
);
236 while (!*boundary
&& pending
&& !ret
) {
237 struct commit
*latest
= pop_commit(&pending
);
238 struct mass_counter
*latest_node
= (struct mass_counter
*) latest
->object
.util
;
241 if ((ret
= parse_commit(latest
)))
243 add(&latest_node
->seen
, &latest_node
->seen
, &latest_node
->pending
);
245 num_parents
= count_parents(latest
);
247 struct fraction distribution
;
248 struct commit_list
*parents
;
250 divide(init_fraction(&distribution
), &latest_node
->pending
, num_parents
);
252 for (parents
= latest
->parents
; parents
; parents
= parents
->next
) {
253 struct commit
*parent
= parents
->item
;
254 struct mass_counter
*parent_node
= (struct mass_counter
*) parent
->object
.util
;
257 parent_node
= new_mass_counter(parent
, &distribution
);
258 insert_by_date(parent
, &pending
);
259 commit_list_insert(parent
, &cleaner
);
261 if (!compare(&parent_node
->pending
, get_zero()))
262 insert_by_date(parent
, &pending
);
263 add(&parent_node
->pending
, &parent_node
->pending
, &distribution
);
267 clear_fraction(&distribution
);
270 if (!compare(&latest_node
->seen
, &injected
))
272 copy(&latest_node
->pending
, get_zero());
276 struct commit
*next
= pop_commit(&cleaner
);
277 free_mass_counter((struct mass_counter
*) next
->object
.util
);
278 next
->object
.util
= NULL
;
282 free_commit_list(pending
);
284 clear_fraction(&injected
);
290 * Finds the base of an minimal, non-linear epoch, headed at head, by
291 * applying the find_base_for_list to a list consisting of the parents
293 static int find_base(struct commit
*head
, struct commit
**boundary
)
296 struct commit_list
*pending
= NULL
;
297 struct commit_list
*next
;
299 for (next
= head
->parents
; next
; next
= next
->next
) {
300 commit_list_insert(next
->item
, &pending
);
302 ret
= find_base_for_list(pending
, boundary
);
303 free_commit_list(pending
);
309 * This procedure traverses to the boundary of the first epoch in the epoch
310 * sequence of the epoch headed at head_of_epoch. This is either the end of
311 * the maximal linear epoch or the base of a minimal non-linear epoch.
313 * The queue of pending nodes is sorted in reverse date order and each node
314 * is currently in the queue at most once.
316 static int find_next_epoch_boundary(struct commit
*head_of_epoch
, struct commit
**boundary
)
319 struct commit
*item
= head_of_epoch
;
321 ret
= parse_commit(item
);
325 if (HAS_EXACTLY_ONE_PARENT(item
)) {
327 * We are at the start of a maximimal linear epoch.
328 * Traverse to the end.
330 while (HAS_EXACTLY_ONE_PARENT(item
) && !ret
) {
331 item
= item
->parents
->item
;
332 ret
= parse_commit(item
);
338 * Otherwise, we are at the start of a minimal, non-linear
339 * epoch - find the common base of all parents.
341 ret
= find_base(item
, boundary
);
348 * Returns non-zero if parent is known to be a parent of child.
350 static int is_parent_of(struct commit
*parent
, struct commit
*child
)
352 struct commit_list
*parents
;
353 for (parents
= child
->parents
; parents
; parents
= parents
->next
) {
354 if (!memcmp(parent
->object
.sha1
, parents
->item
->object
.sha1
,
355 sizeof(parents
->item
->object
.sha1
)))
362 * Pushes an item onto the merge order stack. If the top of the stack is
363 * marked as being a possible "break", we check to see whether it actually
366 static void push_onto_merge_order_stack(struct commit_list
**stack
, struct commit
*item
)
368 struct commit_list
*top
= *stack
;
369 if (top
&& (top
->item
->object
.flags
& DISCONTINUITY
)) {
370 if (is_parent_of(top
->item
, item
)) {
371 top
->item
->object
.flags
&= ~DISCONTINUITY
;
374 commit_list_insert(item
, stack
);
378 * Marks all interesting, visited commits reachable from this commit
379 * as uninteresting. We stop recursing when we reach the epoch boundary,
380 * an unvisited node or a node that has already been marking uninteresting.
382 * This doesn't actually mark all ancestors between the start node and the
383 * epoch boundary uninteresting, but does ensure that they will eventually
384 * be marked uninteresting when the main sort_first_epoch() traversal
385 * eventually reaches them.
387 static void mark_ancestors_uninteresting(struct commit
*commit
)
389 unsigned int flags
= commit
->object
.flags
;
390 int visited
= flags
& VISITED
;
391 int boundary
= flags
& BOUNDARY
;
392 int uninteresting
= flags
& UNINTERESTING
;
393 struct commit_list
*next
;
395 commit
->object
.flags
|= UNINTERESTING
;
398 * We only need to recurse if
399 * we are not on the boundary and
400 * we have not already been marked uninteresting and
401 * we have already been visited.
403 * The main sort_first_epoch traverse will mark unreachable
404 * all uninteresting, unvisited parents as they are visited
405 * so there is no need to duplicate that traversal here.
407 * Similarly, if we are already marked uninteresting
408 * then either all ancestors have already been marked
409 * uninteresting or will be once the sort_first_epoch
410 * traverse reaches them.
413 if (uninteresting
|| boundary
|| !visited
)
416 for (next
= commit
->parents
; next
; next
= next
->next
)
417 mark_ancestors_uninteresting(next
->item
);
421 * Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head
424 static void sort_first_epoch(struct commit
*head
, struct commit_list
**stack
)
426 struct commit_list
*parents
;
428 head
->object
.flags
|= VISITED
;
431 * TODO: By sorting the parents in a different order, we can alter the
432 * merge order to show contemporaneous changes in parallel branches
433 * occurring after "local" changes. This is useful for a developer
434 * when a developer wants to see all changes that were incorporated
435 * into the same merge as her own changes occur after her own
439 for (parents
= head
->parents
; parents
; parents
= parents
->next
) {
440 struct commit
*parent
= parents
->item
;
442 if (head
->object
.flags
& UNINTERESTING
) {
444 * Propagates the uninteresting bit to all parents.
445 * if we have already visited this parent, then
446 * the uninteresting bit will be propagated to each
447 * reachable commit that is still not marked
448 * uninteresting and won't otherwise be reached.
450 mark_ancestors_uninteresting(parent
);
453 if (!(parent
->object
.flags
& VISITED
)) {
454 if (parent
->object
.flags
& BOUNDARY
) {
456 die("something else is on the stack - %s",
457 sha1_to_hex((*stack
)->item
->object
.sha1
));
459 push_onto_merge_order_stack(stack
, parent
);
460 parent
->object
.flags
|= VISITED
;
463 sort_first_epoch(parent
, stack
);
466 * This indicates a possible
467 * discontinuity it may not be be
468 * actual discontinuity if the head
469 * of parent N happens to be the tail
472 * The next push onto the stack will
473 * resolve the question.
475 (*stack
)->item
->object
.flags
|= DISCONTINUITY
;
481 push_onto_merge_order_stack(stack
, head
);
485 * Emit the contents of the stack.
487 * The stack is freed and replaced by NULL.
489 * Sets the return value to STOP if no further output should be generated.
491 static int emit_stack(struct commit_list
**stack
, emitter_func emitter
, int include_last
)
493 unsigned int seen
= 0;
494 int action
= CONTINUE
;
496 while (*stack
&& (action
!= STOP
)) {
497 struct commit
*next
= pop_commit(stack
);
498 seen
|= next
->object
.flags
;
499 if (*stack
|| include_last
) {
501 next
->object
.flags
|= BOUNDARY
;
502 action
= (*emitter
) (next
);
507 free_commit_list(*stack
);
511 return (action
== STOP
|| (seen
& UNINTERESTING
)) ? STOP
: CONTINUE
;
515 * Sorts an arbitrary epoch into merge order by sorting each epoch
516 * of its epoch sequence into order.
518 * Note: this algorithm currently leaves traces of its execution in the
519 * object flags of nodes it discovers. This should probably be fixed.
521 static int sort_in_merge_order(struct commit
*head_of_epoch
, emitter_func emitter
)
523 struct commit
*next
= head_of_epoch
;
525 int action
= CONTINUE
;
527 ret
= parse_commit(head_of_epoch
);
529 next
->object
.flags
|= BOUNDARY
;
531 while (next
&& next
->parents
&& !ret
&& (action
!= STOP
)) {
532 struct commit
*base
= NULL
;
534 ret
= find_next_epoch_boundary(next
, &base
);
537 next
->object
.flags
|= BOUNDARY
;
539 base
->object
.flags
|= BOUNDARY
;
541 if (HAS_EXACTLY_ONE_PARENT(next
)) {
542 while (HAS_EXACTLY_ONE_PARENT(next
)
545 if (next
->object
.flags
& UNINTERESTING
) {
548 action
= (*emitter
) (next
);
550 if (action
!= STOP
) {
551 next
= next
->parents
->item
;
552 ret
= parse_commit(next
);
557 struct commit_list
*stack
= NULL
;
558 sort_first_epoch(next
, &stack
);
559 action
= emit_stack(&stack
, emitter
, (base
== NULL
));
564 if (next
&& (action
!= STOP
) && !ret
) {
572 * Sorts the nodes reachable from a starting list in merge order, we
573 * first find the base for the starting list and then sort all nodes
574 * in this subgraph using the sort_first_epoch algorithm. Once we have
575 * reached the base we can continue sorting using sort_in_merge_order.
577 int sort_list_in_merge_order(struct commit_list
*list
, emitter_func emitter
)
579 struct commit_list
*stack
= NULL
;
582 int action
= CONTINUE
;
583 struct commit_list
*reversed
= NULL
;
585 for (; list
; list
= list
->next
) {
586 struct commit
*next
= list
->item
;
588 if (!(next
->object
.flags
& DUPCHECK
)) {
589 next
->object
.flags
|= DUPCHECK
;
590 commit_list_insert(list
->item
, &reversed
);
596 else if (!reversed
->next
) {
598 * If there is only one element in the list, we can sort it
599 * using sort_in_merge_order.
601 base
= reversed
->item
;
604 * Otherwise, we search for the base of the list.
606 ret
= find_base_for_list(reversed
, &base
);
610 base
->object
.flags
|= BOUNDARY
;
613 struct commit
* next
= pop_commit(&reversed
);
615 if (!(next
->object
.flags
& VISITED
)) {
616 sort_first_epoch(next
, &stack
);
619 * If we have more commits
620 * to push, then the first
621 * push for the next parent may
622 * (or may * not) represent a
623 * discontinuity with respect
624 * to the parent currently on
625 * the top of the stack.
627 * Mark it for checking here,
628 * and check it with the next
629 * push. See sort_first_epoch()
632 stack
->item
->object
.flags
|= DISCONTINUITY
;
637 action
= emit_stack(&stack
, emitter
, (base
==NULL
));
640 if (base
&& (action
!= STOP
)) {
641 ret
= sort_in_merge_order(base
, emitter
);