object: add object_array initializer helper function
[git/gitster.git] / builtin / fsmonitor--daemon.c
blobf6dd9a784c195e6ff5368b1b86c1eaa0c6c4b4c0
1 #include "builtin.h"
2 #include "abspath.h"
3 #include "alloc.h"
4 #include "config.h"
5 #include "environment.h"
6 #include "gettext.h"
7 #include "parse-options.h"
8 #include "fsmonitor.h"
9 #include "fsmonitor-ipc.h"
10 #include "fsmonitor-path-utils.h"
11 #include "compat/fsmonitor/fsm-health.h"
12 #include "compat/fsmonitor/fsm-listen.h"
13 #include "fsmonitor--daemon.h"
14 #include "simple-ipc.h"
15 #include "khash.h"
16 #include "pkt-line.h"
17 #include "trace2.h"
19 static const char * const builtin_fsmonitor__daemon_usage[] = {
20 N_("git fsmonitor--daemon start [<options>]"),
21 N_("git fsmonitor--daemon run [<options>]"),
22 "git fsmonitor--daemon stop",
23 "git fsmonitor--daemon status",
24 NULL
27 #ifdef HAVE_FSMONITOR_DAEMON_BACKEND
29 * Global state loaded from config.
31 #define FSMONITOR__IPC_THREADS "fsmonitor.ipcthreads"
32 static int fsmonitor__ipc_threads = 8;
34 #define FSMONITOR__START_TIMEOUT "fsmonitor.starttimeout"
35 static int fsmonitor__start_timeout_sec = 60;
37 #define FSMONITOR__ANNOUNCE_STARTUP "fsmonitor.announcestartup"
38 static int fsmonitor__announce_startup = 0;
40 static int fsmonitor_config(const char *var, const char *value, void *cb)
42 if (!strcmp(var, FSMONITOR__IPC_THREADS)) {
43 int i = git_config_int(var, value);
44 if (i < 1)
45 return error(_("value of '%s' out of range: %d"),
46 FSMONITOR__IPC_THREADS, i);
47 fsmonitor__ipc_threads = i;
48 return 0;
51 if (!strcmp(var, FSMONITOR__START_TIMEOUT)) {
52 int i = git_config_int(var, value);
53 if (i < 0)
54 return error(_("value of '%s' out of range: %d"),
55 FSMONITOR__START_TIMEOUT, i);
56 fsmonitor__start_timeout_sec = i;
57 return 0;
60 if (!strcmp(var, FSMONITOR__ANNOUNCE_STARTUP)) {
61 int is_bool;
62 int i = git_config_bool_or_int(var, value, &is_bool);
63 if (i < 0)
64 return error(_("value of '%s' not bool or int: %d"),
65 var, i);
66 fsmonitor__announce_startup = i;
67 return 0;
70 return git_default_config(var, value, cb);
74 * Acting as a CLIENT.
76 * Send a "quit" command to the `git-fsmonitor--daemon` (if running)
77 * and wait for it to shutdown.
79 static int do_as_client__send_stop(void)
81 struct strbuf answer = STRBUF_INIT;
82 int ret;
84 ret = fsmonitor_ipc__send_command("quit", &answer);
86 /* The quit command does not return any response data. */
87 strbuf_release(&answer);
89 if (ret)
90 return ret;
92 trace2_region_enter("fsm_client", "polling-for-daemon-exit", NULL);
93 while (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
94 sleep_millisec(50);
95 trace2_region_leave("fsm_client", "polling-for-daemon-exit", NULL);
97 return 0;
100 static int do_as_client__status(void)
102 enum ipc_active_state state = fsmonitor_ipc__get_state();
104 switch (state) {
105 case IPC_STATE__LISTENING:
106 printf(_("fsmonitor-daemon is watching '%s'\n"),
107 the_repository->worktree);
108 return 0;
110 default:
111 printf(_("fsmonitor-daemon is not watching '%s'\n"),
112 the_repository->worktree);
113 return 1;
117 enum fsmonitor_cookie_item_result {
118 FCIR_ERROR = -1, /* could not create cookie file ? */
119 FCIR_INIT,
120 FCIR_SEEN,
121 FCIR_ABORT,
124 struct fsmonitor_cookie_item {
125 struct hashmap_entry entry;
126 char *name;
127 enum fsmonitor_cookie_item_result result;
130 static int cookies_cmp(const void *data, const struct hashmap_entry *he1,
131 const struct hashmap_entry *he2, const void *keydata)
133 const struct fsmonitor_cookie_item *a =
134 container_of(he1, const struct fsmonitor_cookie_item, entry);
135 const struct fsmonitor_cookie_item *b =
136 container_of(he2, const struct fsmonitor_cookie_item, entry);
138 return strcmp(a->name, keydata ? keydata : b->name);
141 static enum fsmonitor_cookie_item_result with_lock__wait_for_cookie(
142 struct fsmonitor_daemon_state *state)
144 /* assert current thread holding state->main_lock */
146 int fd;
147 struct fsmonitor_cookie_item *cookie;
148 struct strbuf cookie_pathname = STRBUF_INIT;
149 struct strbuf cookie_filename = STRBUF_INIT;
150 enum fsmonitor_cookie_item_result result;
151 int my_cookie_seq;
153 CALLOC_ARRAY(cookie, 1);
155 my_cookie_seq = state->cookie_seq++;
157 strbuf_addf(&cookie_filename, "%i-%i", getpid(), my_cookie_seq);
159 strbuf_addbuf(&cookie_pathname, &state->path_cookie_prefix);
160 strbuf_addbuf(&cookie_pathname, &cookie_filename);
162 cookie->name = strbuf_detach(&cookie_filename, NULL);
163 cookie->result = FCIR_INIT;
164 hashmap_entry_init(&cookie->entry, strhash(cookie->name));
166 hashmap_add(&state->cookies, &cookie->entry);
168 trace_printf_key(&trace_fsmonitor, "cookie-wait: '%s' '%s'",
169 cookie->name, cookie_pathname.buf);
172 * Create the cookie file on disk and then wait for a notification
173 * that the listener thread has seen it.
175 fd = open(cookie_pathname.buf, O_WRONLY | O_CREAT | O_EXCL, 0600);
176 if (fd < 0) {
177 error_errno(_("could not create fsmonitor cookie '%s'"),
178 cookie->name);
180 cookie->result = FCIR_ERROR;
181 goto done;
185 * Technically, close() and unlink() can fail, but we don't
186 * care here. We only created the file to trigger a watch
187 * event from the FS to know that when we're up to date.
189 close(fd);
190 unlink(cookie_pathname.buf);
193 * Technically, this is an infinite wait (well, unless another
194 * thread sends us an abort). I'd like to change this to
195 * use `pthread_cond_timedwait()` and return an error/timeout
196 * and let the caller do the trivial response thing, but we
197 * don't have that routine in our thread-utils.
199 * After extensive beta testing I'm not really worried about
200 * this. Also note that the above open() and unlink() calls
201 * will cause at least two FS events on that path, so the odds
202 * of getting stuck are pretty slim.
204 while (cookie->result == FCIR_INIT)
205 pthread_cond_wait(&state->cookies_cond,
206 &state->main_lock);
208 done:
209 hashmap_remove(&state->cookies, &cookie->entry, NULL);
211 result = cookie->result;
213 free(cookie->name);
214 free(cookie);
215 strbuf_release(&cookie_pathname);
217 return result;
221 * Mark these cookies as _SEEN and wake up the corresponding client threads.
223 static void with_lock__mark_cookies_seen(struct fsmonitor_daemon_state *state,
224 const struct string_list *cookie_names)
226 /* assert current thread holding state->main_lock */
228 int k;
229 int nr_seen = 0;
231 for (k = 0; k < cookie_names->nr; k++) {
232 struct fsmonitor_cookie_item key;
233 struct fsmonitor_cookie_item *cookie;
235 key.name = cookie_names->items[k].string;
236 hashmap_entry_init(&key.entry, strhash(key.name));
238 cookie = hashmap_get_entry(&state->cookies, &key, entry, NULL);
239 if (cookie) {
240 trace_printf_key(&trace_fsmonitor, "cookie-seen: '%s'",
241 cookie->name);
242 cookie->result = FCIR_SEEN;
243 nr_seen++;
247 if (nr_seen)
248 pthread_cond_broadcast(&state->cookies_cond);
252 * Set _ABORT on all pending cookies and wake up all client threads.
254 static void with_lock__abort_all_cookies(struct fsmonitor_daemon_state *state)
256 /* assert current thread holding state->main_lock */
258 struct hashmap_iter iter;
259 struct fsmonitor_cookie_item *cookie;
260 int nr_aborted = 0;
262 hashmap_for_each_entry(&state->cookies, &iter, cookie, entry) {
263 trace_printf_key(&trace_fsmonitor, "cookie-abort: '%s'",
264 cookie->name);
265 cookie->result = FCIR_ABORT;
266 nr_aborted++;
269 if (nr_aborted)
270 pthread_cond_broadcast(&state->cookies_cond);
274 * Requests to and from a FSMonitor Protocol V2 provider use an opaque
275 * "token" as a virtual timestamp. Clients can request a summary of all
276 * created/deleted/modified files relative to a token. In the response,
277 * clients receive a new token for the next (relative) request.
280 * Token Format
281 * ============
283 * The contents of the token are private and provider-specific.
285 * For the built-in fsmonitor--daemon, we define a token as follows:
287 * "builtin" ":" <token_id> ":" <sequence_nr>
289 * The "builtin" prefix is used as a namespace to avoid conflicts
290 * with other providers (such as Watchman).
292 * The <token_id> is an arbitrary OPAQUE string, such as a GUID,
293 * UUID, or {timestamp,pid}. It is used to group all filesystem
294 * events that happened while the daemon was monitoring (and in-sync
295 * with the filesystem).
297 * Unlike FSMonitor Protocol V1, it is not defined as a timestamp
298 * and does not define less-than/greater-than relationships.
299 * (There are too many race conditions to rely on file system
300 * event timestamps.)
302 * The <sequence_nr> is a simple integer incremented whenever the
303 * daemon needs to make its state public. For example, if 1000 file
304 * system events come in, but no clients have requested the data,
305 * the daemon can continue to accumulate file changes in the same
306 * bin and does not need to advance the sequence number. However,
307 * as soon as a client does arrive, the daemon needs to start a new
308 * bin and increment the sequence number.
310 * The sequence number serves as the boundary between 2 sets
311 * of bins -- the older ones that the client has already seen
312 * and the newer ones that it hasn't.
314 * When a new <token_id> is created, the <sequence_nr> is reset to
315 * zero.
318 * About Token Ids
319 * ===============
321 * A new token_id is created:
323 * [1] each time the daemon is started.
325 * [2] any time that the daemon must re-sync with the filesystem
326 * (such as when the kernel drops or we miss events on a very
327 * active volume).
329 * [3] in response to a client "flush" command (for dropped event
330 * testing).
332 * When a new token_id is created, the daemon is free to discard all
333 * cached filesystem events associated with any previous token_ids.
334 * Events associated with a non-current token_id will never be sent
335 * to a client. A token_id change implicitly means that the daemon
336 * has gap in its event history.
338 * Therefore, clients that present a token with a stale (non-current)
339 * token_id will always be given a trivial response.
341 struct fsmonitor_token_data {
342 struct strbuf token_id;
343 struct fsmonitor_batch *batch_head;
344 struct fsmonitor_batch *batch_tail;
345 uint64_t client_ref_count;
348 struct fsmonitor_batch {
349 struct fsmonitor_batch *next;
350 uint64_t batch_seq_nr;
351 const char **interned_paths;
352 size_t nr, alloc;
353 time_t pinned_time;
356 static struct fsmonitor_token_data *fsmonitor_new_token_data(void)
358 static int test_env_value = -1;
359 static uint64_t flush_count = 0;
360 struct fsmonitor_token_data *token;
361 struct fsmonitor_batch *batch;
363 CALLOC_ARRAY(token, 1);
364 batch = fsmonitor_batch__new();
366 strbuf_init(&token->token_id, 0);
367 token->batch_head = batch;
368 token->batch_tail = batch;
369 token->client_ref_count = 0;
371 if (test_env_value < 0)
372 test_env_value = git_env_bool("GIT_TEST_FSMONITOR_TOKEN", 0);
374 if (!test_env_value) {
375 struct timeval tv;
376 struct tm tm;
377 time_t secs;
379 gettimeofday(&tv, NULL);
380 secs = tv.tv_sec;
381 gmtime_r(&secs, &tm);
383 strbuf_addf(&token->token_id,
384 "%"PRIu64".%d.%4d%02d%02dT%02d%02d%02d.%06ldZ",
385 flush_count++,
386 getpid(),
387 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
388 tm.tm_hour, tm.tm_min, tm.tm_sec,
389 (long)tv.tv_usec);
390 } else {
391 strbuf_addf(&token->token_id, "test_%08x", test_env_value++);
395 * We created a new <token_id> and are starting a new series
396 * of tokens with a zero <seq_nr>.
398 * Since clients cannot guess our new (non test) <token_id>
399 * they will always receive a trivial response (because of the
400 * mismatch on the <token_id>). The trivial response will
401 * tell them our new <token_id> so that subsequent requests
402 * will be relative to our new series. (And when sending that
403 * response, we pin the current head of the batch list.)
405 * Even if the client correctly guesses the <token_id>, their
406 * request of "builtin:<token_id>:0" asks for all changes MORE
407 * RECENT than batch/bin 0.
409 * This implies that it is a waste to accumulate paths in the
410 * initial batch/bin (because they will never be transmitted).
412 * So the daemon could be running for days and watching the
413 * file system, but doesn't need to actually accumulate any
414 * paths UNTIL we need to set a reference point for a later
415 * relative request.
417 * However, it is very useful for testing to always have a
418 * reference point set. Pin batch 0 to force early file system
419 * events to accumulate.
421 if (test_env_value)
422 batch->pinned_time = time(NULL);
424 return token;
427 struct fsmonitor_batch *fsmonitor_batch__new(void)
429 struct fsmonitor_batch *batch;
431 CALLOC_ARRAY(batch, 1);
433 return batch;
436 void fsmonitor_batch__free_list(struct fsmonitor_batch *batch)
438 while (batch) {
439 struct fsmonitor_batch *next = batch->next;
442 * The actual strings within the array of this batch
443 * are interned, so we don't own them. We only own
444 * the array.
446 free(batch->interned_paths);
447 free(batch);
449 batch = next;
453 void fsmonitor_batch__add_path(struct fsmonitor_batch *batch,
454 const char *path)
456 const char *interned_path = strintern(path);
458 trace_printf_key(&trace_fsmonitor, "event: %s", interned_path);
460 ALLOC_GROW(batch->interned_paths, batch->nr + 1, batch->alloc);
461 batch->interned_paths[batch->nr++] = interned_path;
464 static void fsmonitor_batch__combine(struct fsmonitor_batch *batch_dest,
465 const struct fsmonitor_batch *batch_src)
467 size_t k;
469 ALLOC_GROW(batch_dest->interned_paths,
470 batch_dest->nr + batch_src->nr + 1,
471 batch_dest->alloc);
473 for (k = 0; k < batch_src->nr; k++)
474 batch_dest->interned_paths[batch_dest->nr++] =
475 batch_src->interned_paths[k];
479 * To keep the batch list from growing unbounded in response to filesystem
480 * activity, we try to truncate old batches from the end of the list as
481 * they become irrelevant.
483 * We assume that the .git/index will be updated with the most recent token
484 * any time the index is updated. And future commands will only ask for
485 * recent changes *since* that new token. So as tokens advance into the
486 * future, older batch items will never be requested/needed. So we can
487 * truncate them without loss of functionality.
489 * However, multiple commands may be talking to the daemon concurrently
490 * or perform a slow command, so a little "token skew" is possible.
491 * Therefore, we want this to be a little bit lazy and have a generous
492 * delay.
494 * The current reader thread walked backwards in time from `token->batch_head`
495 * back to `batch_marker` somewhere in the middle of the batch list.
497 * Let's walk backwards in time from that marker an arbitrary delay
498 * and truncate the list there. Note that these timestamps are completely
499 * artificial (based on when we pinned the batch item) and not on any
500 * filesystem activity.
502 * Return the obsolete portion of the list after we have removed it from
503 * the official list so that the caller can free it after leaving the lock.
505 #define MY_TIME_DELAY_SECONDS (5 * 60) /* seconds */
507 static struct fsmonitor_batch *with_lock__truncate_old_batches(
508 struct fsmonitor_daemon_state *state,
509 const struct fsmonitor_batch *batch_marker)
511 /* assert current thread holding state->main_lock */
513 const struct fsmonitor_batch *batch;
514 struct fsmonitor_batch *remainder;
516 if (!batch_marker)
517 return NULL;
519 trace_printf_key(&trace_fsmonitor, "Truncate: mark (%"PRIu64",%"PRIu64")",
520 batch_marker->batch_seq_nr,
521 (uint64_t)batch_marker->pinned_time);
523 for (batch = batch_marker; batch; batch = batch->next) {
524 time_t t;
526 if (!batch->pinned_time) /* an overflow batch */
527 continue;
529 t = batch->pinned_time + MY_TIME_DELAY_SECONDS;
530 if (t > batch_marker->pinned_time) /* too close to marker */
531 continue;
533 goto truncate_past_here;
536 return NULL;
538 truncate_past_here:
539 state->current_token_data->batch_tail = (struct fsmonitor_batch *)batch;
541 remainder = ((struct fsmonitor_batch *)batch)->next;
542 ((struct fsmonitor_batch *)batch)->next = NULL;
544 return remainder;
547 static void fsmonitor_free_token_data(struct fsmonitor_token_data *token)
549 if (!token)
550 return;
552 assert(token->client_ref_count == 0);
554 strbuf_release(&token->token_id);
556 fsmonitor_batch__free_list(token->batch_head);
558 free(token);
562 * Flush all of our cached data about the filesystem. Call this if we
563 * lose sync with the filesystem and miss some notification events.
565 * [1] If we are missing events, then we no longer have a complete
566 * history of the directory (relative to our current start token).
567 * We should create a new token and start fresh (as if we just
568 * booted up).
570 * [2] Some of those lost events may have been for cookie files. We
571 * should assume the worst and abort them rather letting them starve.
573 * If there are no concurrent threads reading the current token data
574 * series, we can free it now. Otherwise, let the last reader free
575 * it.
577 * Either way, the old token data series is no longer associated with
578 * our state data.
580 static void with_lock__do_force_resync(struct fsmonitor_daemon_state *state)
582 /* assert current thread holding state->main_lock */
584 struct fsmonitor_token_data *free_me = NULL;
585 struct fsmonitor_token_data *new_one = NULL;
587 new_one = fsmonitor_new_token_data();
589 if (state->current_token_data->client_ref_count == 0)
590 free_me = state->current_token_data;
591 state->current_token_data = new_one;
593 fsmonitor_free_token_data(free_me);
595 with_lock__abort_all_cookies(state);
598 void fsmonitor_force_resync(struct fsmonitor_daemon_state *state)
600 pthread_mutex_lock(&state->main_lock);
601 with_lock__do_force_resync(state);
602 pthread_mutex_unlock(&state->main_lock);
606 * Format an opaque token string to send to the client.
608 static void with_lock__format_response_token(
609 struct strbuf *response_token,
610 const struct strbuf *response_token_id,
611 const struct fsmonitor_batch *batch)
613 /* assert current thread holding state->main_lock */
615 strbuf_reset(response_token);
616 strbuf_addf(response_token, "builtin:%s:%"PRIu64,
617 response_token_id->buf, batch->batch_seq_nr);
621 * Parse an opaque token from the client.
622 * Returns -1 on error.
624 static int fsmonitor_parse_client_token(const char *buf_token,
625 struct strbuf *requested_token_id,
626 uint64_t *seq_nr)
628 const char *p;
629 char *p_end;
631 strbuf_reset(requested_token_id);
632 *seq_nr = 0;
634 if (!skip_prefix(buf_token, "builtin:", &p))
635 return -1;
637 while (*p && *p != ':')
638 strbuf_addch(requested_token_id, *p++);
639 if (!*p++)
640 return -1;
642 *seq_nr = (uint64_t)strtoumax(p, &p_end, 10);
643 if (*p_end)
644 return -1;
646 return 0;
649 KHASH_INIT(str, const char *, int, 0, kh_str_hash_func, kh_str_hash_equal)
651 static int do_handle_client(struct fsmonitor_daemon_state *state,
652 const char *command,
653 ipc_server_reply_cb *reply,
654 struct ipc_server_reply_data *reply_data)
656 struct fsmonitor_token_data *token_data = NULL;
657 struct strbuf response_token = STRBUF_INIT;
658 struct strbuf requested_token_id = STRBUF_INIT;
659 struct strbuf payload = STRBUF_INIT;
660 uint64_t requested_oldest_seq_nr = 0;
661 uint64_t total_response_len = 0;
662 const char *p;
663 const struct fsmonitor_batch *batch_head;
664 const struct fsmonitor_batch *batch;
665 struct fsmonitor_batch *remainder = NULL;
666 intmax_t count = 0, duplicates = 0;
667 kh_str_t *shown;
668 int hash_ret;
669 int do_trivial = 0;
670 int do_flush = 0;
671 int do_cookie = 0;
672 enum fsmonitor_cookie_item_result cookie_result;
675 * We expect `command` to be of the form:
677 * <command> := quit NUL
678 * | flush NUL
679 * | <V1-time-since-epoch-ns> NUL
680 * | <V2-opaque-fsmonitor-token> NUL
683 if (!strcmp(command, "quit")) {
685 * A client has requested over the socket/pipe that the
686 * daemon shutdown.
688 * Tell the IPC thread pool to shutdown (which completes
689 * the await in the main thread (which can stop the
690 * fsmonitor listener thread)).
692 * There is no reply to the client.
694 return SIMPLE_IPC_QUIT;
696 } else if (!strcmp(command, "flush")) {
698 * Flush all of our cached data and generate a new token
699 * just like if we lost sync with the filesystem.
701 * Then send a trivial response using the new token.
703 do_flush = 1;
704 do_trivial = 1;
706 } else if (!skip_prefix(command, "builtin:", &p)) {
707 /* assume V1 timestamp or garbage */
709 char *p_end;
711 strtoumax(command, &p_end, 10);
712 trace_printf_key(&trace_fsmonitor,
713 ((*p_end) ?
714 "fsmonitor: invalid command line '%s'" :
715 "fsmonitor: unsupported V1 protocol '%s'"),
716 command);
717 do_trivial = 1;
718 do_cookie = 1;
720 } else {
721 /* We have "builtin:*" */
722 if (fsmonitor_parse_client_token(command, &requested_token_id,
723 &requested_oldest_seq_nr)) {
724 trace_printf_key(&trace_fsmonitor,
725 "fsmonitor: invalid V2 protocol token '%s'",
726 command);
727 do_trivial = 1;
728 do_cookie = 1;
730 } else {
732 * We have a V2 valid token:
733 * "builtin:<token_id>:<seq_nr>"
735 do_cookie = 1;
739 pthread_mutex_lock(&state->main_lock);
741 if (!state->current_token_data)
742 BUG("fsmonitor state does not have a current token");
745 * Write a cookie file inside the directory being watched in
746 * an effort to flush out existing filesystem events that we
747 * actually care about. Suspend this client thread until we
748 * see the filesystem events for this cookie file.
750 * Creating the cookie lets us guarantee that our FS listener
751 * thread has drained the kernel queue and we are caught up
752 * with the kernel.
754 * If we cannot create the cookie (or otherwise guarantee that
755 * we are caught up), we send a trivial response. We have to
756 * assume that there might be some very, very recent activity
757 * on the FS still in flight.
759 if (do_cookie) {
760 cookie_result = with_lock__wait_for_cookie(state);
761 if (cookie_result != FCIR_SEEN) {
762 error(_("fsmonitor: cookie_result '%d' != SEEN"),
763 cookie_result);
764 do_trivial = 1;
768 if (do_flush)
769 with_lock__do_force_resync(state);
772 * We mark the current head of the batch list as "pinned" so
773 * that the listener thread will treat this item as read-only
774 * (and prevent any more paths from being added to it) from
775 * now on.
777 token_data = state->current_token_data;
778 batch_head = token_data->batch_head;
779 ((struct fsmonitor_batch *)batch_head)->pinned_time = time(NULL);
782 * FSMonitor Protocol V2 requires that we send a response header
783 * with a "new current token" and then all of the paths that changed
784 * since the "requested token". We send the seq_nr of the just-pinned
785 * head batch so that future requests from a client will be relative
786 * to it.
788 with_lock__format_response_token(&response_token,
789 &token_data->token_id, batch_head);
791 reply(reply_data, response_token.buf, response_token.len + 1);
792 total_response_len += response_token.len + 1;
794 trace2_data_string("fsmonitor", the_repository, "response/token",
795 response_token.buf);
796 trace_printf_key(&trace_fsmonitor, "response token: %s",
797 response_token.buf);
799 if (!do_trivial) {
800 if (strcmp(requested_token_id.buf, token_data->token_id.buf)) {
802 * The client last spoke to a different daemon
803 * instance -OR- the daemon had to resync with
804 * the filesystem (and lost events), so reject.
806 trace2_data_string("fsmonitor", the_repository,
807 "response/token", "different");
808 do_trivial = 1;
810 } else if (requested_oldest_seq_nr <
811 token_data->batch_tail->batch_seq_nr) {
813 * The client wants older events than we have for
814 * this token_id. This means that the end of our
815 * batch list was truncated and we cannot give the
816 * client a complete snapshot relative to their
817 * request.
819 trace_printf_key(&trace_fsmonitor,
820 "client requested truncated data");
821 do_trivial = 1;
825 if (do_trivial) {
826 pthread_mutex_unlock(&state->main_lock);
828 reply(reply_data, "/", 2);
830 trace2_data_intmax("fsmonitor", the_repository,
831 "response/trivial", 1);
833 goto cleanup;
837 * We're going to hold onto a pointer to the current
838 * token-data while we walk the list of batches of files.
839 * During this time, we will NOT be under the lock.
840 * So we ref-count it.
842 * This allows the listener thread to continue prepending
843 * new batches of items to the token-data (which we'll ignore).
845 * AND it allows the listener thread to do a token-reset
846 * (and install a new `current_token_data`).
848 token_data->client_ref_count++;
850 pthread_mutex_unlock(&state->main_lock);
853 * The client request is relative to the token that they sent,
854 * so walk the batch list backwards from the current head back
855 * to the batch (sequence number) they named.
857 * We use khash to de-dup the list of pathnames.
859 * NEEDSWORK: each batch contains a list of interned strings,
860 * so we only need to do pointer comparisons here to build the
861 * hash table. Currently, we're still comparing the string
862 * values.
864 shown = kh_init_str();
865 for (batch = batch_head;
866 batch && batch->batch_seq_nr > requested_oldest_seq_nr;
867 batch = batch->next) {
868 size_t k;
870 for (k = 0; k < batch->nr; k++) {
871 const char *s = batch->interned_paths[k];
872 size_t s_len;
874 if (kh_get_str(shown, s) != kh_end(shown))
875 duplicates++;
876 else {
877 kh_put_str(shown, s, &hash_ret);
879 trace_printf_key(&trace_fsmonitor,
880 "send[%"PRIuMAX"]: %s",
881 count, s);
883 /* Each path gets written with a trailing NUL */
884 s_len = strlen(s) + 1;
886 if (payload.len + s_len >=
887 LARGE_PACKET_DATA_MAX) {
888 reply(reply_data, payload.buf,
889 payload.len);
890 total_response_len += payload.len;
891 strbuf_reset(&payload);
894 strbuf_add(&payload, s, s_len);
895 count++;
900 if (payload.len) {
901 reply(reply_data, payload.buf, payload.len);
902 total_response_len += payload.len;
905 kh_release_str(shown);
907 pthread_mutex_lock(&state->main_lock);
909 if (token_data->client_ref_count > 0)
910 token_data->client_ref_count--;
912 if (token_data->client_ref_count == 0) {
913 if (token_data != state->current_token_data) {
915 * The listener thread did a token-reset while we were
916 * walking the batch list. Therefore, this token is
917 * stale and can be discarded completely. If we are
918 * the last reader thread using this token, we own
919 * that work.
921 fsmonitor_free_token_data(token_data);
922 } else if (batch) {
924 * We are holding the lock and are the only
925 * reader of the ref-counted portion of the
926 * list, so we get the honor of seeing if the
927 * list can be truncated to save memory.
929 * The main loop did not walk to the end of the
930 * list, so this batch is the first item in the
931 * batch-list that is older than the requested
932 * end-point sequence number. See if the tail
933 * end of the list is obsolete.
935 remainder = with_lock__truncate_old_batches(state,
936 batch);
940 pthread_mutex_unlock(&state->main_lock);
942 if (remainder)
943 fsmonitor_batch__free_list(remainder);
945 trace2_data_intmax("fsmonitor", the_repository, "response/length", total_response_len);
946 trace2_data_intmax("fsmonitor", the_repository, "response/count/files", count);
947 trace2_data_intmax("fsmonitor", the_repository, "response/count/duplicates", duplicates);
949 cleanup:
950 strbuf_release(&response_token);
951 strbuf_release(&requested_token_id);
952 strbuf_release(&payload);
954 return 0;
957 static ipc_server_application_cb handle_client;
959 static int handle_client(void *data,
960 const char *command, size_t command_len,
961 ipc_server_reply_cb *reply,
962 struct ipc_server_reply_data *reply_data)
964 struct fsmonitor_daemon_state *state = data;
965 int result;
968 * The Simple IPC API now supports {char*, len} arguments, but
969 * FSMonitor always uses proper null-terminated strings, so
970 * we can ignore the command_len argument. (Trust, but verify.)
972 if (command_len != strlen(command))
973 BUG("FSMonitor assumes text messages");
975 trace_printf_key(&trace_fsmonitor, "requested token: %s", command);
977 trace2_region_enter("fsmonitor", "handle_client", the_repository);
978 trace2_data_string("fsmonitor", the_repository, "request", command);
980 result = do_handle_client(state, command, reply, reply_data);
982 trace2_region_leave("fsmonitor", "handle_client", the_repository);
984 return result;
987 #define FSMONITOR_DIR "fsmonitor--daemon"
988 #define FSMONITOR_COOKIE_DIR "cookies"
989 #define FSMONITOR_COOKIE_PREFIX (FSMONITOR_DIR "/" FSMONITOR_COOKIE_DIR "/")
991 enum fsmonitor_path_type fsmonitor_classify_path_workdir_relative(
992 const char *rel)
994 if (fspathncmp(rel, ".git", 4))
995 return IS_WORKDIR_PATH;
996 rel += 4;
998 if (!*rel)
999 return IS_DOT_GIT;
1000 if (*rel != '/')
1001 return IS_WORKDIR_PATH; /* e.g. .gitignore */
1002 rel++;
1004 if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX,
1005 strlen(FSMONITOR_COOKIE_PREFIX)))
1006 return IS_INSIDE_DOT_GIT_WITH_COOKIE_PREFIX;
1008 return IS_INSIDE_DOT_GIT;
1011 enum fsmonitor_path_type fsmonitor_classify_path_gitdir_relative(
1012 const char *rel)
1014 if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX,
1015 strlen(FSMONITOR_COOKIE_PREFIX)))
1016 return IS_INSIDE_GITDIR_WITH_COOKIE_PREFIX;
1018 return IS_INSIDE_GITDIR;
1021 static enum fsmonitor_path_type try_classify_workdir_abs_path(
1022 struct fsmonitor_daemon_state *state,
1023 const char *path)
1025 const char *rel;
1027 if (fspathncmp(path, state->path_worktree_watch.buf,
1028 state->path_worktree_watch.len))
1029 return IS_OUTSIDE_CONE;
1031 rel = path + state->path_worktree_watch.len;
1033 if (!*rel)
1034 return IS_WORKDIR_PATH; /* it is the root dir exactly */
1035 if (*rel != '/')
1036 return IS_OUTSIDE_CONE;
1037 rel++;
1039 return fsmonitor_classify_path_workdir_relative(rel);
1042 enum fsmonitor_path_type fsmonitor_classify_path_absolute(
1043 struct fsmonitor_daemon_state *state,
1044 const char *path)
1046 const char *rel;
1047 enum fsmonitor_path_type t;
1049 t = try_classify_workdir_abs_path(state, path);
1050 if (state->nr_paths_watching == 1)
1051 return t;
1052 if (t != IS_OUTSIDE_CONE)
1053 return t;
1055 if (fspathncmp(path, state->path_gitdir_watch.buf,
1056 state->path_gitdir_watch.len))
1057 return IS_OUTSIDE_CONE;
1059 rel = path + state->path_gitdir_watch.len;
1061 if (!*rel)
1062 return IS_GITDIR; /* it is the <gitdir> exactly */
1063 if (*rel != '/')
1064 return IS_OUTSIDE_CONE;
1065 rel++;
1067 return fsmonitor_classify_path_gitdir_relative(rel);
1071 * We try to combine small batches at the front of the batch-list to avoid
1072 * having a long list. This hopefully makes it a little easier when we want
1073 * to truncate and maintain the list. However, we don't want the paths array
1074 * to just keep growing and growing with realloc, so we insert an arbitrary
1075 * limit.
1077 #define MY_COMBINE_LIMIT (1024)
1079 void fsmonitor_publish(struct fsmonitor_daemon_state *state,
1080 struct fsmonitor_batch *batch,
1081 const struct string_list *cookie_names)
1083 if (!batch && !cookie_names->nr)
1084 return;
1086 pthread_mutex_lock(&state->main_lock);
1088 if (batch) {
1089 struct fsmonitor_batch *head;
1091 head = state->current_token_data->batch_head;
1092 if (!head) {
1093 BUG("token does not have batch");
1094 } else if (head->pinned_time) {
1096 * We cannot alter the current batch list
1097 * because:
1099 * [a] it is being transmitted to at least one
1100 * client and the handle_client() thread has a
1101 * ref-count, but not a lock on the batch list
1102 * starting with this item.
1104 * [b] it has been transmitted in the past to
1105 * at least one client such that future
1106 * requests are relative to this head batch.
1108 * So, we can only prepend a new batch onto
1109 * the front of the list.
1111 batch->batch_seq_nr = head->batch_seq_nr + 1;
1112 batch->next = head;
1113 state->current_token_data->batch_head = batch;
1114 } else if (!head->batch_seq_nr) {
1116 * Batch 0 is unpinned. See the note in
1117 * `fsmonitor_new_token_data()` about why we
1118 * don't need to accumulate these paths.
1120 fsmonitor_batch__free_list(batch);
1121 } else if (head->nr + batch->nr > MY_COMBINE_LIMIT) {
1123 * The head batch in the list has never been
1124 * transmitted to a client, but folding the
1125 * contents of the new batch onto it would
1126 * exceed our arbitrary limit, so just prepend
1127 * the new batch onto the list.
1129 batch->batch_seq_nr = head->batch_seq_nr + 1;
1130 batch->next = head;
1131 state->current_token_data->batch_head = batch;
1132 } else {
1134 * We are free to add the paths in the given
1135 * batch onto the end of the current head batch.
1137 fsmonitor_batch__combine(head, batch);
1138 fsmonitor_batch__free_list(batch);
1142 if (cookie_names->nr)
1143 with_lock__mark_cookies_seen(state, cookie_names);
1145 pthread_mutex_unlock(&state->main_lock);
1148 static void *fsm_health__thread_proc(void *_state)
1150 struct fsmonitor_daemon_state *state = _state;
1152 trace2_thread_start("fsm-health");
1154 fsm_health__loop(state);
1156 trace2_thread_exit();
1157 return NULL;
1160 static void *fsm_listen__thread_proc(void *_state)
1162 struct fsmonitor_daemon_state *state = _state;
1164 trace2_thread_start("fsm-listen");
1166 trace_printf_key(&trace_fsmonitor, "Watching: worktree '%s'",
1167 state->path_worktree_watch.buf);
1168 if (state->nr_paths_watching > 1)
1169 trace_printf_key(&trace_fsmonitor, "Watching: gitdir '%s'",
1170 state->path_gitdir_watch.buf);
1172 fsm_listen__loop(state);
1174 pthread_mutex_lock(&state->main_lock);
1175 if (state->current_token_data &&
1176 state->current_token_data->client_ref_count == 0)
1177 fsmonitor_free_token_data(state->current_token_data);
1178 state->current_token_data = NULL;
1179 pthread_mutex_unlock(&state->main_lock);
1181 trace2_thread_exit();
1182 return NULL;
1185 static int fsmonitor_run_daemon_1(struct fsmonitor_daemon_state *state)
1187 struct ipc_server_opts ipc_opts = {
1188 .nr_threads = fsmonitor__ipc_threads,
1191 * We know that there are no other active threads yet,
1192 * so we can let the IPC layer temporarily chdir() if
1193 * it needs to when creating the server side of the
1194 * Unix domain socket.
1196 .uds_disallow_chdir = 0
1198 int health_started = 0;
1199 int listener_started = 0;
1200 int err = 0;
1203 * Start the IPC thread pool before the we've started the file
1204 * system event listener thread so that we have the IPC handle
1205 * before we need it.
1207 if (ipc_server_run_async(&state->ipc_server_data,
1208 state->path_ipc.buf, &ipc_opts,
1209 handle_client, state))
1210 return error_errno(
1211 _("could not start IPC thread pool on '%s'"),
1212 state->path_ipc.buf);
1215 * Start the fsmonitor listener thread to collect filesystem
1216 * events.
1218 if (pthread_create(&state->listener_thread, NULL,
1219 fsm_listen__thread_proc, state)) {
1220 ipc_server_stop_async(state->ipc_server_data);
1221 err = error(_("could not start fsmonitor listener thread"));
1222 goto cleanup;
1224 listener_started = 1;
1227 * Start the health thread to watch over our process.
1229 if (pthread_create(&state->health_thread, NULL,
1230 fsm_health__thread_proc, state)) {
1231 ipc_server_stop_async(state->ipc_server_data);
1232 err = error(_("could not start fsmonitor health thread"));
1233 goto cleanup;
1235 health_started = 1;
1238 * The daemon is now fully functional in background threads.
1239 * Our primary thread should now just wait while the threads
1240 * do all the work.
1242 cleanup:
1244 * Wait for the IPC thread pool to shutdown (whether by client
1245 * request, from filesystem activity, or an error).
1247 ipc_server_await(state->ipc_server_data);
1250 * The fsmonitor listener thread may have received a shutdown
1251 * event from the IPC thread pool, but it doesn't hurt to tell
1252 * it again. And wait for it to shutdown.
1254 if (listener_started) {
1255 fsm_listen__stop_async(state);
1256 pthread_join(state->listener_thread, NULL);
1259 if (health_started) {
1260 fsm_health__stop_async(state);
1261 pthread_join(state->health_thread, NULL);
1264 if (err)
1265 return err;
1266 if (state->listen_error_code)
1267 return state->listen_error_code;
1268 if (state->health_error_code)
1269 return state->health_error_code;
1270 return 0;
1273 static int fsmonitor_run_daemon(void)
1275 struct fsmonitor_daemon_state state;
1276 const char *home;
1277 int err;
1279 memset(&state, 0, sizeof(state));
1281 hashmap_init(&state.cookies, cookies_cmp, NULL, 0);
1282 pthread_mutex_init(&state.main_lock, NULL);
1283 pthread_cond_init(&state.cookies_cond, NULL);
1284 state.listen_error_code = 0;
1285 state.health_error_code = 0;
1286 state.current_token_data = fsmonitor_new_token_data();
1288 /* Prepare to (recursively) watch the <worktree-root> directory. */
1289 strbuf_init(&state.path_worktree_watch, 0);
1290 strbuf_addstr(&state.path_worktree_watch, absolute_path(get_git_work_tree()));
1291 state.nr_paths_watching = 1;
1293 strbuf_init(&state.alias.alias, 0);
1294 strbuf_init(&state.alias.points_to, 0);
1295 if ((err = fsmonitor__get_alias(state.path_worktree_watch.buf, &state.alias)))
1296 goto done;
1299 * We create and delete cookie files somewhere inside the .git
1300 * directory to help us keep sync with the file system. If
1301 * ".git" is not a directory, then <gitdir> is not inside the
1302 * cone of <worktree-root>, so set up a second watch to watch
1303 * the <gitdir> so that we get events for the cookie files.
1305 strbuf_init(&state.path_gitdir_watch, 0);
1306 strbuf_addbuf(&state.path_gitdir_watch, &state.path_worktree_watch);
1307 strbuf_addstr(&state.path_gitdir_watch, "/.git");
1308 if (!is_directory(state.path_gitdir_watch.buf)) {
1309 strbuf_reset(&state.path_gitdir_watch);
1310 strbuf_addstr(&state.path_gitdir_watch, absolute_path(get_git_dir()));
1311 state.nr_paths_watching = 2;
1315 * We will write filesystem syncing cookie files into
1316 * <gitdir>/<fsmonitor-dir>/<cookie-dir>/<pid>-<seq>.
1318 * The extra layers of subdirectories here keep us from
1319 * changing the mtime on ".git/" or ".git/foo/" when we create
1320 * or delete cookie files.
1322 * There have been problems with some IDEs that do a
1323 * non-recursive watch of the ".git/" directory and run a
1324 * series of commands any time something happens.
1326 * For example, if we place our cookie files directly in
1327 * ".git/" or ".git/foo/" then a `git status` (or similar
1328 * command) from the IDE will cause a cookie file to be
1329 * created in one of those dirs. This causes the mtime of
1330 * those dirs to change. This triggers the IDE's watch
1331 * notification. This triggers the IDE to run those commands
1332 * again. And the process repeats and the machine never goes
1333 * idle.
1335 * Adding the extra layers of subdirectories prevents the
1336 * mtime of ".git/" and ".git/foo" from changing when a
1337 * cookie file is created.
1339 strbuf_init(&state.path_cookie_prefix, 0);
1340 strbuf_addbuf(&state.path_cookie_prefix, &state.path_gitdir_watch);
1342 strbuf_addch(&state.path_cookie_prefix, '/');
1343 strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_DIR);
1344 mkdir(state.path_cookie_prefix.buf, 0777);
1346 strbuf_addch(&state.path_cookie_prefix, '/');
1347 strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_COOKIE_DIR);
1348 mkdir(state.path_cookie_prefix.buf, 0777);
1350 strbuf_addch(&state.path_cookie_prefix, '/');
1353 * We create a named-pipe or unix domain socket inside of the
1354 * ".git" directory. (Well, on Windows, we base our named
1355 * pipe in the NPFS on the absolute path of the git
1356 * directory.)
1358 strbuf_init(&state.path_ipc, 0);
1359 strbuf_addstr(&state.path_ipc,
1360 absolute_path(fsmonitor_ipc__get_path(the_repository)));
1363 * Confirm that we can create platform-specific resources for the
1364 * filesystem listener before we bother starting all the threads.
1366 if (fsm_listen__ctor(&state)) {
1367 err = error(_("could not initialize listener thread"));
1368 goto done;
1371 if (fsm_health__ctor(&state)) {
1372 err = error(_("could not initialize health thread"));
1373 goto done;
1377 * CD out of the worktree root directory.
1379 * The common Git startup mechanism causes our CWD to be the
1380 * root of the worktree. On Windows, this causes our process
1381 * to hold a locked handle on the CWD. This prevents the
1382 * worktree from being moved or deleted while the daemon is
1383 * running.
1385 * We assume that our FS and IPC listener threads have either
1386 * opened all of the handles that they need or will do
1387 * everything using absolute paths.
1389 home = getenv("HOME");
1390 if (home && *home && chdir(home))
1391 die_errno(_("could not cd home '%s'"), home);
1393 err = fsmonitor_run_daemon_1(&state);
1395 done:
1396 pthread_cond_destroy(&state.cookies_cond);
1397 pthread_mutex_destroy(&state.main_lock);
1398 fsm_listen__dtor(&state);
1399 fsm_health__dtor(&state);
1401 ipc_server_free(state.ipc_server_data);
1403 strbuf_release(&state.path_worktree_watch);
1404 strbuf_release(&state.path_gitdir_watch);
1405 strbuf_release(&state.path_cookie_prefix);
1406 strbuf_release(&state.path_ipc);
1407 strbuf_release(&state.alias.alias);
1408 strbuf_release(&state.alias.points_to);
1410 return err;
1413 static int try_to_run_foreground_daemon(int detach_console)
1416 * Technically, we don't need to probe for an existing daemon
1417 * process, since we could just call `fsmonitor_run_daemon()`
1418 * and let it fail if the pipe/socket is busy.
1420 * However, this method gives us a nicer error message for a
1421 * common error case.
1423 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
1424 die(_("fsmonitor--daemon is already running '%s'"),
1425 the_repository->worktree);
1427 if (fsmonitor__announce_startup) {
1428 fprintf(stderr, _("running fsmonitor-daemon in '%s'\n"),
1429 the_repository->worktree);
1430 fflush(stderr);
1433 #ifdef GIT_WINDOWS_NATIVE
1434 if (detach_console)
1435 FreeConsole();
1436 #endif
1438 return !!fsmonitor_run_daemon();
1441 static start_bg_wait_cb bg_wait_cb;
1443 static int bg_wait_cb(const struct child_process *cp, void *cb_data)
1445 enum ipc_active_state s = fsmonitor_ipc__get_state();
1447 switch (s) {
1448 case IPC_STATE__LISTENING:
1449 /* child is "ready" */
1450 return 0;
1452 case IPC_STATE__NOT_LISTENING:
1453 case IPC_STATE__PATH_NOT_FOUND:
1454 /* give child more time */
1455 return 1;
1457 default:
1458 case IPC_STATE__INVALID_PATH:
1459 case IPC_STATE__OTHER_ERROR:
1460 /* all the time in world won't help */
1461 return -1;
1465 static int try_to_start_background_daemon(void)
1467 struct child_process cp = CHILD_PROCESS_INIT;
1468 enum start_bg_result sbgr;
1471 * Before we try to create a background daemon process, see
1472 * if a daemon process is already listening. This makes it
1473 * easier for us to report an already-listening error to the
1474 * console, since our spawn/daemon can only report the success
1475 * of creating the background process (and not whether it
1476 * immediately exited).
1478 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
1479 die(_("fsmonitor--daemon is already running '%s'"),
1480 the_repository->worktree);
1482 if (fsmonitor__announce_startup) {
1483 fprintf(stderr, _("starting fsmonitor-daemon in '%s'\n"),
1484 the_repository->worktree);
1485 fflush(stderr);
1488 cp.git_cmd = 1;
1490 strvec_push(&cp.args, "fsmonitor--daemon");
1491 strvec_push(&cp.args, "run");
1492 strvec_push(&cp.args, "--detach");
1493 strvec_pushf(&cp.args, "--ipc-threads=%d", fsmonitor__ipc_threads);
1495 cp.no_stdin = 1;
1496 cp.no_stdout = 1;
1497 cp.no_stderr = 1;
1499 sbgr = start_bg_command(&cp, bg_wait_cb, NULL,
1500 fsmonitor__start_timeout_sec);
1502 switch (sbgr) {
1503 case SBGR_READY:
1504 return 0;
1506 default:
1507 case SBGR_ERROR:
1508 case SBGR_CB_ERROR:
1509 return error(_("daemon failed to start"));
1511 case SBGR_TIMEOUT:
1512 return error(_("daemon not online yet"));
1514 case SBGR_DIED:
1515 return error(_("daemon terminated"));
1519 int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix)
1521 const char *subcmd;
1522 enum fsmonitor_reason reason;
1523 int detach_console = 0;
1525 struct option options[] = {
1526 OPT_BOOL(0, "detach", &detach_console, N_("detach from console")),
1527 OPT_INTEGER(0, "ipc-threads",
1528 &fsmonitor__ipc_threads,
1529 N_("use <n> ipc worker threads")),
1530 OPT_INTEGER(0, "start-timeout",
1531 &fsmonitor__start_timeout_sec,
1532 N_("max seconds to wait for background daemon startup")),
1534 OPT_END()
1537 git_config(fsmonitor_config, NULL);
1539 argc = parse_options(argc, argv, prefix, options,
1540 builtin_fsmonitor__daemon_usage, 0);
1541 if (argc != 1)
1542 usage_with_options(builtin_fsmonitor__daemon_usage, options);
1543 subcmd = argv[0];
1545 if (fsmonitor__ipc_threads < 1)
1546 die(_("invalid 'ipc-threads' value (%d)"),
1547 fsmonitor__ipc_threads);
1549 prepare_repo_settings(the_repository);
1551 * If the repo is fsmonitor-compatible, explicitly set IPC-mode
1552 * (without bothering to load the `core.fsmonitor` config settings).
1554 * If the repo is not compatible, the repo-settings will be set to
1555 * incompatible rather than IPC, so we can use one of the __get
1556 * routines to detect the discrepancy.
1558 fsm_settings__set_ipc(the_repository);
1560 reason = fsm_settings__get_reason(the_repository);
1561 if (reason > FSMONITOR_REASON_OK)
1562 die("%s",
1563 fsm_settings__get_incompatible_msg(the_repository,
1564 reason));
1566 if (!strcmp(subcmd, "start"))
1567 return !!try_to_start_background_daemon();
1569 if (!strcmp(subcmd, "run"))
1570 return !!try_to_run_foreground_daemon(detach_console);
1572 if (!strcmp(subcmd, "stop"))
1573 return !!do_as_client__send_stop();
1575 if (!strcmp(subcmd, "status"))
1576 return !!do_as_client__status();
1578 die(_("Unhandled subcommand '%s'"), subcmd);
1581 #else
1582 int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix UNUSED)
1584 struct option options[] = {
1585 OPT_END()
1588 if (argc == 2 && !strcmp(argv[1], "-h"))
1589 usage_with_options(builtin_fsmonitor__daemon_usage, options);
1591 die(_("fsmonitor--daemon not supported on this platform"));
1593 #endif