Start anew
[git/jnareb-git.git] / lib / perl5 / 5.6.1 / Math / Trig.pm
blobb28f150798d25749e833ca8d6f7b78e08644f049
2 # Trigonometric functions, mostly inherited from Math::Complex.
3 # -- Jarkko Hietaniemi, since April 1997
4 # -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
7 require Exporter;
8 package Math::Trig;
10 use 5.005_64;
11 use strict;
13 use Math::Complex qw(:trig);
15 our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);
17 @ISA = qw(Exporter);
19 $VERSION = 1.00;
21 my @angcnv = qw(rad2deg rad2grad
22 deg2rad deg2grad
23 grad2rad grad2deg);
25 @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
26 @angcnv);
28 my @rdlcnv = qw(cartesian_to_cylindrical
29 cartesian_to_spherical
30 cylindrical_to_cartesian
31 cylindrical_to_spherical
32 spherical_to_cartesian
33 spherical_to_cylindrical);
35 @EXPORT_OK = (@rdlcnv, 'great_circle_distance');
37 %EXPORT_TAGS = ('radial' => [ @rdlcnv ]);
39 sub pi2 () { 2 * pi }
40 sub pip2 () { pi / 2 }
42 sub DR () { pi2/360 }
43 sub RD () { 360/pi2 }
44 sub DG () { 400/360 }
45 sub GD () { 360/400 }
46 sub RG () { 400/pi2 }
47 sub GR () { pi2/400 }
50 # Truncating remainder.
53 sub remt ($$) {
54 # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
55 $_[0] - $_[1] * int($_[0] / $_[1]);
59 # Angle conversions.
62 sub rad2rad($) { remt($_[0], pi2) }
64 sub deg2deg($) { remt($_[0], 360) }
66 sub grad2grad($) { remt($_[0], 400) }
68 sub rad2deg ($;$) { my $d = RD * $_[0]; $_[1] ? $d : deg2deg($d) }
70 sub deg2rad ($;$) { my $d = DR * $_[0]; $_[1] ? $d : rad2rad($d) }
72 sub grad2deg ($;$) { my $d = GD * $_[0]; $_[1] ? $d : deg2deg($d) }
74 sub deg2grad ($;$) { my $d = DG * $_[0]; $_[1] ? $d : grad2grad($d) }
76 sub rad2grad ($;$) { my $d = RG * $_[0]; $_[1] ? $d : grad2grad($d) }
78 sub grad2rad ($;$) { my $d = GR * $_[0]; $_[1] ? $d : rad2rad($d) }
80 sub cartesian_to_spherical {
81 my ( $x, $y, $z ) = @_;
83 my $rho = sqrt( $x * $x + $y * $y + $z * $z );
85 return ( $rho,
86 atan2( $y, $x ),
87 $rho ? acos( $z / $rho ) : 0 );
90 sub spherical_to_cartesian {
91 my ( $rho, $theta, $phi ) = @_;
93 return ( $rho * cos( $theta ) * sin( $phi ),
94 $rho * sin( $theta ) * sin( $phi ),
95 $rho * cos( $phi ) );
98 sub spherical_to_cylindrical {
99 my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
101 return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
104 sub cartesian_to_cylindrical {
105 my ( $x, $y, $z ) = @_;
107 return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
110 sub cylindrical_to_cartesian {
111 my ( $rho, $theta, $z ) = @_;
113 return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
116 sub cylindrical_to_spherical {
117 return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
120 sub great_circle_distance {
121 my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
123 $rho = 1 unless defined $rho; # Default to the unit sphere.
125 my $lat0 = pip2 - $phi0;
126 my $lat1 = pip2 - $phi1;
128 return $rho *
129 acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
130 sin( $lat0 ) * sin( $lat1 ) );
133 =pod
135 =head1 NAME
137 Math::Trig - trigonometric functions
139 =head1 SYNOPSIS
141 use Math::Trig;
143 $x = tan(0.9);
144 $y = acos(3.7);
145 $z = asin(2.4);
147 $halfpi = pi/2;
149 $rad = deg2rad(120);
151 =head1 DESCRIPTION
153 C<Math::Trig> defines many trigonometric functions not defined by the
154 core Perl which defines only the C<sin()> and C<cos()>. The constant
155 B<pi> is also defined as are a few convenience functions for angle
156 conversions.
158 =head1 TRIGONOMETRIC FUNCTIONS
160 The tangent
162 =over 4
164 =item B<tan>
166 =back
168 The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
169 are aliases)
171 B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
173 The arcus (also known as the inverse) functions of the sine, cosine,
174 and tangent
176 B<asin>, B<acos>, B<atan>
178 The principal value of the arc tangent of y/x
180 B<atan2>(y, x)
182 The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
183 and acotan/acot are aliases)
185 B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
187 The hyperbolic sine, cosine, and tangent
189 B<sinh>, B<cosh>, B<tanh>
191 The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
192 and cotanh/coth are aliases)
194 B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
196 The arcus (also known as the inverse) functions of the hyperbolic
197 sine, cosine, and tangent
199 B<asinh>, B<acosh>, B<atanh>
201 The arcus cofunctions of the hyperbolic sine, cosine, and tangent
202 (acsch/acosech and acoth/acotanh are aliases)
204 B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
206 The trigonometric constant B<pi> is also defined.
208 $pi2 = 2 * B<pi>;
210 =head2 ERRORS DUE TO DIVISION BY ZERO
212 The following functions
214 acoth
215 acsc
216 acsch
217 asec
218 asech
219 atanh
221 coth
223 csch
225 sech
227 tanh
229 cannot be computed for all arguments because that would mean dividing
230 by zero or taking logarithm of zero. These situations cause fatal
231 runtime errors looking like this
233 cot(0): Division by zero.
234 (Because in the definition of cot(0), the divisor sin(0) is 0)
235 Died at ...
239 atanh(-1): Logarithm of zero.
240 Died at...
242 For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
243 C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
244 C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
245 C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
246 C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
247 pi>, where I<k> is any integer.
249 =head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
251 Please note that some of the trigonometric functions can break out
252 from the B<real axis> into the B<complex plane>. For example
253 C<asin(2)> has no definition for plain real numbers but it has
254 definition for complex numbers.
256 In Perl terms this means that supplying the usual Perl numbers (also
257 known as scalars, please see L<perldata>) as input for the
258 trigonometric functions might produce as output results that no more
259 are simple real numbers: instead they are complex numbers.
261 The C<Math::Trig> handles this by using the C<Math::Complex> package
262 which knows how to handle complex numbers, please see L<Math::Complex>
263 for more information. In practice you need not to worry about getting
264 complex numbers as results because the C<Math::Complex> takes care of
265 details like for example how to display complex numbers. For example:
267 print asin(2), "\n";
269 should produce something like this (take or leave few last decimals):
271 1.5707963267949-1.31695789692482i
273 That is, a complex number with the real part of approximately C<1.571>
274 and the imaginary part of approximately C<-1.317>.
276 =head1 PLANE ANGLE CONVERSIONS
278 (Plane, 2-dimensional) angles may be converted with the following functions.
280 $radians = deg2rad($degrees);
281 $radians = grad2rad($gradians);
283 $degrees = rad2deg($radians);
284 $degrees = grad2deg($gradians);
286 $gradians = deg2grad($degrees);
287 $gradians = rad2grad($radians);
289 The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
290 The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.
291 If you don't want this, supply a true second argument:
293 $zillions_of_radians = deg2rad($zillions_of_degrees, 1);
294 $negative_degrees = rad2deg($negative_radians, 1);
296 You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
297 grad2grad().
299 =head1 RADIAL COORDINATE CONVERSIONS
301 B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
302 systems, explained shortly in more detail.
304 You can import radial coordinate conversion functions by using the
305 C<:radial> tag:
307 use Math::Trig ':radial';
309 ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
310 ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
311 ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
312 ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
313 ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
314 ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
316 B<All angles are in radians>.
318 =head2 COORDINATE SYSTEMS
320 B<Cartesian> coordinates are the usual rectangular I<(x, y,
321 z)>-coordinates.
323 Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
324 coordinates which define a point in three-dimensional space. They are
325 based on a sphere surface. The radius of the sphere is B<rho>, also
326 known as the I<radial> coordinate. The angle in the I<xy>-plane
327 (around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
328 coordinate. The angle from the I<z>-axis is B<phi>, also known as the
329 I<polar> coordinate. The `North Pole' is therefore I<0, 0, rho>, and
330 the `Bay of Guinea' (think of the missing big chunk of Africa) I<0,
331 pi/2, rho>. In geographical terms I<phi> is latitude (northward
332 positive, southward negative) and I<theta> is longitude (eastward
333 positive, westward negative).
335 B<BEWARE>: some texts define I<theta> and I<phi> the other way round,
336 some texts define the I<phi> to start from the horizontal plane, some
337 texts use I<r> in place of I<rho>.
339 Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
340 coordinates which define a point in three-dimensional space. They are
341 based on a cylinder surface. The radius of the cylinder is B<rho>,
342 also known as the I<radial> coordinate. The angle in the I<xy>-plane
343 (around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
344 coordinate. The third coordinate is the I<z>, pointing up from the
345 B<theta>-plane.
347 =head2 3-D ANGLE CONVERSIONS
349 Conversions to and from spherical and cylindrical coordinates are
350 available. Please notice that the conversions are not necessarily
351 reversible because of the equalities like I<pi> angles being equal to
352 I<-pi> angles.
354 =over 4
356 =item cartesian_to_cylindrical
358 ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
360 =item cartesian_to_spherical
362 ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
364 =item cylindrical_to_cartesian
366 ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
368 =item cylindrical_to_spherical
370 ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
372 Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
374 =item spherical_to_cartesian
376 ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
378 =item spherical_to_cylindrical
380 ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
382 Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
384 =back
386 =head1 GREAT CIRCLE DISTANCES
388 You can compute spherical distances, called B<great circle distances>,
389 by importing the C<great_circle_distance> function:
391 use Math::Trig 'great_circle_distance'
393 $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
395 The I<great circle distance> is the shortest distance between two
396 points on a sphere. The distance is in C<$rho> units. The C<$rho> is
397 optional, it defaults to 1 (the unit sphere), therefore the distance
398 defaults to radians.
400 If you think geographically the I<theta> are longitudes: zero at the
401 Greenwhich meridian, eastward positive, westward negative--and the
402 I<phi> are latitudes: zero at the North Pole, northward positive,
403 southward negative. B<NOTE>: this formula thinks in mathematics, not
404 geographically: the I<phi> zero is at the North Pole, not at the
405 Equator on the west coast of Africa (Bay of Guinea). You need to
406 subtract your geographical coordinates from I<pi/2> (also known as 90
407 degrees).
409 $distance = great_circle_distance($lon0, pi/2 - $lat0,
410 $lon1, pi/2 - $lat1, $rho);
412 =head1 EXAMPLES
414 To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N
415 139.8E) in kilometers:
417 use Math::Trig qw(great_circle_distance deg2rad);
419 # Notice the 90 - latitude: phi zero is at the North Pole.
420 @L = (deg2rad(-0.5), deg2rad(90 - 51.3));
421 @T = (deg2rad(139.8),deg2rad(90 - 35.7));
423 $km = great_circle_distance(@L, @T, 6378);
425 The answer may be off by few percentages because of the irregular
426 (slightly aspherical) form of the Earth. The used formula
428 lat0 = 90 degrees - phi0
429 lat1 = 90 degrees - phi1
430 d = R * arccos(cos(lat0) * cos(lat1) * cos(lon1 - lon01) +
431 sin(lat0) * sin(lat1))
433 is also somewhat unreliable for small distances (for locations
434 separated less than about five degrees) because it uses arc cosine
435 which is rather ill-conditioned for values close to zero.
437 =head1 BUGS
439 Saying C<use Math::Trig;> exports many mathematical routines in the
440 caller environment and even overrides some (C<sin>, C<cos>). This is
441 construed as a feature by the Authors, actually... ;-)
443 The code is not optimized for speed, especially because we use
444 C<Math::Complex> and thus go quite near complex numbers while doing
445 the computations even when the arguments are not. This, however,
446 cannot be completely avoided if we want things like C<asin(2)> to give
447 an answer instead of giving a fatal runtime error.
449 =head1 AUTHORS
451 Jarkko Hietaniemi <F<jhi@iki.fi>> and
452 Raphael Manfredi <F<Raphael_Manfredi@pobox.com>>.
454 =cut
456 # eof