2 * LibXDiff by Davide Libenzi ( File Differential Library )
3 * Copyright (C) 2003 Davide Libenzi
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Davide Libenzi <davidel@xmailserver.org>
27 #define XDL_MAX_COST_MIN 256
28 #define XDL_HEUR_MIN_COST 256
29 #define XDL_LINE_MAX (long)((1UL << (8 * sizeof(long) - 1)) - 1)
30 #define XDL_SNAKE_CNT 20
35 typedef struct s_xdpsplit
{
43 static long xdl_split(unsigned long const *ha1
, long off1
, long lim1
,
44 unsigned long const *ha2
, long off2
, long lim2
,
45 long *kvdf
, long *kvdb
, int need_min
, xdpsplit_t
*spl
,
47 static xdchange_t
*xdl_add_change(xdchange_t
*xscr
, long i1
, long i2
, long chg1
, long chg2
);
48 static int xdl_change_compact(xdfile_t
*xdf
, xdfile_t
*xdfo
);
55 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
56 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
57 * the forward diagonal starting from (off1, off2) and the backward diagonal
58 * starting from (lim1, lim2). If the K values on the same diagonal crosses
59 * returns the furthest point of reach. We might end up having to expensive
60 * cases using this algorithm is full, so a little bit of heuristic is needed
61 * to cut the search and to return a suboptimal point.
63 static long xdl_split(unsigned long const *ha1
, long off1
, long lim1
,
64 unsigned long const *ha2
, long off2
, long lim2
,
65 long *kvdf
, long *kvdb
, int need_min
, xdpsplit_t
*spl
,
67 long dmin
= off1
- lim2
, dmax
= lim1
- off2
;
68 long fmid
= off1
- off2
, bmid
= lim1
- lim2
;
69 long odd
= (fmid
- bmid
) & 1;
70 long fmin
= fmid
, fmax
= fmid
;
71 long bmin
= bmid
, bmax
= bmid
;
72 long ec
, d
, i1
, i2
, prev1
, best
, dd
, v
, k
;
75 * Set initial diagonal values for both forward and backward path.
84 * We need to extent the diagonal "domain" by one. If the next
85 * values exits the box boundaries we need to change it in the
86 * opposite direction because (max - min) must be a power of two.
87 * Also we initialize the extenal K value to -1 so that we can
88 * avoid extra conditions check inside the core loop.
91 kvdf
[--fmin
- 1] = -1;
95 kvdf
[++fmax
+ 1] = -1;
99 for (d
= fmax
; d
>= fmin
; d
-= 2) {
100 if (kvdf
[d
- 1] >= kvdf
[d
+ 1])
101 i1
= kvdf
[d
- 1] + 1;
106 for (; i1
< lim1
&& i2
< lim2
&& ha1
[i1
] == ha2
[i2
]; i1
++, i2
++);
107 if (i1
- prev1
> xenv
->snake_cnt
)
110 if (odd
&& bmin
<= d
&& d
<= bmax
&& kvdb
[d
] <= i1
) {
113 spl
->min_lo
= spl
->min_hi
= 1;
119 * We need to extent the diagonal "domain" by one. If the next
120 * values exits the box boundaries we need to change it in the
121 * opposite direction because (max - min) must be a power of two.
122 * Also we initialize the extenal K value to -1 so that we can
123 * avoid extra conditions check inside the core loop.
126 kvdb
[--bmin
- 1] = XDL_LINE_MAX
;
130 kvdb
[++bmax
+ 1] = XDL_LINE_MAX
;
134 for (d
= bmax
; d
>= bmin
; d
-= 2) {
135 if (kvdb
[d
- 1] < kvdb
[d
+ 1])
138 i1
= kvdb
[d
+ 1] - 1;
141 for (; i1
> off1
&& i2
> off2
&& ha1
[i1
- 1] == ha2
[i2
- 1]; i1
--, i2
--);
142 if (prev1
- i1
> xenv
->snake_cnt
)
145 if (!odd
&& fmin
<= d
&& d
<= fmax
&& i1
<= kvdf
[d
]) {
148 spl
->min_lo
= spl
->min_hi
= 1;
157 * If the edit cost is above the heuristic trigger and if
158 * we got a good snake, we sample current diagonals to see
159 * if some of the, have reached an "interesting" path. Our
160 * measure is a function of the distance from the diagonal
161 * corner (i1 + i2) penalized with the distance from the
162 * mid diagonal itself. If this value is above the current
163 * edit cost times a magic factor (XDL_K_HEUR) we consider
166 if (got_snake
&& ec
> xenv
->heur_min
) {
167 for (best
= 0, d
= fmax
; d
>= fmin
; d
-= 2) {
168 dd
= d
> fmid
? d
- fmid
: fmid
- d
;
171 v
= (i1
- off1
) + (i2
- off2
) - dd
;
173 if (v
> XDL_K_HEUR
* ec
&& v
> best
&&
174 off1
+ xenv
->snake_cnt
<= i1
&& i1
< lim1
&&
175 off2
+ xenv
->snake_cnt
<= i2
&& i2
< lim2
) {
176 for (k
= 1; ha1
[i1
- k
] == ha2
[i2
- k
]; k
++)
177 if (k
== xenv
->snake_cnt
) {
191 for (best
= 0, d
= bmax
; d
>= bmin
; d
-= 2) {
192 dd
= d
> bmid
? d
- bmid
: bmid
- d
;
195 v
= (lim1
- i1
) + (lim2
- i2
) - dd
;
197 if (v
> XDL_K_HEUR
* ec
&& v
> best
&&
198 off1
< i1
&& i1
<= lim1
- xenv
->snake_cnt
&&
199 off2
< i2
&& i2
<= lim2
- xenv
->snake_cnt
) {
200 for (k
= 0; ha1
[i1
+ k
] == ha2
[i2
+ k
]; k
++)
201 if (k
== xenv
->snake_cnt
- 1) {
217 * Enough is enough. We spent too much time here and now we collect
218 * the furthest reaching path using the (i1 + i2) measure.
220 if (ec
>= xenv
->mxcost
) {
221 long fbest
, fbest1
, bbest
, bbest1
;
224 for (d
= fmax
; d
>= fmin
; d
-= 2) {
225 i1
= XDL_MIN(kvdf
[d
], lim1
);
228 i1
= lim2
+ d
, i2
= lim2
;
229 if (fbest
< i1
+ i2
) {
235 bbest
= bbest1
= XDL_LINE_MAX
;
236 for (d
= bmax
; d
>= bmin
; d
-= 2) {
237 i1
= XDL_MAX(off1
, kvdb
[d
]);
240 i1
= off2
+ d
, i2
= off2
;
241 if (i1
+ i2
< bbest
) {
247 if ((lim1
+ lim2
) - bbest
< fbest
- (off1
+ off2
)) {
249 spl
->i2
= fbest
- fbest1
;
254 spl
->i2
= bbest
- bbest1
;
267 * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
268 * the box splitting function. Note that the real job (marking changed lines)
269 * is done in the two boundary reaching checks.
271 int xdl_recs_cmp(diffdata_t
*dd1
, long off1
, long lim1
,
272 diffdata_t
*dd2
, long off2
, long lim2
,
273 long *kvdf
, long *kvdb
, int need_min
, xdalgoenv_t
*xenv
) {
274 unsigned long const *ha1
= dd1
->ha
, *ha2
= dd2
->ha
;
277 * Shrink the box by walking through each diagonal snake (SW and NE).
279 for (; off1
< lim1
&& off2
< lim2
&& ha1
[off1
] == ha2
[off2
]; off1
++, off2
++);
280 for (; off1
< lim1
&& off2
< lim2
&& ha1
[lim1
- 1] == ha2
[lim2
- 1]; lim1
--, lim2
--);
283 * If one dimension is empty, then all records on the other one must
284 * be obviously changed.
287 char *rchg2
= dd2
->rchg
;
288 long *rindex2
= dd2
->rindex
;
290 for (; off2
< lim2
; off2
++)
291 rchg2
[rindex2
[off2
]] = 1;
292 } else if (off2
== lim2
) {
293 char *rchg1
= dd1
->rchg
;
294 long *rindex1
= dd1
->rindex
;
296 for (; off1
< lim1
; off1
++)
297 rchg1
[rindex1
[off1
]] = 1;
306 if ((ec
= xdl_split(ha1
, off1
, lim1
, ha2
, off2
, lim2
, kvdf
, kvdb
,
307 need_min
, &spl
, xenv
)) < 0) {
315 if (xdl_recs_cmp(dd1
, off1
, spl
.i1
, dd2
, off2
, spl
.i2
,
316 kvdf
, kvdb
, spl
.min_lo
, xenv
) < 0 ||
317 xdl_recs_cmp(dd1
, spl
.i1
, lim1
, dd2
, spl
.i2
, lim2
,
318 kvdf
, kvdb
, spl
.min_hi
, xenv
) < 0) {
328 int xdl_do_diff(mmfile_t
*mf1
, mmfile_t
*mf2
, xpparam_t
const *xpp
,
331 long *kvd
, *kvdf
, *kvdb
;
335 if (xdl_prepare_env(mf1
, mf2
, xpp
, xe
) < 0) {
341 * Allocate and setup K vectors to be used by the differential algorithm.
342 * One is to store the forward path and one to store the backward path.
344 ndiags
= xe
->xdf1
.nreff
+ xe
->xdf2
.nreff
+ 3;
345 if (!(kvd
= (long *) xdl_malloc((2 * ndiags
+ 2) * sizeof(long)))) {
351 kvdb
= kvdf
+ ndiags
;
352 kvdf
+= xe
->xdf2
.nreff
+ 1;
353 kvdb
+= xe
->xdf2
.nreff
+ 1;
355 xenv
.mxcost
= xdl_bogosqrt(ndiags
);
356 if (xenv
.mxcost
< XDL_MAX_COST_MIN
)
357 xenv
.mxcost
= XDL_MAX_COST_MIN
;
358 xenv
.snake_cnt
= XDL_SNAKE_CNT
;
359 xenv
.heur_min
= XDL_HEUR_MIN_COST
;
361 dd1
.nrec
= xe
->xdf1
.nreff
;
362 dd1
.ha
= xe
->xdf1
.ha
;
363 dd1
.rchg
= xe
->xdf1
.rchg
;
364 dd1
.rindex
= xe
->xdf1
.rindex
;
365 dd2
.nrec
= xe
->xdf2
.nreff
;
366 dd2
.ha
= xe
->xdf2
.ha
;
367 dd2
.rchg
= xe
->xdf2
.rchg
;
368 dd2
.rindex
= xe
->xdf2
.rindex
;
370 if (xdl_recs_cmp(&dd1
, 0, dd1
.nrec
, &dd2
, 0, dd2
.nrec
,
371 kvdf
, kvdb
, (xpp
->flags
& XDF_NEED_MINIMAL
) != 0, &xenv
) < 0) {
384 static xdchange_t
*xdl_add_change(xdchange_t
*xscr
, long i1
, long i2
, long chg1
, long chg2
) {
387 if (!(xch
= (xdchange_t
*) xdl_malloc(sizeof(xdchange_t
))))
400 static int xdl_change_compact(xdfile_t
*xdf
, xdfile_t
*xdfo
) {
401 long ix
, ixo
, ixs
, ixref
, grpsiz
, nrec
= xdf
->nrec
;
402 char *rchg
= xdf
->rchg
, *rchgo
= xdfo
->rchg
;
403 xrecord_t
**recs
= xdf
->recs
;
406 * This is the same of what GNU diff does. Move back and forward
407 * change groups for a consistent and pretty diff output. This also
408 * helps in finding joineable change groups and reduce the diff size.
410 for (ix
= ixo
= 0;;) {
412 * Find the first changed line in the to-be-compacted file.
413 * We need to keep track of both indexes, so if we find a
414 * changed lines group on the other file, while scanning the
415 * to-be-compacted file, we need to skip it properly. Note
416 * that loops that are testing for changed lines on rchg* do
417 * not need index bounding since the array is prepared with
418 * a zero at position -1 and N.
420 for (; ix
< nrec
&& !rchg
[ix
]; ix
++)
421 while (rchgo
[ixo
++]);
426 * Record the start of a changed-group in the to-be-compacted file
427 * and find the end of it, on both to-be-compacted and other file
428 * indexes (ix and ixo).
431 for (ix
++; rchg
[ix
]; ix
++);
432 for (; rchgo
[ixo
]; ixo
++);
438 * If the line before the current change group, is equal to
439 * the last line of the current change group, shift backward
442 while (ixs
> 0 && recs
[ixs
- 1]->ha
== recs
[ix
- 1]->ha
&&
443 XDL_RECMATCH(recs
[ixs
- 1], recs
[ix
- 1])) {
448 * This change might have joined two change groups,
449 * so we try to take this scenario in account by moving
450 * the start index accordingly (and so the other-file
451 * end-of-group index).
453 for (; rchg
[ixs
- 1]; ixs
--);
454 while (rchgo
[--ixo
]);
458 * Record the end-of-group position in case we are matched
459 * with a group of changes in the other file (that is, the
460 * change record before the enf-of-group index in the other
463 ixref
= rchgo
[ixo
- 1] ? ix
: nrec
;
466 * If the first line of the current change group, is equal to
467 * the line next of the current change group, shift forward
470 while (ix
< nrec
&& recs
[ixs
]->ha
== recs
[ix
]->ha
&&
471 XDL_RECMATCH(recs
[ixs
], recs
[ix
])) {
476 * This change might have joined two change groups,
477 * so we try to take this scenario in account by moving
478 * the start index accordingly (and so the other-file
479 * end-of-group index). Keep tracking the reference
480 * index in case we are shifting together with a
481 * corresponding group of changes in the other file.
483 for (; rchg
[ix
]; ix
++);
487 } while (grpsiz
!= ix
- ixs
);
490 * Try to move back the possibly merged group of changes, to match
491 * the recorded postion in the other file.
496 while (rchgo
[--ixo
]);
504 int xdl_build_script(xdfenv_t
*xe
, xdchange_t
**xscr
) {
505 xdchange_t
*cscr
= NULL
, *xch
;
506 char *rchg1
= xe
->xdf1
.rchg
, *rchg2
= xe
->xdf2
.rchg
;
510 * Trivial. Collects "groups" of changes and creates an edit script.
512 for (i1
= xe
->xdf1
.nrec
, i2
= xe
->xdf2
.nrec
; i1
>= 0 || i2
>= 0; i1
--, i2
--)
513 if (rchg1
[i1
- 1] || rchg2
[i2
- 1]) {
514 for (l1
= i1
; rchg1
[i1
- 1]; i1
--);
515 for (l2
= i2
; rchg2
[i2
- 1]; i2
--);
517 if (!(xch
= xdl_add_change(cscr
, i1
, i2
, l1
- i1
, l2
- i2
))) {
518 xdl_free_script(cscr
);
530 void xdl_free_script(xdchange_t
*xscr
) {
533 while ((xch
= xscr
) != NULL
) {
540 int xdl_diff(mmfile_t
*mf1
, mmfile_t
*mf2
, xpparam_t
const *xpp
,
541 xdemitconf_t
const *xecfg
, xdemitcb_t
*ecb
) {
545 if (xdl_do_diff(mf1
, mf2
, xpp
, &xe
) < 0) {
549 if (xdl_change_compact(&xe
.xdf1
, &xe
.xdf2
) < 0 ||
550 xdl_change_compact(&xe
.xdf2
, &xe
.xdf1
) < 0 ||
551 xdl_build_script(&xe
, &xscr
) < 0) {
557 if (xdl_emit_diff(&xe
, xscr
, ecb
, xecfg
) < 0) {
559 xdl_free_script(xscr
);
563 xdl_free_script(xscr
);