6 * Idea here is very simple.
8 * We have total of (sz-N+1) N-byte overlapping sequences in buf whose
9 * size is sz. If the same N-byte sequence appears in both source and
10 * destination, we say the byte that starts that sequence is shared
11 * between them (i.e. copied from source to destination).
13 * For each possible N-byte sequence, if the source buffer has more
14 * instances of it than the destination buffer, that means the
15 * difference are the number of bytes not copied from source to
16 * destination. If the counts are the same, everything was copied
17 * from source to destination. If the destination has more,
18 * everything was copied, and destination added more.
20 * We are doing an approximation so we do not really have to waste
21 * memory by actually storing the sequence. We just hash them into
22 * somewhere around 2^16 hashbuckets and count the occurrences.
24 * The length of the sequence is arbitrarily set to 8 for now.
27 /* Wild guess at the initial hash size */
28 #define INITIAL_HASH_SIZE 10
29 #define HASHBASE 65537 /* next_prime(2^16) */
32 unsigned long hashval
;
38 struct spanhash data
[FLEX_ARRAY
];
41 static struct spanhash
*spanhash_find(struct spanhash_top
*top
, unsigned long hashval
)
43 int sz
= 1 << top
->alloc_log2
;
44 int bucket
= hashval
& (sz
- 1);
46 struct spanhash
*h
= &(top
->data
[bucket
++]);
49 if (h
->hashval
== hashval
)
56 static struct spanhash_top
*spanhash_rehash(struct spanhash_top
*orig
)
58 struct spanhash_top
*new;
60 int osz
= 1 << orig
->alloc_log2
;
63 new = xmalloc(sizeof(*orig
) + sizeof(struct spanhash
) * sz
);
64 new->alloc_log2
= orig
->alloc_log2
+ 1;
66 memset(new->data
, 0, sizeof(struct spanhash
) * sz
);
67 for (i
= 0; i
< osz
; i
++) {
68 struct spanhash
*o
= &(orig
->data
[i
]);
72 bucket
= o
->hashval
& (sz
- 1);
74 struct spanhash
*h
= &(new->data
[bucket
++]);
76 h
->hashval
= o
->hashval
;
89 static struct spanhash_top
*add_spanhash(struct spanhash_top
*top
,
90 unsigned long hashval
)
95 lim
= (1 << top
->alloc_log2
);
96 bucket
= hashval
& (lim
- 1);
98 h
= &(top
->data
[bucket
++]);
100 h
->hashval
= hashval
;
104 return spanhash_rehash(top
);
107 if (h
->hashval
== hashval
) {
116 static struct spanhash_top
*hash_chars(unsigned char *buf
, unsigned long sz
)
119 unsigned long accum1
, accum2
, hashval
;
120 struct spanhash_top
*hash
;
122 i
= INITIAL_HASH_SIZE
;
123 hash
= xmalloc(sizeof(*hash
) + sizeof(struct spanhash
) * (1<<i
));
124 hash
->alloc_log2
= i
;
125 hash
->free
= (1<<i
)/2;
126 memset(hash
->data
, 0, sizeof(struct spanhash
) * (1<<i
));
128 /* an 8-byte shift register made of accum1 and accum2. New
129 * bytes come at LSB of accum2, and shifted up to accum1
131 for (i
= accum1
= accum2
= 0; i
< 7; i
++, sz
--) {
132 accum1
= (accum1
<< 8) | (accum2
>> 24);
133 accum2
= (accum2
<< 8) | *buf
++;
136 accum1
= (accum1
<< 8) | (accum2
>> 24);
137 accum2
= (accum2
<< 8) | *buf
++;
138 hashval
= (accum1
+ accum2
* 0x61) % HASHBASE
;
139 hash
= add_spanhash(hash
, hashval
);
145 int diffcore_count_changes(void *src
, unsigned long src_size
,
146 void *dst
, unsigned long dst_size
,
149 unsigned long delta_limit
,
150 unsigned long *src_copied
,
151 unsigned long *literal_added
)
154 struct spanhash_top
*src_count
, *dst_count
;
155 unsigned long sc
, la
;
157 if (src_size
< 8 || dst_size
< 8)
160 src_count
= dst_count
= NULL
;
162 src_count
= *src_count_p
;
164 src_count
= hash_chars(src
, src_size
);
166 *src_count_p
= src_count
;
169 dst_count
= *dst_count_p
;
171 dst_count
= hash_chars(dst
, dst_size
);
173 *dst_count_p
= dst_count
;
177 ssz
= 1 << src_count
->alloc_log2
;
178 for (i
= 0; i
< ssz
; i
++) {
179 struct spanhash
*s
= &(src_count
->data
[i
]);
181 unsigned dst_cnt
, src_cnt
;
185 d
= spanhash_find(dst_count
, s
->hashval
);
186 dst_cnt
= d
? d
->cnt
: 0;
187 if (src_cnt
< dst_cnt
) {
188 la
+= dst_cnt
- src_cnt
;