Notes API: write_notes_tree(): Store the notes tree in the database
[git/jrn.git] / notes.c
blobb576f7e62486b8791445962614f35bb939abb03c
1 #include "cache.h"
2 #include "notes.h"
3 #include "tree.h"
4 #include "utf8.h"
5 #include "strbuf.h"
6 #include "tree-walk.h"
8 /*
9 * Use a non-balancing simple 16-tree structure with struct int_node as
10 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
11 * 16-array of pointers to its children.
12 * The bottom 2 bits of each pointer is used to identify the pointer type
13 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
14 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
15 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
16 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
18 * The root node is a statically allocated struct int_node.
20 struct int_node {
21 void *a[16];
25 * Leaf nodes come in two variants, note entries and subtree entries,
26 * distinguished by the LSb of the leaf node pointer (see above).
27 * As a note entry, the key is the SHA1 of the referenced object, and the
28 * value is the SHA1 of the note object.
29 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
30 * referenced object, using the last byte of the key to store the length of
31 * the prefix. The value is the SHA1 of the tree object containing the notes
32 * subtree.
34 struct leaf_node {
35 unsigned char key_sha1[20];
36 unsigned char val_sha1[20];
39 #define PTR_TYPE_NULL 0
40 #define PTR_TYPE_INTERNAL 1
41 #define PTR_TYPE_NOTE 2
42 #define PTR_TYPE_SUBTREE 3
44 #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
45 #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
46 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
48 #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
50 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
51 (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
53 static struct int_node root_node;
55 static int initialized;
57 static void load_subtree(struct leaf_node *subtree, struct int_node *node,
58 unsigned int n);
61 * Search the tree until the appropriate location for the given key is found:
62 * 1. Start at the root node, with n = 0
63 * 2. If a[0] at the current level is a matching subtree entry, unpack that
64 * subtree entry and remove it; restart search at the current level.
65 * 3. Use the nth nibble of the key as an index into a:
66 * - If a[n] is an int_node, recurse from #2 into that node and increment n
67 * - If a matching subtree entry, unpack that subtree entry (and remove it);
68 * restart search at the current level.
69 * - Otherwise, we have found one of the following:
70 * - a subtree entry which does not match the key
71 * - a note entry which may or may not match the key
72 * - an unused leaf node (NULL)
73 * In any case, set *tree and *n, and return pointer to the tree location.
75 static void **note_tree_search(struct int_node **tree,
76 unsigned char *n, const unsigned char *key_sha1)
78 struct leaf_node *l;
79 unsigned char i;
80 void *p = (*tree)->a[0];
82 if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
83 l = (struct leaf_node *) CLR_PTR_TYPE(p);
84 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
85 /* unpack tree and resume search */
86 (*tree)->a[0] = NULL;
87 load_subtree(l, *tree, *n);
88 free(l);
89 return note_tree_search(tree, n, key_sha1);
93 i = GET_NIBBLE(*n, key_sha1);
94 p = (*tree)->a[i];
95 switch (GET_PTR_TYPE(p)) {
96 case PTR_TYPE_INTERNAL:
97 *tree = CLR_PTR_TYPE(p);
98 (*n)++;
99 return note_tree_search(tree, n, key_sha1);
100 case PTR_TYPE_SUBTREE:
101 l = (struct leaf_node *) CLR_PTR_TYPE(p);
102 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
103 /* unpack tree and resume search */
104 (*tree)->a[i] = NULL;
105 load_subtree(l, *tree, *n);
106 free(l);
107 return note_tree_search(tree, n, key_sha1);
109 /* fall through */
110 default:
111 return &((*tree)->a[i]);
116 * To find a leaf_node:
117 * Search to the tree location appropriate for the given key:
118 * If a note entry with matching key, return the note entry, else return NULL.
120 static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
121 const unsigned char *key_sha1)
123 void **p = note_tree_search(&tree, &n, key_sha1);
124 if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
125 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
126 if (!hashcmp(key_sha1, l->key_sha1))
127 return l;
129 return NULL;
132 /* Create a new blob object by concatenating the two given blob objects */
133 static int concatenate_notes(unsigned char *cur_sha1,
134 const unsigned char *new_sha1)
136 char *cur_msg, *new_msg, *buf;
137 unsigned long cur_len, new_len, buf_len;
138 enum object_type cur_type, new_type;
139 int ret;
141 /* read in both note blob objects */
142 new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
143 if (!new_msg || !new_len || new_type != OBJ_BLOB) {
144 free(new_msg);
145 return 0;
147 cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
148 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
149 free(cur_msg);
150 free(new_msg);
151 hashcpy(cur_sha1, new_sha1);
152 return 0;
155 /* we will separate the notes by a newline anyway */
156 if (cur_msg[cur_len - 1] == '\n')
157 cur_len--;
159 /* concatenate cur_msg and new_msg into buf */
160 buf_len = cur_len + 1 + new_len;
161 buf = (char *) xmalloc(buf_len);
162 memcpy(buf, cur_msg, cur_len);
163 buf[cur_len] = '\n';
164 memcpy(buf + cur_len + 1, new_msg, new_len);
166 free(cur_msg);
167 free(new_msg);
169 /* create a new blob object from buf */
170 ret = write_sha1_file(buf, buf_len, "blob", cur_sha1);
171 free(buf);
172 return ret;
176 * To insert a leaf_node:
177 * Search to the tree location appropriate for the given leaf_node's key:
178 * - If location is unused (NULL), store the tweaked pointer directly there
179 * - If location holds a note entry that matches the note-to-be-inserted, then
180 * concatenate the two notes.
181 * - If location holds a note entry that matches the subtree-to-be-inserted,
182 * then unpack the subtree-to-be-inserted into the location.
183 * - If location holds a matching subtree entry, unpack the subtree at that
184 * location, and restart the insert operation from that level.
185 * - Else, create a new int_node, holding both the node-at-location and the
186 * node-to-be-inserted, and store the new int_node into the location.
188 static void note_tree_insert(struct int_node *tree, unsigned char n,
189 struct leaf_node *entry, unsigned char type)
191 struct int_node *new_node;
192 struct leaf_node *l;
193 void **p = note_tree_search(&tree, &n, entry->key_sha1);
195 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
196 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
197 switch (GET_PTR_TYPE(*p)) {
198 case PTR_TYPE_NULL:
199 assert(!*p);
200 *p = SET_PTR_TYPE(entry, type);
201 return;
202 case PTR_TYPE_NOTE:
203 switch (type) {
204 case PTR_TYPE_NOTE:
205 if (!hashcmp(l->key_sha1, entry->key_sha1)) {
206 /* skip concatenation if l == entry */
207 if (!hashcmp(l->val_sha1, entry->val_sha1))
208 return;
210 if (concatenate_notes(l->val_sha1,
211 entry->val_sha1))
212 die("failed to concatenate note %s "
213 "into note %s for object %s",
214 sha1_to_hex(entry->val_sha1),
215 sha1_to_hex(l->val_sha1),
216 sha1_to_hex(l->key_sha1));
217 free(entry);
218 return;
220 break;
221 case PTR_TYPE_SUBTREE:
222 if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
223 entry->key_sha1)) {
224 /* unpack 'entry' */
225 load_subtree(entry, tree, n);
226 free(entry);
227 return;
229 break;
231 break;
232 case PTR_TYPE_SUBTREE:
233 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
234 /* unpack 'l' and restart insert */
235 *p = NULL;
236 load_subtree(l, tree, n);
237 free(l);
238 note_tree_insert(tree, n, entry, type);
239 return;
241 break;
244 /* non-matching leaf_node */
245 assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
246 GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
247 new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
248 note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p));
249 *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
250 note_tree_insert(new_node, n + 1, entry, type);
254 * How to consolidate an int_node:
255 * If there are > 1 non-NULL entries, give up and return non-zero.
256 * Otherwise replace the int_node at the given index in the given parent node
257 * with the only entry (or a NULL entry if no entries) from the given tree,
258 * and return 0.
260 static int note_tree_consolidate(struct int_node *tree,
261 struct int_node *parent, unsigned char index)
263 unsigned int i;
264 void *p = NULL;
266 assert(tree && parent);
267 assert(CLR_PTR_TYPE(parent->a[index]) == tree);
269 for (i = 0; i < 16; i++) {
270 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
271 if (p) /* more than one entry */
272 return -2;
273 p = tree->a[i];
277 /* replace tree with p in parent[index] */
278 parent->a[index] = p;
279 free(tree);
280 return 0;
284 * To remove a leaf_node:
285 * Search to the tree location appropriate for the given leaf_node's key:
286 * - If location does not hold a matching entry, abort and do nothing.
287 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
288 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
290 static void note_tree_remove(struct int_node *tree, unsigned char n,
291 struct leaf_node *entry)
293 struct leaf_node *l;
294 struct int_node *parent_stack[20];
295 unsigned char i, j;
296 void **p = note_tree_search(&tree, &n, entry->key_sha1);
298 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
299 if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
300 return; /* type mismatch, nothing to remove */
301 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
302 if (hashcmp(l->key_sha1, entry->key_sha1))
303 return; /* key mismatch, nothing to remove */
305 /* we have found a matching entry */
306 free(l);
307 *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
309 /* consolidate this tree level, and parent levels, if possible */
310 if (!n)
311 return; /* cannot consolidate top level */
312 /* first, build stack of ancestors between root and current node */
313 parent_stack[0] = &root_node;
314 for (i = 0; i < n; i++) {
315 j = GET_NIBBLE(i, entry->key_sha1);
316 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
318 assert(i == n && parent_stack[i] == tree);
319 /* next, unwind stack until note_tree_consolidate() is done */
320 while (i > 0 &&
321 !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
322 GET_NIBBLE(i - 1, entry->key_sha1)))
323 i--;
326 /* Free the entire notes data contained in the given tree */
327 static void note_tree_free(struct int_node *tree)
329 unsigned int i;
330 for (i = 0; i < 16; i++) {
331 void *p = tree->a[i];
332 switch (GET_PTR_TYPE(p)) {
333 case PTR_TYPE_INTERNAL:
334 note_tree_free(CLR_PTR_TYPE(p));
335 /* fall through */
336 case PTR_TYPE_NOTE:
337 case PTR_TYPE_SUBTREE:
338 free(CLR_PTR_TYPE(p));
344 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
345 * - hex - Partial SHA1 segment in ASCII hex format
346 * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40
347 * - sha1 - Partial SHA1 value is written here
348 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
349 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
350 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
351 * Pads sha1 with NULs up to sha1_len (not included in returned length).
353 static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
354 unsigned char *sha1, unsigned int sha1_len)
356 unsigned int i, len = hex_len >> 1;
357 if (hex_len % 2 != 0 || len > sha1_len)
358 return -1;
359 for (i = 0; i < len; i++) {
360 unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
361 if (val & ~0xff)
362 return -1;
363 *sha1++ = val;
364 hex += 2;
366 for (; i < sha1_len; i++)
367 *sha1++ = 0;
368 return len;
371 static void load_subtree(struct leaf_node *subtree, struct int_node *node,
372 unsigned int n)
374 unsigned char object_sha1[20];
375 unsigned int prefix_len;
376 void *buf;
377 struct tree_desc desc;
378 struct name_entry entry;
380 buf = fill_tree_descriptor(&desc, subtree->val_sha1);
381 if (!buf)
382 die("Could not read %s for notes-index",
383 sha1_to_hex(subtree->val_sha1));
385 prefix_len = subtree->key_sha1[19];
386 assert(prefix_len * 2 >= n);
387 memcpy(object_sha1, subtree->key_sha1, prefix_len);
388 while (tree_entry(&desc, &entry)) {
389 int len = get_sha1_hex_segment(entry.path, strlen(entry.path),
390 object_sha1 + prefix_len, 20 - prefix_len);
391 if (len < 0)
392 continue; /* entry.path is not a SHA1 sum. Skip */
393 len += prefix_len;
396 * If object SHA1 is complete (len == 20), assume note object
397 * If object SHA1 is incomplete (len < 20), assume note subtree
399 if (len <= 20) {
400 unsigned char type = PTR_TYPE_NOTE;
401 struct leaf_node *l = (struct leaf_node *)
402 xcalloc(sizeof(struct leaf_node), 1);
403 hashcpy(l->key_sha1, object_sha1);
404 hashcpy(l->val_sha1, entry.sha1);
405 if (len < 20) {
406 if (!S_ISDIR(entry.mode))
407 continue; /* entry cannot be subtree */
408 l->key_sha1[19] = (unsigned char) len;
409 type = PTR_TYPE_SUBTREE;
411 note_tree_insert(node, n, l, type);
414 free(buf);
418 * Determine optimal on-disk fanout for this part of the notes tree
420 * Given a (sub)tree and the level in the internal tree structure, determine
421 * whether or not the given existing fanout should be expanded for this
422 * (sub)tree.
424 * Values of the 'fanout' variable:
425 * - 0: No fanout (all notes are stored directly in the root notes tree)
426 * - 1: 2/38 fanout
427 * - 2: 2/2/36 fanout
428 * - 3: 2/2/2/34 fanout
429 * etc.
431 static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
432 unsigned char fanout)
435 * The following is a simple heuristic that works well in practice:
436 * For each even-numbered 16-tree level (remember that each on-disk
437 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
438 * entries at that tree level. If all of them are either int_nodes or
439 * subtree entries, then there are likely plenty of notes below this
440 * level, so we return an incremented fanout.
442 unsigned int i;
443 if ((n % 2) || (n > 2 * fanout))
444 return fanout;
445 for (i = 0; i < 16; i++) {
446 switch (GET_PTR_TYPE(tree->a[i])) {
447 case PTR_TYPE_SUBTREE:
448 case PTR_TYPE_INTERNAL:
449 continue;
450 default:
451 return fanout;
454 return fanout + 1;
457 static void construct_path_with_fanout(const unsigned char *sha1,
458 unsigned char fanout, char *path)
460 unsigned int i = 0, j = 0;
461 const char *hex_sha1 = sha1_to_hex(sha1);
462 assert(fanout < 20);
463 while (fanout) {
464 path[i++] = hex_sha1[j++];
465 path[i++] = hex_sha1[j++];
466 path[i++] = '/';
467 fanout--;
469 strcpy(path + i, hex_sha1 + j);
472 static int for_each_note_helper(struct int_node *tree, unsigned char n,
473 unsigned char fanout, int flags, each_note_fn fn,
474 void *cb_data)
476 unsigned int i;
477 void *p;
478 int ret = 0;
479 struct leaf_node *l;
480 static char path[40 + 19 + 1]; /* hex SHA1 + 19 * '/' + NUL */
482 fanout = determine_fanout(tree, n, fanout);
483 for (i = 0; i < 16; i++) {
484 redo:
485 p = tree->a[i];
486 switch (GET_PTR_TYPE(p)) {
487 case PTR_TYPE_INTERNAL:
488 /* recurse into int_node */
489 ret = for_each_note_helper(CLR_PTR_TYPE(p), n + 1,
490 fanout, flags, fn, cb_data);
491 break;
492 case PTR_TYPE_SUBTREE:
493 l = (struct leaf_node *) CLR_PTR_TYPE(p);
495 * Subtree entries in the note tree represent parts of
496 * the note tree that have not yet been explored. There
497 * is a direct relationship between subtree entries at
498 * level 'n' in the tree, and the 'fanout' variable:
499 * Subtree entries at level 'n <= 2 * fanout' should be
500 * preserved, since they correspond exactly to a fanout
501 * directory in the on-disk structure. However, subtree
502 * entries at level 'n > 2 * fanout' should NOT be
503 * preserved, but rather consolidated into the above
504 * notes tree level. We achieve this by unconditionally
505 * unpacking subtree entries that exist below the
506 * threshold level at 'n = 2 * fanout'.
508 if (n <= 2 * fanout &&
509 flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
510 /* invoke callback with subtree */
511 unsigned int path_len =
512 l->key_sha1[19] * 2 + fanout;
513 assert(path_len < 40 + 19);
514 construct_path_with_fanout(l->key_sha1, fanout,
515 path);
516 /* Create trailing slash, if needed */
517 if (path[path_len - 1] != '/')
518 path[path_len++] = '/';
519 path[path_len] = '\0';
520 ret = fn(l->key_sha1, l->val_sha1, path,
521 cb_data);
523 if (n > fanout * 2 ||
524 !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
525 /* unpack subtree and resume traversal */
526 tree->a[i] = NULL;
527 load_subtree(l, tree, n);
528 free(l);
529 goto redo;
531 break;
532 case PTR_TYPE_NOTE:
533 l = (struct leaf_node *) CLR_PTR_TYPE(p);
534 construct_path_with_fanout(l->key_sha1, fanout, path);
535 ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
536 break;
538 if (ret)
539 return ret;
541 return 0;
544 struct tree_write_stack {
545 struct tree_write_stack *next;
546 struct strbuf buf;
547 char path[2]; /* path to subtree in next, if any */
550 static inline int matches_tree_write_stack(struct tree_write_stack *tws,
551 const char *full_path)
553 return full_path[0] == tws->path[0] &&
554 full_path[1] == tws->path[1] &&
555 full_path[2] == '/';
558 static void write_tree_entry(struct strbuf *buf, unsigned int mode,
559 const char *path, unsigned int path_len, const
560 unsigned char *sha1)
562 strbuf_addf(buf, "%06o %.*s%c", mode, path_len, path, '\0');
563 strbuf_add(buf, sha1, 20);
566 static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
567 const char *path)
569 struct tree_write_stack *n;
570 assert(!tws->next);
571 assert(tws->path[0] == '\0' && tws->path[1] == '\0');
572 n = (struct tree_write_stack *)
573 xmalloc(sizeof(struct tree_write_stack));
574 n->next = NULL;
575 strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
576 n->path[0] = n->path[1] = '\0';
577 tws->next = n;
578 tws->path[0] = path[0];
579 tws->path[1] = path[1];
582 static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
584 int ret;
585 struct tree_write_stack *n = tws->next;
586 unsigned char s[20];
587 if (n) {
588 ret = tree_write_stack_finish_subtree(n);
589 if (ret)
590 return ret;
591 ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
592 if (ret)
593 return ret;
594 strbuf_release(&n->buf);
595 free(n);
596 tws->next = NULL;
597 write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
598 tws->path[0] = tws->path[1] = '\0';
600 return 0;
603 static int write_each_note_helper(struct tree_write_stack *tws,
604 const char *path, unsigned int mode,
605 const unsigned char *sha1)
607 size_t path_len = strlen(path);
608 unsigned int n = 0;
609 int ret;
611 /* Determine common part of tree write stack */
612 while (tws && 3 * n < path_len &&
613 matches_tree_write_stack(tws, path + 3 * n)) {
614 n++;
615 tws = tws->next;
618 /* tws point to last matching tree_write_stack entry */
619 ret = tree_write_stack_finish_subtree(tws);
620 if (ret)
621 return ret;
623 /* Start subtrees needed to satisfy path */
624 while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
625 tree_write_stack_init_subtree(tws, path + 3 * n);
626 n++;
627 tws = tws->next;
630 /* There should be no more directory components in the given path */
631 assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
633 /* Finally add given entry to the current tree object */
634 write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
635 sha1);
637 return 0;
640 struct write_each_note_data {
641 struct tree_write_stack *root;
644 static int write_each_note(const unsigned char *object_sha1,
645 const unsigned char *note_sha1, char *note_path,
646 void *cb_data)
648 struct write_each_note_data *d =
649 (struct write_each_note_data *) cb_data;
650 size_t note_path_len = strlen(note_path);
651 unsigned int mode = 0100644;
653 if (note_path[note_path_len - 1] == '/') {
654 /* subtree entry */
655 note_path_len--;
656 note_path[note_path_len] = '\0';
657 mode = 040000;
659 assert(note_path_len <= 40 + 19);
661 return write_each_note_helper(d->root, note_path, mode, note_sha1);
664 void init_notes(const char *notes_ref, int flags)
666 unsigned char sha1[20], object_sha1[20];
667 unsigned mode;
668 struct leaf_node root_tree;
670 assert(!initialized);
671 initialized = 1;
673 if (!notes_ref)
674 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
675 if (!notes_ref)
676 notes_ref = notes_ref_name; /* value of core.notesRef config */
677 if (!notes_ref)
678 notes_ref = GIT_NOTES_DEFAULT_REF;
680 if (flags & NOTES_INIT_EMPTY || !notes_ref ||
681 read_ref(notes_ref, object_sha1))
682 return;
683 if (get_tree_entry(object_sha1, "", sha1, &mode))
684 die("Failed to read notes tree referenced by %s (%s)",
685 notes_ref, object_sha1);
687 hashclr(root_tree.key_sha1);
688 hashcpy(root_tree.val_sha1, sha1);
689 load_subtree(&root_tree, &root_node, 0);
692 void add_note(const unsigned char *object_sha1, const unsigned char *note_sha1)
694 struct leaf_node *l;
696 assert(initialized);
697 l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
698 hashcpy(l->key_sha1, object_sha1);
699 hashcpy(l->val_sha1, note_sha1);
700 note_tree_insert(&root_node, 0, l, PTR_TYPE_NOTE);
703 void remove_note(const unsigned char *object_sha1)
705 struct leaf_node l;
707 assert(initialized);
708 hashcpy(l.key_sha1, object_sha1);
709 hashclr(l.val_sha1);
710 return note_tree_remove(&root_node, 0, &l);
713 const unsigned char *get_note(const unsigned char *object_sha1)
715 struct leaf_node *found;
717 assert(initialized);
718 found = note_tree_find(&root_node, 0, object_sha1);
719 return found ? found->val_sha1 : NULL;
722 int for_each_note(int flags, each_note_fn fn, void *cb_data)
724 assert(initialized);
725 return for_each_note_helper(&root_node, 0, 0, flags, fn, cb_data);
728 int write_notes_tree(unsigned char *result)
730 struct tree_write_stack root;
731 struct write_each_note_data cb_data;
732 int ret;
734 assert(initialized);
736 /* Prepare for traversal of current notes tree */
737 root.next = NULL; /* last forward entry in list is grounded */
738 strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
739 root.path[0] = root.path[1] = '\0';
740 cb_data.root = &root;
742 /* Write tree objects representing current notes tree */
743 ret = for_each_note(FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
744 FOR_EACH_NOTE_YIELD_SUBTREES,
745 write_each_note, &cb_data) ||
746 tree_write_stack_finish_subtree(&root) ||
747 write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
748 strbuf_release(&root.buf);
749 return ret;
752 void free_notes(void)
754 note_tree_free(&root_node);
755 memset(&root_node, 0, sizeof(struct int_node));
756 initialized = 0;
759 void format_note(const unsigned char *object_sha1, struct strbuf *sb,
760 const char *output_encoding, int flags)
762 static const char utf8[] = "utf-8";
763 const unsigned char *sha1;
764 char *msg, *msg_p;
765 unsigned long linelen, msglen;
766 enum object_type type;
768 if (!initialized)
769 init_notes(NULL, 0);
771 sha1 = get_note(object_sha1);
772 if (!sha1)
773 return;
775 if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
776 type != OBJ_BLOB) {
777 free(msg);
778 return;
781 if (output_encoding && *output_encoding &&
782 strcmp(utf8, output_encoding)) {
783 char *reencoded = reencode_string(msg, output_encoding, utf8);
784 if (reencoded) {
785 free(msg);
786 msg = reencoded;
787 msglen = strlen(msg);
791 /* we will end the annotation by a newline anyway */
792 if (msglen && msg[msglen - 1] == '\n')
793 msglen--;
795 if (flags & NOTES_SHOW_HEADER)
796 strbuf_addstr(sb, "\nNotes:\n");
798 for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
799 linelen = strchrnul(msg_p, '\n') - msg_p;
801 if (flags & NOTES_INDENT)
802 strbuf_addstr(sb, " ");
803 strbuf_add(sb, msg_p, linelen);
804 strbuf_addch(sb, '\n');
807 free(msg);