contrib/credential: embiggen fixed-size buffer in wincred
[git/gitster.git] / blame.c
blob58dd58b6c975025e6fb400dc99ee28be50c2f475
1 #include "cache.h"
2 #include "refs.h"
3 #include "object-store.h"
4 #include "cache-tree.h"
5 #include "mergesort.h"
6 #include "convert.h"
7 #include "diff.h"
8 #include "diffcore.h"
9 #include "gettext.h"
10 #include "hex.h"
11 #include "setup.h"
12 #include "tag.h"
13 #include "trace2.h"
14 #include "blame.h"
15 #include "alloc.h"
16 #include "commit-slab.h"
17 #include "bloom.h"
18 #include "commit-graph.h"
20 define_commit_slab(blame_suspects, struct blame_origin *);
21 static struct blame_suspects blame_suspects;
23 struct blame_origin *get_blame_suspects(struct commit *commit)
25 struct blame_origin **result;
27 result = blame_suspects_peek(&blame_suspects, commit);
29 return result ? *result : NULL;
32 static void set_blame_suspects(struct commit *commit, struct blame_origin *origin)
34 *blame_suspects_at(&blame_suspects, commit) = origin;
37 void blame_origin_decref(struct blame_origin *o)
39 if (o && --o->refcnt <= 0) {
40 struct blame_origin *p, *l = NULL;
41 if (o->previous)
42 blame_origin_decref(o->previous);
43 free(o->file.ptr);
44 /* Should be present exactly once in commit chain */
45 for (p = get_blame_suspects(o->commit); p; l = p, p = p->next) {
46 if (p == o) {
47 if (l)
48 l->next = p->next;
49 else
50 set_blame_suspects(o->commit, p->next);
51 free(o);
52 return;
55 die("internal error in blame_origin_decref");
60 * Given a commit and a path in it, create a new origin structure.
61 * The callers that add blame to the scoreboard should use
62 * get_origin() to obtain shared, refcounted copy instead of calling
63 * this function directly.
65 static struct blame_origin *make_origin(struct commit *commit, const char *path)
67 struct blame_origin *o;
68 FLEX_ALLOC_STR(o, path, path);
69 o->commit = commit;
70 o->refcnt = 1;
71 o->next = get_blame_suspects(commit);
72 set_blame_suspects(commit, o);
73 return o;
77 * Locate an existing origin or create a new one.
78 * This moves the origin to front position in the commit util list.
80 static struct blame_origin *get_origin(struct commit *commit, const char *path)
82 struct blame_origin *o, *l;
84 for (o = get_blame_suspects(commit), l = NULL; o; l = o, o = o->next) {
85 if (!strcmp(o->path, path)) {
86 /* bump to front */
87 if (l) {
88 l->next = o->next;
89 o->next = get_blame_suspects(commit);
90 set_blame_suspects(commit, o);
92 return blame_origin_incref(o);
95 return make_origin(commit, path);
100 static void verify_working_tree_path(struct repository *r,
101 struct commit *work_tree, const char *path)
103 struct commit_list *parents;
104 int pos;
106 for (parents = work_tree->parents; parents; parents = parents->next) {
107 const struct object_id *commit_oid = &parents->item->object.oid;
108 struct object_id blob_oid;
109 unsigned short mode;
111 if (!get_tree_entry(r, commit_oid, path, &blob_oid, &mode) &&
112 oid_object_info(r, &blob_oid, NULL) == OBJ_BLOB)
113 return;
116 pos = index_name_pos(r->index, path, strlen(path));
117 if (pos >= 0)
118 ; /* path is in the index */
119 else if (-1 - pos < r->index->cache_nr &&
120 !strcmp(r->index->cache[-1 - pos]->name, path))
121 ; /* path is in the index, unmerged */
122 else
123 die("no such path '%s' in HEAD", path);
126 static struct commit_list **append_parent(struct repository *r,
127 struct commit_list **tail,
128 const struct object_id *oid)
130 struct commit *parent;
132 parent = lookup_commit_reference(r, oid);
133 if (!parent)
134 die("no such commit %s", oid_to_hex(oid));
135 return &commit_list_insert(parent, tail)->next;
138 static void append_merge_parents(struct repository *r,
139 struct commit_list **tail)
141 int merge_head;
142 struct strbuf line = STRBUF_INIT;
144 merge_head = open(git_path_merge_head(r), O_RDONLY);
145 if (merge_head < 0) {
146 if (errno == ENOENT)
147 return;
148 die("cannot open '%s' for reading",
149 git_path_merge_head(r));
152 while (!strbuf_getwholeline_fd(&line, merge_head, '\n')) {
153 struct object_id oid;
154 if (get_oid_hex(line.buf, &oid))
155 die("unknown line in '%s': %s",
156 git_path_merge_head(r), line.buf);
157 tail = append_parent(r, tail, &oid);
159 close(merge_head);
160 strbuf_release(&line);
164 * This isn't as simple as passing sb->buf and sb->len, because we
165 * want to transfer ownership of the buffer to the commit (so we
166 * must use detach).
168 static void set_commit_buffer_from_strbuf(struct repository *r,
169 struct commit *c,
170 struct strbuf *sb)
172 size_t len;
173 void *buf = strbuf_detach(sb, &len);
174 set_commit_buffer(r, c, buf, len);
178 * Prepare a dummy commit that represents the work tree (or staged) item.
179 * Note that annotating work tree item never works in the reverse.
181 static struct commit *fake_working_tree_commit(struct repository *r,
182 struct diff_options *opt,
183 const char *path,
184 const char *contents_from,
185 struct object_id *oid)
187 struct commit *commit;
188 struct blame_origin *origin;
189 struct commit_list **parent_tail, *parent;
190 struct strbuf buf = STRBUF_INIT;
191 const char *ident;
192 time_t now;
193 int len;
194 struct cache_entry *ce;
195 unsigned mode;
196 struct strbuf msg = STRBUF_INIT;
198 repo_read_index(r);
199 time(&now);
200 commit = alloc_commit_node(r);
201 commit->object.parsed = 1;
202 commit->date = now;
203 parent_tail = &commit->parents;
205 parent_tail = append_parent(r, parent_tail, oid);
206 append_merge_parents(r, parent_tail);
207 verify_working_tree_path(r, commit, path);
209 origin = make_origin(commit, path);
211 ident = fmt_ident("Not Committed Yet", "not.committed.yet",
212 WANT_BLANK_IDENT, NULL, 0);
213 strbuf_addstr(&msg, "tree 0000000000000000000000000000000000000000\n");
214 for (parent = commit->parents; parent; parent = parent->next)
215 strbuf_addf(&msg, "parent %s\n",
216 oid_to_hex(&parent->item->object.oid));
217 strbuf_addf(&msg,
218 "author %s\n"
219 "committer %s\n\n"
220 "Version of %s from %s\n",
221 ident, ident, path,
222 (!contents_from ? path :
223 (!strcmp(contents_from, "-") ? "standard input" : contents_from)));
224 set_commit_buffer_from_strbuf(r, commit, &msg);
226 if (!contents_from || strcmp("-", contents_from)) {
227 struct stat st;
228 const char *read_from;
229 char *buf_ptr;
230 unsigned long buf_len;
232 if (contents_from) {
233 if (stat(contents_from, &st) < 0)
234 die_errno("Cannot stat '%s'", contents_from);
235 read_from = contents_from;
237 else {
238 if (lstat(path, &st) < 0)
239 die_errno("Cannot lstat '%s'", path);
240 read_from = path;
242 mode = canon_mode(st.st_mode);
244 switch (st.st_mode & S_IFMT) {
245 case S_IFREG:
246 if (opt->flags.allow_textconv &&
247 textconv_object(r, read_from, mode, null_oid(), 0, &buf_ptr, &buf_len))
248 strbuf_attach(&buf, buf_ptr, buf_len, buf_len + 1);
249 else if (strbuf_read_file(&buf, read_from, st.st_size) != st.st_size)
250 die_errno("cannot open or read '%s'", read_from);
251 break;
252 case S_IFLNK:
253 if (strbuf_readlink(&buf, read_from, st.st_size) < 0)
254 die_errno("cannot readlink '%s'", read_from);
255 break;
256 default:
257 die("unsupported file type %s", read_from);
260 else {
261 /* Reading from stdin */
262 mode = 0;
263 if (strbuf_read(&buf, 0, 0) < 0)
264 die_errno("failed to read from stdin");
266 convert_to_git(r->index, path, buf.buf, buf.len, &buf, 0);
267 origin->file.ptr = buf.buf;
268 origin->file.size = buf.len;
269 pretend_object_file(buf.buf, buf.len, OBJ_BLOB, &origin->blob_oid);
272 * Read the current index, replace the path entry with
273 * origin->blob_sha1 without mucking with its mode or type
274 * bits; we are not going to write this index out -- we just
275 * want to run "diff-index --cached".
277 discard_index(r->index);
278 repo_read_index(r);
280 len = strlen(path);
281 if (!mode) {
282 int pos = index_name_pos(r->index, path, len);
283 if (0 <= pos)
284 mode = r->index->cache[pos]->ce_mode;
285 else
286 /* Let's not bother reading from HEAD tree */
287 mode = S_IFREG | 0644;
289 ce = make_empty_cache_entry(r->index, len);
290 oidcpy(&ce->oid, &origin->blob_oid);
291 memcpy(ce->name, path, len);
292 ce->ce_flags = create_ce_flags(0);
293 ce->ce_namelen = len;
294 ce->ce_mode = create_ce_mode(mode);
295 add_index_entry(r->index, ce,
296 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
298 cache_tree_invalidate_path(r->index, path);
300 return commit;
305 static int diff_hunks(mmfile_t *file_a, mmfile_t *file_b,
306 xdl_emit_hunk_consume_func_t hunk_func, void *cb_data, int xdl_opts)
308 xpparam_t xpp = {0};
309 xdemitconf_t xecfg = {0};
310 xdemitcb_t ecb = {NULL};
312 xpp.flags = xdl_opts;
313 xecfg.hunk_func = hunk_func;
314 ecb.priv = cb_data;
315 return xdi_diff(file_a, file_b, &xpp, &xecfg, &ecb);
318 static const char *get_next_line(const char *start, const char *end)
320 const char *nl = memchr(start, '\n', end - start);
322 return nl ? nl + 1 : end;
325 static int find_line_starts(int **line_starts, const char *buf,
326 unsigned long len)
328 const char *end = buf + len;
329 const char *p;
330 int *lineno;
331 int num = 0;
333 for (p = buf; p < end; p = get_next_line(p, end))
334 num++;
336 ALLOC_ARRAY(*line_starts, num + 1);
337 lineno = *line_starts;
339 for (p = buf; p < end; p = get_next_line(p, end))
340 *lineno++ = p - buf;
342 *lineno = len;
344 return num;
347 struct fingerprint_entry;
349 /* A fingerprint is intended to loosely represent a string, such that two
350 * fingerprints can be quickly compared to give an indication of the similarity
351 * of the strings that they represent.
353 * A fingerprint is represented as a multiset of the lower-cased byte pairs in
354 * the string that it represents. Whitespace is added at each end of the
355 * string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
356 * For example, the string "Darth Radar" will be converted to the following
357 * fingerprint:
358 * {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
360 * The similarity between two fingerprints is the size of the intersection of
361 * their multisets, including repeated elements. See fingerprint_similarity for
362 * examples.
364 * For ease of implementation, the fingerprint is implemented as a map
365 * of byte pairs to the count of that byte pair in the string, instead of
366 * allowing repeated elements in a set.
368 struct fingerprint {
369 struct hashmap map;
370 /* As we know the maximum number of entries in advance, it's
371 * convenient to store the entries in a single array instead of having
372 * the hashmap manage the memory.
374 struct fingerprint_entry *entries;
377 /* A byte pair in a fingerprint. Stores the number of times the byte pair
378 * occurs in the string that the fingerprint represents.
380 struct fingerprint_entry {
381 /* The hashmap entry - the hash represents the byte pair in its
382 * entirety so we don't need to store the byte pair separately.
384 struct hashmap_entry entry;
385 /* The number of times the byte pair occurs in the string that the
386 * fingerprint represents.
388 int count;
391 /* See `struct fingerprint` for an explanation of what a fingerprint is.
392 * \param result the fingerprint of the string is stored here. This must be
393 * freed later using free_fingerprint.
394 * \param line_begin the start of the string
395 * \param line_end the end of the string
397 static void get_fingerprint(struct fingerprint *result,
398 const char *line_begin,
399 const char *line_end)
401 unsigned int hash, c0 = 0, c1;
402 const char *p;
403 int max_map_entry_count = 1 + line_end - line_begin;
404 struct fingerprint_entry *entry = xcalloc(max_map_entry_count,
405 sizeof(struct fingerprint_entry));
406 struct fingerprint_entry *found_entry;
408 hashmap_init(&result->map, NULL, NULL, max_map_entry_count);
409 result->entries = entry;
410 for (p = line_begin; p <= line_end; ++p, c0 = c1) {
411 /* Always terminate the string with whitespace.
412 * Normalise whitespace to 0, and normalise letters to
413 * lower case. This won't work for multibyte characters but at
414 * worst will match some unrelated characters.
416 if ((p == line_end) || isspace(*p))
417 c1 = 0;
418 else
419 c1 = tolower(*p);
420 hash = c0 | (c1 << 8);
421 /* Ignore whitespace pairs */
422 if (hash == 0)
423 continue;
424 hashmap_entry_init(&entry->entry, hash);
426 found_entry = hashmap_get_entry(&result->map, entry,
427 /* member name */ entry, NULL);
428 if (found_entry) {
429 found_entry->count += 1;
430 } else {
431 entry->count = 1;
432 hashmap_add(&result->map, &entry->entry);
433 ++entry;
438 static void free_fingerprint(struct fingerprint *f)
440 hashmap_clear(&f->map);
441 free(f->entries);
444 /* Calculates the similarity between two fingerprints as the size of the
445 * intersection of their multisets, including repeated elements. See
446 * `struct fingerprint` for an explanation of the fingerprint representation.
447 * The similarity between "cat mat" and "father rather" is 2 because "at" is
448 * present twice in both strings while the similarity between "tim" and "mit"
449 * is 0.
451 static int fingerprint_similarity(struct fingerprint *a, struct fingerprint *b)
453 int intersection = 0;
454 struct hashmap_iter iter;
455 const struct fingerprint_entry *entry_a, *entry_b;
457 hashmap_for_each_entry(&b->map, &iter, entry_b,
458 entry /* member name */) {
459 entry_a = hashmap_get_entry(&a->map, entry_b, entry, NULL);
460 if (entry_a) {
461 intersection += entry_a->count < entry_b->count ?
462 entry_a->count : entry_b->count;
465 return intersection;
468 /* Subtracts byte-pair elements in B from A, modifying A in place.
470 static void fingerprint_subtract(struct fingerprint *a, struct fingerprint *b)
472 struct hashmap_iter iter;
473 struct fingerprint_entry *entry_a;
474 const struct fingerprint_entry *entry_b;
476 hashmap_iter_init(&b->map, &iter);
478 hashmap_for_each_entry(&b->map, &iter, entry_b,
479 entry /* member name */) {
480 entry_a = hashmap_get_entry(&a->map, entry_b, entry, NULL);
481 if (entry_a) {
482 if (entry_a->count <= entry_b->count)
483 hashmap_remove(&a->map, &entry_b->entry, NULL);
484 else
485 entry_a->count -= entry_b->count;
490 /* Calculate fingerprints for a series of lines.
491 * Puts the fingerprints in the fingerprints array, which must have been
492 * preallocated to allow storing line_count elements.
494 static void get_line_fingerprints(struct fingerprint *fingerprints,
495 const char *content, const int *line_starts,
496 long first_line, long line_count)
498 int i;
499 const char *linestart, *lineend;
501 line_starts += first_line;
502 for (i = 0; i < line_count; ++i) {
503 linestart = content + line_starts[i];
504 lineend = content + line_starts[i + 1];
505 get_fingerprint(fingerprints + i, linestart, lineend);
509 static void free_line_fingerprints(struct fingerprint *fingerprints,
510 int nr_fingerprints)
512 int i;
514 for (i = 0; i < nr_fingerprints; i++)
515 free_fingerprint(&fingerprints[i]);
518 /* This contains the data necessary to linearly map a line number in one half
519 * of a diff chunk to the line in the other half of the diff chunk that is
520 * closest in terms of its position as a fraction of the length of the chunk.
522 struct line_number_mapping {
523 int destination_start, destination_length,
524 source_start, source_length;
527 /* Given a line number in one range, offset and scale it to map it onto the
528 * other range.
529 * Essentially this mapping is a simple linear equation but the calculation is
530 * more complicated to allow performing it with integer operations.
531 * Another complication is that if a line could map onto many lines in the
532 * destination range then we want to choose the line at the center of those
533 * possibilities.
534 * Example: if the chunk is 2 lines long in A and 10 lines long in B then the
535 * first 5 lines in B will map onto the first line in the A chunk, while the
536 * last 5 lines will all map onto the second line in the A chunk.
537 * Example: if the chunk is 10 lines long in A and 2 lines long in B then line
538 * 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
540 static int map_line_number(int line_number,
541 const struct line_number_mapping *mapping)
543 return ((line_number - mapping->source_start) * 2 + 1) *
544 mapping->destination_length /
545 (mapping->source_length * 2) +
546 mapping->destination_start;
549 /* Get a pointer to the element storing the similarity between a line in A
550 * and a line in B.
552 * The similarities are stored in a 2-dimensional array. Each "row" in the
553 * array contains the similarities for a line in B. The similarities stored in
554 * a row are the similarities between the line in B and the nearby lines in A.
555 * To keep the length of each row the same, it is padded out with values of -1
556 * where the search range extends beyond the lines in A.
557 * For example, if max_search_distance_a is 2 and the two sides of a diff chunk
558 * look like this:
559 * a | m
560 * b | n
561 * c | o
562 * d | p
563 * e | q
564 * Then the similarity array will contain:
565 * [-1, -1, am, bm, cm,
566 * -1, an, bn, cn, dn,
567 * ao, bo, co, do, eo,
568 * bp, cp, dp, ep, -1,
569 * cq, dq, eq, -1, -1]
570 * Where similarities are denoted either by -1 for invalid, or the
571 * concatenation of the two lines in the diff being compared.
573 * \param similarities array of similarities between lines in A and B
574 * \param line_a the index of the line in A, in the same frame of reference as
575 * closest_line_a.
576 * \param local_line_b the index of the line in B, relative to the first line
577 * in B that similarities represents.
578 * \param closest_line_a the index of the line in A that is deemed to be
579 * closest to local_line_b. This must be in the same
580 * frame of reference as line_a. This value defines
581 * where similarities is centered for the line in B.
582 * \param max_search_distance_a maximum distance in lines from the closest line
583 * in A for other lines in A for which
584 * similarities may be calculated.
586 static int *get_similarity(int *similarities,
587 int line_a, int local_line_b,
588 int closest_line_a, int max_search_distance_a)
590 assert(abs(line_a - closest_line_a) <=
591 max_search_distance_a);
592 return similarities + line_a - closest_line_a +
593 max_search_distance_a +
594 local_line_b * (max_search_distance_a * 2 + 1);
597 #define CERTAIN_NOTHING_MATCHES -2
598 #define CERTAINTY_NOT_CALCULATED -1
600 /* Given a line in B, first calculate its similarities with nearby lines in A
601 * if not already calculated, then identify the most similar and second most
602 * similar lines. The "certainty" is calculated based on those two
603 * similarities.
605 * \param start_a the index of the first line of the chunk in A
606 * \param length_a the length in lines of the chunk in A
607 * \param local_line_b the index of the line in B, relative to the first line
608 * in the chunk.
609 * \param fingerprints_a array of fingerprints for the chunk in A
610 * \param fingerprints_b array of fingerprints for the chunk in B
611 * \param similarities 2-dimensional array of similarities between lines in A
612 * and B. See get_similarity() for more details.
613 * \param certainties array of values indicating how strongly a line in B is
614 * matched with some line in A.
615 * \param second_best_result array of absolute indices in A for the second
616 * closest match of a line in B.
617 * \param result array of absolute indices in A for the closest match of a line
618 * in B.
619 * \param max_search_distance_a maximum distance in lines from the closest line
620 * in A for other lines in A for which
621 * similarities may be calculated.
622 * \param map_line_number_in_b_to_a parameter to map_line_number().
624 static void find_best_line_matches(
625 int start_a,
626 int length_a,
627 int start_b,
628 int local_line_b,
629 struct fingerprint *fingerprints_a,
630 struct fingerprint *fingerprints_b,
631 int *similarities,
632 int *certainties,
633 int *second_best_result,
634 int *result,
635 const int max_search_distance_a,
636 const struct line_number_mapping *map_line_number_in_b_to_a)
639 int i, search_start, search_end, closest_local_line_a, *similarity,
640 best_similarity = 0, second_best_similarity = 0,
641 best_similarity_index = 0, second_best_similarity_index = 0;
643 /* certainty has already been calculated so no need to redo the work */
644 if (certainties[local_line_b] != CERTAINTY_NOT_CALCULATED)
645 return;
647 closest_local_line_a = map_line_number(
648 local_line_b + start_b, map_line_number_in_b_to_a) - start_a;
650 search_start = closest_local_line_a - max_search_distance_a;
651 if (search_start < 0)
652 search_start = 0;
654 search_end = closest_local_line_a + max_search_distance_a + 1;
655 if (search_end > length_a)
656 search_end = length_a;
658 for (i = search_start; i < search_end; ++i) {
659 similarity = get_similarity(similarities,
660 i, local_line_b,
661 closest_local_line_a,
662 max_search_distance_a);
663 if (*similarity == -1) {
664 /* This value will never exceed 10 but assert just in
665 * case
667 assert(abs(i - closest_local_line_a) < 1000);
668 /* scale the similarity by (1000 - distance from
669 * closest line) to act as a tie break between lines
670 * that otherwise are equally similar.
672 *similarity = fingerprint_similarity(
673 fingerprints_b + local_line_b,
674 fingerprints_a + i) *
675 (1000 - abs(i - closest_local_line_a));
677 if (*similarity > best_similarity) {
678 second_best_similarity = best_similarity;
679 second_best_similarity_index = best_similarity_index;
680 best_similarity = *similarity;
681 best_similarity_index = i;
682 } else if (*similarity > second_best_similarity) {
683 second_best_similarity = *similarity;
684 second_best_similarity_index = i;
688 if (best_similarity == 0) {
689 /* this line definitely doesn't match with anything. Mark it
690 * with this special value so it doesn't get invalidated and
691 * won't be recalculated.
693 certainties[local_line_b] = CERTAIN_NOTHING_MATCHES;
694 result[local_line_b] = -1;
695 } else {
696 /* Calculate the certainty with which this line matches.
697 * If the line matches well with two lines then that reduces
698 * the certainty. However we still want to prioritise matching
699 * a line that matches very well with two lines over matching a
700 * line that matches poorly with one line, hence doubling
701 * best_similarity.
702 * This means that if we have
703 * line X that matches only one line with a score of 3,
704 * line Y that matches two lines equally with a score of 5,
705 * and line Z that matches only one line with a score or 2,
706 * then the lines in order of certainty are X, Y, Z.
708 certainties[local_line_b] = best_similarity * 2 -
709 second_best_similarity;
711 /* We keep both the best and second best results to allow us to
712 * check at a later stage of the matching process whether the
713 * result needs to be invalidated.
715 result[local_line_b] = start_a + best_similarity_index;
716 second_best_result[local_line_b] =
717 start_a + second_best_similarity_index;
722 * This finds the line that we can match with the most confidence, and
723 * uses it as a partition. It then calls itself on the lines on either side of
724 * that partition. In this way we avoid lines appearing out of order, and
725 * retain a sensible line ordering.
726 * \param start_a index of the first line in A with which lines in B may be
727 * compared.
728 * \param start_b index of the first line in B for which matching should be
729 * done.
730 * \param length_a number of lines in A with which lines in B may be compared.
731 * \param length_b number of lines in B for which matching should be done.
732 * \param fingerprints_a mutable array of fingerprints in A. The first element
733 * corresponds to the line at start_a.
734 * \param fingerprints_b array of fingerprints in B. The first element
735 * corresponds to the line at start_b.
736 * \param similarities 2-dimensional array of similarities between lines in A
737 * and B. See get_similarity() for more details.
738 * \param certainties array of values indicating how strongly a line in B is
739 * matched with some line in A.
740 * \param second_best_result array of absolute indices in A for the second
741 * closest match of a line in B.
742 * \param result array of absolute indices in A for the closest match of a line
743 * in B.
744 * \param max_search_distance_a maximum distance in lines from the closest line
745 * in A for other lines in A for which
746 * similarities may be calculated.
747 * \param max_search_distance_b an upper bound on the greatest possible
748 * distance between lines in B such that they will
749 * both be compared with the same line in A
750 * according to max_search_distance_a.
751 * \param map_line_number_in_b_to_a parameter to map_line_number().
753 static void fuzzy_find_matching_lines_recurse(
754 int start_a, int start_b,
755 int length_a, int length_b,
756 struct fingerprint *fingerprints_a,
757 struct fingerprint *fingerprints_b,
758 int *similarities,
759 int *certainties,
760 int *second_best_result,
761 int *result,
762 int max_search_distance_a,
763 int max_search_distance_b,
764 const struct line_number_mapping *map_line_number_in_b_to_a)
766 int i, invalidate_min, invalidate_max, offset_b,
767 second_half_start_a, second_half_start_b,
768 second_half_length_a, second_half_length_b,
769 most_certain_line_a, most_certain_local_line_b = -1,
770 most_certain_line_certainty = -1,
771 closest_local_line_a;
773 for (i = 0; i < length_b; ++i) {
774 find_best_line_matches(start_a,
775 length_a,
776 start_b,
778 fingerprints_a,
779 fingerprints_b,
780 similarities,
781 certainties,
782 second_best_result,
783 result,
784 max_search_distance_a,
785 map_line_number_in_b_to_a);
787 if (certainties[i] > most_certain_line_certainty) {
788 most_certain_line_certainty = certainties[i];
789 most_certain_local_line_b = i;
793 /* No matches. */
794 if (most_certain_local_line_b == -1)
795 return;
797 most_certain_line_a = result[most_certain_local_line_b];
800 * Subtract the most certain line's fingerprint in B from the matched
801 * fingerprint in A. This means that other lines in B can't also match
802 * the same parts of the line in A.
804 fingerprint_subtract(fingerprints_a + most_certain_line_a - start_a,
805 fingerprints_b + most_certain_local_line_b);
807 /* Invalidate results that may be affected by the choice of most
808 * certain line.
810 invalidate_min = most_certain_local_line_b - max_search_distance_b;
811 invalidate_max = most_certain_local_line_b + max_search_distance_b + 1;
812 if (invalidate_min < 0)
813 invalidate_min = 0;
814 if (invalidate_max > length_b)
815 invalidate_max = length_b;
817 /* As the fingerprint in A has changed, discard previously calculated
818 * similarity values with that fingerprint.
820 for (i = invalidate_min; i < invalidate_max; ++i) {
821 closest_local_line_a = map_line_number(
822 i + start_b, map_line_number_in_b_to_a) - start_a;
824 /* Check that the lines in A and B are close enough that there
825 * is a similarity value for them.
827 if (abs(most_certain_line_a - start_a - closest_local_line_a) >
828 max_search_distance_a) {
829 continue;
832 *get_similarity(similarities, most_certain_line_a - start_a,
833 i, closest_local_line_a,
834 max_search_distance_a) = -1;
837 /* More invalidating of results that may be affected by the choice of
838 * most certain line.
839 * Discard the matches for lines in B that are currently matched with a
840 * line in A such that their ordering contradicts the ordering imposed
841 * by the choice of most certain line.
843 for (i = most_certain_local_line_b - 1; i >= invalidate_min; --i) {
844 /* In this loop we discard results for lines in B that are
845 * before most-certain-line-B but are matched with a line in A
846 * that is after most-certain-line-A.
848 if (certainties[i] >= 0 &&
849 (result[i] >= most_certain_line_a ||
850 second_best_result[i] >= most_certain_line_a)) {
851 certainties[i] = CERTAINTY_NOT_CALCULATED;
854 for (i = most_certain_local_line_b + 1; i < invalidate_max; ++i) {
855 /* In this loop we discard results for lines in B that are
856 * after most-certain-line-B but are matched with a line in A
857 * that is before most-certain-line-A.
859 if (certainties[i] >= 0 &&
860 (result[i] <= most_certain_line_a ||
861 second_best_result[i] <= most_certain_line_a)) {
862 certainties[i] = CERTAINTY_NOT_CALCULATED;
866 /* Repeat the matching process for lines before the most certain line.
868 if (most_certain_local_line_b > 0) {
869 fuzzy_find_matching_lines_recurse(
870 start_a, start_b,
871 most_certain_line_a + 1 - start_a,
872 most_certain_local_line_b,
873 fingerprints_a, fingerprints_b, similarities,
874 certainties, second_best_result, result,
875 max_search_distance_a,
876 max_search_distance_b,
877 map_line_number_in_b_to_a);
879 /* Repeat the matching process for lines after the most certain line.
881 if (most_certain_local_line_b + 1 < length_b) {
882 second_half_start_a = most_certain_line_a;
883 offset_b = most_certain_local_line_b + 1;
884 second_half_start_b = start_b + offset_b;
885 second_half_length_a =
886 length_a + start_a - second_half_start_a;
887 second_half_length_b =
888 length_b + start_b - second_half_start_b;
889 fuzzy_find_matching_lines_recurse(
890 second_half_start_a, second_half_start_b,
891 second_half_length_a, second_half_length_b,
892 fingerprints_a + second_half_start_a - start_a,
893 fingerprints_b + offset_b,
894 similarities +
895 offset_b * (max_search_distance_a * 2 + 1),
896 certainties + offset_b,
897 second_best_result + offset_b, result + offset_b,
898 max_search_distance_a,
899 max_search_distance_b,
900 map_line_number_in_b_to_a);
904 /* Find the lines in the parent line range that most closely match the lines in
905 * the target line range. This is accomplished by matching fingerprints in each
906 * blame_origin, and choosing the best matches that preserve the line ordering.
907 * See struct fingerprint for details of fingerprint matching, and
908 * fuzzy_find_matching_lines_recurse for details of preserving line ordering.
910 * The performance is believed to be O(n log n) in the typical case and O(n^2)
911 * in a pathological case, where n is the number of lines in the target range.
913 static int *fuzzy_find_matching_lines(struct blame_origin *parent,
914 struct blame_origin *target,
915 int tlno, int parent_slno, int same,
916 int parent_len)
918 /* We use the terminology "A" for the left hand side of the diff AKA
919 * parent, and "B" for the right hand side of the diff AKA target. */
920 int start_a = parent_slno;
921 int length_a = parent_len;
922 int start_b = tlno;
923 int length_b = same - tlno;
925 struct line_number_mapping map_line_number_in_b_to_a = {
926 start_a, length_a, start_b, length_b
929 struct fingerprint *fingerprints_a = parent->fingerprints;
930 struct fingerprint *fingerprints_b = target->fingerprints;
932 int i, *result, *second_best_result,
933 *certainties, *similarities, similarity_count;
936 * max_search_distance_a means that given a line in B, compare it to
937 * the line in A that is closest to its position, and the lines in A
938 * that are no greater than max_search_distance_a lines away from the
939 * closest line in A.
941 * max_search_distance_b is an upper bound on the greatest possible
942 * distance between lines in B such that they will both be compared
943 * with the same line in A according to max_search_distance_a.
945 int max_search_distance_a = 10, max_search_distance_b;
947 if (length_a <= 0)
948 return NULL;
950 if (max_search_distance_a >= length_a)
951 max_search_distance_a = length_a ? length_a - 1 : 0;
953 max_search_distance_b = ((2 * max_search_distance_a + 1) * length_b
954 - 1) / length_a;
956 CALLOC_ARRAY(result, length_b);
957 CALLOC_ARRAY(second_best_result, length_b);
958 CALLOC_ARRAY(certainties, length_b);
960 /* See get_similarity() for details of similarities. */
961 similarity_count = length_b * (max_search_distance_a * 2 + 1);
962 CALLOC_ARRAY(similarities, similarity_count);
964 for (i = 0; i < length_b; ++i) {
965 result[i] = -1;
966 second_best_result[i] = -1;
967 certainties[i] = CERTAINTY_NOT_CALCULATED;
970 for (i = 0; i < similarity_count; ++i)
971 similarities[i] = -1;
973 fuzzy_find_matching_lines_recurse(start_a, start_b,
974 length_a, length_b,
975 fingerprints_a + start_a,
976 fingerprints_b + start_b,
977 similarities,
978 certainties,
979 second_best_result,
980 result,
981 max_search_distance_a,
982 max_search_distance_b,
983 &map_line_number_in_b_to_a);
985 free(similarities);
986 free(certainties);
987 free(second_best_result);
989 return result;
992 static void fill_origin_fingerprints(struct blame_origin *o)
994 int *line_starts;
996 if (o->fingerprints)
997 return;
998 o->num_lines = find_line_starts(&line_starts, o->file.ptr,
999 o->file.size);
1000 CALLOC_ARRAY(o->fingerprints, o->num_lines);
1001 get_line_fingerprints(o->fingerprints, o->file.ptr, line_starts,
1002 0, o->num_lines);
1003 free(line_starts);
1006 static void drop_origin_fingerprints(struct blame_origin *o)
1008 if (o->fingerprints) {
1009 free_line_fingerprints(o->fingerprints, o->num_lines);
1010 o->num_lines = 0;
1011 FREE_AND_NULL(o->fingerprints);
1016 * Given an origin, prepare mmfile_t structure to be used by the
1017 * diff machinery
1019 static void fill_origin_blob(struct diff_options *opt,
1020 struct blame_origin *o, mmfile_t *file,
1021 int *num_read_blob, int fill_fingerprints)
1023 if (!o->file.ptr) {
1024 enum object_type type;
1025 unsigned long file_size;
1027 (*num_read_blob)++;
1028 if (opt->flags.allow_textconv &&
1029 textconv_object(opt->repo, o->path, o->mode,
1030 &o->blob_oid, 1, &file->ptr, &file_size))
1032 else
1033 file->ptr = repo_read_object_file(the_repository,
1034 &o->blob_oid, &type,
1035 &file_size);
1036 file->size = file_size;
1038 if (!file->ptr)
1039 die("Cannot read blob %s for path %s",
1040 oid_to_hex(&o->blob_oid),
1041 o->path);
1042 o->file = *file;
1044 else
1045 *file = o->file;
1046 if (fill_fingerprints)
1047 fill_origin_fingerprints(o);
1050 static void drop_origin_blob(struct blame_origin *o)
1052 FREE_AND_NULL(o->file.ptr);
1053 drop_origin_fingerprints(o);
1057 * Any merge of blames happens on lists of blames that arrived via
1058 * different parents in a single suspect. In this case, we want to
1059 * sort according to the suspect line numbers as opposed to the final
1060 * image line numbers. The function body is somewhat longish because
1061 * it avoids unnecessary writes.
1064 static struct blame_entry *blame_merge(struct blame_entry *list1,
1065 struct blame_entry *list2)
1067 struct blame_entry *p1 = list1, *p2 = list2,
1068 **tail = &list1;
1070 if (!p1)
1071 return p2;
1072 if (!p2)
1073 return p1;
1075 if (p1->s_lno <= p2->s_lno) {
1076 do {
1077 tail = &p1->next;
1078 if (!(p1 = *tail)) {
1079 *tail = p2;
1080 return list1;
1082 } while (p1->s_lno <= p2->s_lno);
1084 for (;;) {
1085 *tail = p2;
1086 do {
1087 tail = &p2->next;
1088 if (!(p2 = *tail)) {
1089 *tail = p1;
1090 return list1;
1092 } while (p1->s_lno > p2->s_lno);
1093 *tail = p1;
1094 do {
1095 tail = &p1->next;
1096 if (!(p1 = *tail)) {
1097 *tail = p2;
1098 return list1;
1100 } while (p1->s_lno <= p2->s_lno);
1104 DEFINE_LIST_SORT(static, sort_blame_entries, struct blame_entry, next);
1107 * Final image line numbers are all different, so we don't need a
1108 * three-way comparison here.
1111 static int compare_blame_final(const struct blame_entry *e1,
1112 const struct blame_entry *e2)
1114 return e1->lno > e2->lno ? 1 : -1;
1117 static int compare_blame_suspect(const struct blame_entry *s1,
1118 const struct blame_entry *s2)
1121 * to allow for collating suspects, we sort according to the
1122 * respective pointer value as the primary sorting criterion.
1123 * The actual relation is pretty unimportant as long as it
1124 * establishes a total order. Comparing as integers gives us
1125 * that.
1127 if (s1->suspect != s2->suspect)
1128 return (intptr_t)s1->suspect > (intptr_t)s2->suspect ? 1 : -1;
1129 if (s1->s_lno == s2->s_lno)
1130 return 0;
1131 return s1->s_lno > s2->s_lno ? 1 : -1;
1134 void blame_sort_final(struct blame_scoreboard *sb)
1136 sort_blame_entries(&sb->ent, compare_blame_final);
1139 static int compare_commits_by_reverse_commit_date(const void *a,
1140 const void *b,
1141 void *c)
1143 return -compare_commits_by_commit_date(a, b, c);
1147 * For debugging -- origin is refcounted, and this asserts that
1148 * we do not underflow.
1150 static void sanity_check_refcnt(struct blame_scoreboard *sb)
1152 int baa = 0;
1153 struct blame_entry *ent;
1155 for (ent = sb->ent; ent; ent = ent->next) {
1156 /* Nobody should have zero or negative refcnt */
1157 if (ent->suspect->refcnt <= 0) {
1158 fprintf(stderr, "%s in %s has negative refcnt %d\n",
1159 ent->suspect->path,
1160 oid_to_hex(&ent->suspect->commit->object.oid),
1161 ent->suspect->refcnt);
1162 baa = 1;
1165 if (baa)
1166 sb->on_sanity_fail(sb, baa);
1170 * If two blame entries that are next to each other came from
1171 * contiguous lines in the same origin (i.e. <commit, path> pair),
1172 * merge them together.
1174 void blame_coalesce(struct blame_scoreboard *sb)
1176 struct blame_entry *ent, *next;
1178 for (ent = sb->ent; ent && (next = ent->next); ent = next) {
1179 if (ent->suspect == next->suspect &&
1180 ent->s_lno + ent->num_lines == next->s_lno &&
1181 ent->lno + ent->num_lines == next->lno &&
1182 ent->ignored == next->ignored &&
1183 ent->unblamable == next->unblamable) {
1184 ent->num_lines += next->num_lines;
1185 ent->next = next->next;
1186 blame_origin_decref(next->suspect);
1187 free(next);
1188 ent->score = 0;
1189 next = ent; /* again */
1193 if (sb->debug) /* sanity */
1194 sanity_check_refcnt(sb);
1198 * Merge the given sorted list of blames into a preexisting origin.
1199 * If there were no previous blames to that commit, it is entered into
1200 * the commit priority queue of the score board.
1203 static void queue_blames(struct blame_scoreboard *sb, struct blame_origin *porigin,
1204 struct blame_entry *sorted)
1206 if (porigin->suspects)
1207 porigin->suspects = blame_merge(porigin->suspects, sorted);
1208 else {
1209 struct blame_origin *o;
1210 for (o = get_blame_suspects(porigin->commit); o; o = o->next) {
1211 if (o->suspects) {
1212 porigin->suspects = sorted;
1213 return;
1216 porigin->suspects = sorted;
1217 prio_queue_put(&sb->commits, porigin->commit);
1222 * Fill the blob_sha1 field of an origin if it hasn't, so that later
1223 * call to fill_origin_blob() can use it to locate the data. blob_sha1
1224 * for an origin is also used to pass the blame for the entire file to
1225 * the parent to detect the case where a child's blob is identical to
1226 * that of its parent's.
1228 * This also fills origin->mode for corresponding tree path.
1230 static int fill_blob_sha1_and_mode(struct repository *r,
1231 struct blame_origin *origin)
1233 if (!is_null_oid(&origin->blob_oid))
1234 return 0;
1235 if (get_tree_entry(r, &origin->commit->object.oid, origin->path, &origin->blob_oid, &origin->mode))
1236 goto error_out;
1237 if (oid_object_info(r, &origin->blob_oid, NULL) != OBJ_BLOB)
1238 goto error_out;
1239 return 0;
1240 error_out:
1241 oidclr(&origin->blob_oid);
1242 origin->mode = S_IFINVALID;
1243 return -1;
1246 struct blame_bloom_data {
1248 * Changed-path Bloom filter keys. These can help prevent
1249 * computing diffs against first parents, but we need to
1250 * expand the list as code is moved or files are renamed.
1252 struct bloom_filter_settings *settings;
1253 struct bloom_key **keys;
1254 int nr;
1255 int alloc;
1258 static int bloom_count_queries = 0;
1259 static int bloom_count_no = 0;
1260 static int maybe_changed_path(struct repository *r,
1261 struct blame_origin *origin,
1262 struct blame_bloom_data *bd)
1264 int i;
1265 struct bloom_filter *filter;
1267 if (!bd)
1268 return 1;
1270 if (commit_graph_generation(origin->commit) == GENERATION_NUMBER_INFINITY)
1271 return 1;
1273 filter = get_bloom_filter(r, origin->commit);
1275 if (!filter)
1276 return 1;
1278 bloom_count_queries++;
1279 for (i = 0; i < bd->nr; i++) {
1280 if (bloom_filter_contains(filter,
1281 bd->keys[i],
1282 bd->settings))
1283 return 1;
1286 bloom_count_no++;
1287 return 0;
1290 static void add_bloom_key(struct blame_bloom_data *bd,
1291 const char *path)
1293 if (!bd)
1294 return;
1296 if (bd->nr >= bd->alloc) {
1297 bd->alloc *= 2;
1298 REALLOC_ARRAY(bd->keys, bd->alloc);
1301 bd->keys[bd->nr] = xmalloc(sizeof(struct bloom_key));
1302 fill_bloom_key(path, strlen(path), bd->keys[bd->nr], bd->settings);
1303 bd->nr++;
1307 * We have an origin -- check if the same path exists in the
1308 * parent and return an origin structure to represent it.
1310 static struct blame_origin *find_origin(struct repository *r,
1311 struct commit *parent,
1312 struct blame_origin *origin,
1313 struct blame_bloom_data *bd)
1315 struct blame_origin *porigin;
1316 struct diff_options diff_opts;
1317 const char *paths[2];
1319 /* First check any existing origins */
1320 for (porigin = get_blame_suspects(parent); porigin; porigin = porigin->next)
1321 if (!strcmp(porigin->path, origin->path)) {
1323 * The same path between origin and its parent
1324 * without renaming -- the most common case.
1326 return blame_origin_incref (porigin);
1329 /* See if the origin->path is different between parent
1330 * and origin first. Most of the time they are the
1331 * same and diff-tree is fairly efficient about this.
1333 repo_diff_setup(r, &diff_opts);
1334 diff_opts.flags.recursive = 1;
1335 diff_opts.detect_rename = 0;
1336 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1337 paths[0] = origin->path;
1338 paths[1] = NULL;
1340 parse_pathspec(&diff_opts.pathspec,
1341 PATHSPEC_ALL_MAGIC & ~PATHSPEC_LITERAL,
1342 PATHSPEC_LITERAL_PATH, "", paths);
1343 diff_setup_done(&diff_opts);
1345 if (is_null_oid(&origin->commit->object.oid))
1346 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
1347 else {
1348 int compute_diff = 1;
1349 if (origin->commit->parents &&
1350 oideq(&parent->object.oid,
1351 &origin->commit->parents->item->object.oid))
1352 compute_diff = maybe_changed_path(r, origin, bd);
1354 if (compute_diff)
1355 diff_tree_oid(get_commit_tree_oid(parent),
1356 get_commit_tree_oid(origin->commit),
1357 "", &diff_opts);
1359 diffcore_std(&diff_opts);
1361 if (!diff_queued_diff.nr) {
1362 /* The path is the same as parent */
1363 porigin = get_origin(parent, origin->path);
1364 oidcpy(&porigin->blob_oid, &origin->blob_oid);
1365 porigin->mode = origin->mode;
1366 } else {
1368 * Since origin->path is a pathspec, if the parent
1369 * commit had it as a directory, we will see a whole
1370 * bunch of deletion of files in the directory that we
1371 * do not care about.
1373 int i;
1374 struct diff_filepair *p = NULL;
1375 for (i = 0; i < diff_queued_diff.nr; i++) {
1376 const char *name;
1377 p = diff_queued_diff.queue[i];
1378 name = p->one->path ? p->one->path : p->two->path;
1379 if (!strcmp(name, origin->path))
1380 break;
1382 if (!p)
1383 die("internal error in blame::find_origin");
1384 switch (p->status) {
1385 default:
1386 die("internal error in blame::find_origin (%c)",
1387 p->status);
1388 case 'M':
1389 porigin = get_origin(parent, origin->path);
1390 oidcpy(&porigin->blob_oid, &p->one->oid);
1391 porigin->mode = p->one->mode;
1392 break;
1393 case 'A':
1394 case 'T':
1395 /* Did not exist in parent, or type changed */
1396 break;
1399 diff_flush(&diff_opts);
1400 return porigin;
1404 * We have an origin -- find the path that corresponds to it in its
1405 * parent and return an origin structure to represent it.
1407 static struct blame_origin *find_rename(struct repository *r,
1408 struct commit *parent,
1409 struct blame_origin *origin,
1410 struct blame_bloom_data *bd)
1412 struct blame_origin *porigin = NULL;
1413 struct diff_options diff_opts;
1414 int i;
1416 repo_diff_setup(r, &diff_opts);
1417 diff_opts.flags.recursive = 1;
1418 diff_opts.detect_rename = DIFF_DETECT_RENAME;
1419 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1420 diff_opts.single_follow = origin->path;
1421 diff_setup_done(&diff_opts);
1423 if (is_null_oid(&origin->commit->object.oid))
1424 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
1425 else
1426 diff_tree_oid(get_commit_tree_oid(parent),
1427 get_commit_tree_oid(origin->commit),
1428 "", &diff_opts);
1429 diffcore_std(&diff_opts);
1431 for (i = 0; i < diff_queued_diff.nr; i++) {
1432 struct diff_filepair *p = diff_queued_diff.queue[i];
1433 if ((p->status == 'R' || p->status == 'C') &&
1434 !strcmp(p->two->path, origin->path)) {
1435 add_bloom_key(bd, p->one->path);
1436 porigin = get_origin(parent, p->one->path);
1437 oidcpy(&porigin->blob_oid, &p->one->oid);
1438 porigin->mode = p->one->mode;
1439 break;
1442 diff_flush(&diff_opts);
1443 return porigin;
1447 * Append a new blame entry to a given output queue.
1449 static void add_blame_entry(struct blame_entry ***queue,
1450 const struct blame_entry *src)
1452 struct blame_entry *e = xmalloc(sizeof(*e));
1453 memcpy(e, src, sizeof(*e));
1454 blame_origin_incref(e->suspect);
1456 e->next = **queue;
1457 **queue = e;
1458 *queue = &e->next;
1462 * src typically is on-stack; we want to copy the information in it to
1463 * a malloced blame_entry that gets added to the given queue. The
1464 * origin of dst loses a refcnt.
1466 static void dup_entry(struct blame_entry ***queue,
1467 struct blame_entry *dst, struct blame_entry *src)
1469 blame_origin_incref(src->suspect);
1470 blame_origin_decref(dst->suspect);
1471 memcpy(dst, src, sizeof(*src));
1472 dst->next = **queue;
1473 **queue = dst;
1474 *queue = &dst->next;
1477 const char *blame_nth_line(struct blame_scoreboard *sb, long lno)
1479 return sb->final_buf + sb->lineno[lno];
1483 * It is known that lines between tlno to same came from parent, and e
1484 * has an overlap with that range. it also is known that parent's
1485 * line plno corresponds to e's line tlno.
1487 * <---- e ----->
1488 * <------>
1489 * <------------>
1490 * <------------>
1491 * <------------------>
1493 * Split e into potentially three parts; before this chunk, the chunk
1494 * to be blamed for the parent, and after that portion.
1496 static void split_overlap(struct blame_entry *split,
1497 struct blame_entry *e,
1498 int tlno, int plno, int same,
1499 struct blame_origin *parent)
1501 int chunk_end_lno;
1502 int i;
1503 memset(split, 0, sizeof(struct blame_entry [3]));
1505 for (i = 0; i < 3; i++) {
1506 split[i].ignored = e->ignored;
1507 split[i].unblamable = e->unblamable;
1510 if (e->s_lno < tlno) {
1511 /* there is a pre-chunk part not blamed on parent */
1512 split[0].suspect = blame_origin_incref(e->suspect);
1513 split[0].lno = e->lno;
1514 split[0].s_lno = e->s_lno;
1515 split[0].num_lines = tlno - e->s_lno;
1516 split[1].lno = e->lno + tlno - e->s_lno;
1517 split[1].s_lno = plno;
1519 else {
1520 split[1].lno = e->lno;
1521 split[1].s_lno = plno + (e->s_lno - tlno);
1524 if (same < e->s_lno + e->num_lines) {
1525 /* there is a post-chunk part not blamed on parent */
1526 split[2].suspect = blame_origin_incref(e->suspect);
1527 split[2].lno = e->lno + (same - e->s_lno);
1528 split[2].s_lno = e->s_lno + (same - e->s_lno);
1529 split[2].num_lines = e->s_lno + e->num_lines - same;
1530 chunk_end_lno = split[2].lno;
1532 else
1533 chunk_end_lno = e->lno + e->num_lines;
1534 split[1].num_lines = chunk_end_lno - split[1].lno;
1537 * if it turns out there is nothing to blame the parent for,
1538 * forget about the splitting. !split[1].suspect signals this.
1540 if (split[1].num_lines < 1)
1541 return;
1542 split[1].suspect = blame_origin_incref(parent);
1546 * split_overlap() divided an existing blame e into up to three parts
1547 * in split. Any assigned blame is moved to queue to
1548 * reflect the split.
1550 static void split_blame(struct blame_entry ***blamed,
1551 struct blame_entry ***unblamed,
1552 struct blame_entry *split,
1553 struct blame_entry *e)
1555 if (split[0].suspect && split[2].suspect) {
1556 /* The first part (reuse storage for the existing entry e) */
1557 dup_entry(unblamed, e, &split[0]);
1559 /* The last part -- me */
1560 add_blame_entry(unblamed, &split[2]);
1562 /* ... and the middle part -- parent */
1563 add_blame_entry(blamed, &split[1]);
1565 else if (!split[0].suspect && !split[2].suspect)
1567 * The parent covers the entire area; reuse storage for
1568 * e and replace it with the parent.
1570 dup_entry(blamed, e, &split[1]);
1571 else if (split[0].suspect) {
1572 /* me and then parent */
1573 dup_entry(unblamed, e, &split[0]);
1574 add_blame_entry(blamed, &split[1]);
1576 else {
1577 /* parent and then me */
1578 dup_entry(blamed, e, &split[1]);
1579 add_blame_entry(unblamed, &split[2]);
1584 * After splitting the blame, the origins used by the
1585 * on-stack blame_entry should lose one refcnt each.
1587 static void decref_split(struct blame_entry *split)
1589 int i;
1591 for (i = 0; i < 3; i++)
1592 blame_origin_decref(split[i].suspect);
1596 * reverse_blame reverses the list given in head, appending tail.
1597 * That allows us to build lists in reverse order, then reverse them
1598 * afterwards. This can be faster than building the list in proper
1599 * order right away. The reason is that building in proper order
1600 * requires writing a link in the _previous_ element, while building
1601 * in reverse order just requires placing the list head into the
1602 * _current_ element.
1605 static struct blame_entry *reverse_blame(struct blame_entry *head,
1606 struct blame_entry *tail)
1608 while (head) {
1609 struct blame_entry *next = head->next;
1610 head->next = tail;
1611 tail = head;
1612 head = next;
1614 return tail;
1618 * Splits a blame entry into two entries at 'len' lines. The original 'e'
1619 * consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
1620 * which is returned, consists of the remainder: [e->lno + len, e->lno +
1621 * e->num_lines). The caller needs to sort out the reference counting for the
1622 * new entry's suspect.
1624 static struct blame_entry *split_blame_at(struct blame_entry *e, int len,
1625 struct blame_origin *new_suspect)
1627 struct blame_entry *n = xcalloc(1, sizeof(struct blame_entry));
1629 n->suspect = new_suspect;
1630 n->ignored = e->ignored;
1631 n->unblamable = e->unblamable;
1632 n->lno = e->lno + len;
1633 n->s_lno = e->s_lno + len;
1634 n->num_lines = e->num_lines - len;
1635 e->num_lines = len;
1636 e->score = 0;
1637 return n;
1640 struct blame_line_tracker {
1641 int is_parent;
1642 int s_lno;
1645 static int are_lines_adjacent(struct blame_line_tracker *first,
1646 struct blame_line_tracker *second)
1648 return first->is_parent == second->is_parent &&
1649 first->s_lno + 1 == second->s_lno;
1652 static int scan_parent_range(struct fingerprint *p_fps,
1653 struct fingerprint *t_fps, int t_idx,
1654 int from, int nr_lines)
1656 int sim, p_idx;
1657 #define FINGERPRINT_FILE_THRESHOLD 10
1658 int best_sim_val = FINGERPRINT_FILE_THRESHOLD;
1659 int best_sim_idx = -1;
1661 for (p_idx = from; p_idx < from + nr_lines; p_idx++) {
1662 sim = fingerprint_similarity(&t_fps[t_idx], &p_fps[p_idx]);
1663 if (sim < best_sim_val)
1664 continue;
1665 /* Break ties with the closest-to-target line number */
1666 if (sim == best_sim_val && best_sim_idx != -1 &&
1667 abs(best_sim_idx - t_idx) < abs(p_idx - t_idx))
1668 continue;
1669 best_sim_val = sim;
1670 best_sim_idx = p_idx;
1672 return best_sim_idx;
1676 * The first pass checks the blame entry (from the target) against the parent's
1677 * diff chunk. If that fails for a line, the second pass tries to match that
1678 * line to any part of parent file. That catches cases where a change was
1679 * broken into two chunks by 'context.'
1681 static void guess_line_blames(struct blame_origin *parent,
1682 struct blame_origin *target,
1683 int tlno, int offset, int same, int parent_len,
1684 struct blame_line_tracker *line_blames)
1686 int i, best_idx, target_idx;
1687 int parent_slno = tlno + offset;
1688 int *fuzzy_matches;
1690 fuzzy_matches = fuzzy_find_matching_lines(parent, target,
1691 tlno, parent_slno, same,
1692 parent_len);
1693 for (i = 0; i < same - tlno; i++) {
1694 target_idx = tlno + i;
1695 if (fuzzy_matches && fuzzy_matches[i] >= 0) {
1696 best_idx = fuzzy_matches[i];
1697 } else {
1698 best_idx = scan_parent_range(parent->fingerprints,
1699 target->fingerprints,
1700 target_idx, 0,
1701 parent->num_lines);
1703 if (best_idx >= 0) {
1704 line_blames[i].is_parent = 1;
1705 line_blames[i].s_lno = best_idx;
1706 } else {
1707 line_blames[i].is_parent = 0;
1708 line_blames[i].s_lno = target_idx;
1711 free(fuzzy_matches);
1715 * This decides which parts of a blame entry go to the parent (added to the
1716 * ignoredp list) and which stay with the target (added to the diffp list). The
1717 * actual decision was made in a separate heuristic function, and those answers
1718 * for the lines in 'e' are in line_blames. This consumes e, essentially
1719 * putting it on a list.
1721 * Note that the blame entries on the ignoredp list are not necessarily sorted
1722 * with respect to the parent's line numbers yet.
1724 static void ignore_blame_entry(struct blame_entry *e,
1725 struct blame_origin *parent,
1726 struct blame_entry **diffp,
1727 struct blame_entry **ignoredp,
1728 struct blame_line_tracker *line_blames)
1730 int entry_len, nr_lines, i;
1733 * We carve new entries off the front of e. Each entry comes from a
1734 * contiguous chunk of lines: adjacent lines from the same origin
1735 * (either the parent or the target).
1737 entry_len = 1;
1738 nr_lines = e->num_lines; /* e changes in the loop */
1739 for (i = 0; i < nr_lines; i++) {
1740 struct blame_entry *next = NULL;
1743 * We are often adjacent to the next line - only split the blame
1744 * entry when we have to.
1746 if (i + 1 < nr_lines) {
1747 if (are_lines_adjacent(&line_blames[i],
1748 &line_blames[i + 1])) {
1749 entry_len++;
1750 continue;
1752 next = split_blame_at(e, entry_len,
1753 blame_origin_incref(e->suspect));
1755 if (line_blames[i].is_parent) {
1756 e->ignored = 1;
1757 blame_origin_decref(e->suspect);
1758 e->suspect = blame_origin_incref(parent);
1759 e->s_lno = line_blames[i - entry_len + 1].s_lno;
1760 e->next = *ignoredp;
1761 *ignoredp = e;
1762 } else {
1763 e->unblamable = 1;
1764 /* e->s_lno is already in the target's address space. */
1765 e->next = *diffp;
1766 *diffp = e;
1768 assert(e->num_lines == entry_len);
1769 e = next;
1770 entry_len = 1;
1772 assert(!e);
1776 * Process one hunk from the patch between the current suspect for
1777 * blame_entry e and its parent. This first blames any unfinished
1778 * entries before the chunk (which is where target and parent start
1779 * differing) on the parent, and then splits blame entries at the
1780 * start and at the end of the difference region. Since use of -M and
1781 * -C options may lead to overlapping/duplicate source line number
1782 * ranges, all we can rely on from sorting/merging is the order of the
1783 * first suspect line number.
1785 * tlno: line number in the target where this chunk begins
1786 * same: line number in the target where this chunk ends
1787 * offset: add to tlno to get the chunk starting point in the parent
1788 * parent_len: number of lines in the parent chunk
1790 static void blame_chunk(struct blame_entry ***dstq, struct blame_entry ***srcq,
1791 int tlno, int offset, int same, int parent_len,
1792 struct blame_origin *parent,
1793 struct blame_origin *target, int ignore_diffs)
1795 struct blame_entry *e = **srcq;
1796 struct blame_entry *samep = NULL, *diffp = NULL, *ignoredp = NULL;
1797 struct blame_line_tracker *line_blames = NULL;
1799 while (e && e->s_lno < tlno) {
1800 struct blame_entry *next = e->next;
1802 * current record starts before differing portion. If
1803 * it reaches into it, we need to split it up and
1804 * examine the second part separately.
1806 if (e->s_lno + e->num_lines > tlno) {
1807 /* Move second half to a new record */
1808 struct blame_entry *n;
1810 n = split_blame_at(e, tlno - e->s_lno, e->suspect);
1811 /* Push new record to diffp */
1812 n->next = diffp;
1813 diffp = n;
1814 } else
1815 blame_origin_decref(e->suspect);
1816 /* Pass blame for everything before the differing
1817 * chunk to the parent */
1818 e->suspect = blame_origin_incref(parent);
1819 e->s_lno += offset;
1820 e->next = samep;
1821 samep = e;
1822 e = next;
1825 * As we don't know how much of a common stretch after this
1826 * diff will occur, the currently blamed parts are all that we
1827 * can assign to the parent for now.
1830 if (samep) {
1831 **dstq = reverse_blame(samep, **dstq);
1832 *dstq = &samep->next;
1835 * Prepend the split off portions: everything after e starts
1836 * after the blameable portion.
1838 e = reverse_blame(diffp, e);
1841 * Now retain records on the target while parts are different
1842 * from the parent.
1844 samep = NULL;
1845 diffp = NULL;
1847 if (ignore_diffs && same - tlno > 0) {
1848 CALLOC_ARRAY(line_blames, same - tlno);
1849 guess_line_blames(parent, target, tlno, offset, same,
1850 parent_len, line_blames);
1853 while (e && e->s_lno < same) {
1854 struct blame_entry *next = e->next;
1857 * If current record extends into sameness, need to split.
1859 if (e->s_lno + e->num_lines > same) {
1861 * Move second half to a new record to be
1862 * processed by later chunks
1864 struct blame_entry *n;
1866 n = split_blame_at(e, same - e->s_lno,
1867 blame_origin_incref(e->suspect));
1868 /* Push new record to samep */
1869 n->next = samep;
1870 samep = n;
1872 if (ignore_diffs) {
1873 ignore_blame_entry(e, parent, &diffp, &ignoredp,
1874 line_blames + e->s_lno - tlno);
1875 } else {
1876 e->next = diffp;
1877 diffp = e;
1879 e = next;
1881 free(line_blames);
1882 if (ignoredp) {
1884 * Note ignoredp is not sorted yet, and thus neither is dstq.
1885 * That list must be sorted before we queue_blames(). We defer
1886 * sorting until after all diff hunks are processed, so that
1887 * guess_line_blames() can pick *any* line in the parent. The
1888 * slight drawback is that we end up sorting all blame entries
1889 * passed to the parent, including those that are unrelated to
1890 * changes made by the ignored commit.
1892 **dstq = reverse_blame(ignoredp, **dstq);
1893 *dstq = &ignoredp->next;
1895 **srcq = reverse_blame(diffp, reverse_blame(samep, e));
1896 /* Move across elements that are in the unblamable portion */
1897 if (diffp)
1898 *srcq = &diffp->next;
1901 struct blame_chunk_cb_data {
1902 struct blame_origin *parent;
1903 struct blame_origin *target;
1904 long offset;
1905 int ignore_diffs;
1906 struct blame_entry **dstq;
1907 struct blame_entry **srcq;
1910 /* diff chunks are from parent to target */
1911 static int blame_chunk_cb(long start_a, long count_a,
1912 long start_b, long count_b, void *data)
1914 struct blame_chunk_cb_data *d = data;
1915 if (start_a - start_b != d->offset)
1916 die("internal error in blame::blame_chunk_cb");
1917 blame_chunk(&d->dstq, &d->srcq, start_b, start_a - start_b,
1918 start_b + count_b, count_a, d->parent, d->target,
1919 d->ignore_diffs);
1920 d->offset = start_a + count_a - (start_b + count_b);
1921 return 0;
1925 * We are looking at the origin 'target' and aiming to pass blame
1926 * for the lines it is suspected to its parent. Run diff to find
1927 * which lines came from parent and pass blame for them.
1929 static void pass_blame_to_parent(struct blame_scoreboard *sb,
1930 struct blame_origin *target,
1931 struct blame_origin *parent, int ignore_diffs)
1933 mmfile_t file_p, file_o;
1934 struct blame_chunk_cb_data d;
1935 struct blame_entry *newdest = NULL;
1937 if (!target->suspects)
1938 return; /* nothing remains for this target */
1940 d.parent = parent;
1941 d.target = target;
1942 d.offset = 0;
1943 d.ignore_diffs = ignore_diffs;
1944 d.dstq = &newdest; d.srcq = &target->suspects;
1946 fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
1947 &sb->num_read_blob, ignore_diffs);
1948 fill_origin_blob(&sb->revs->diffopt, target, &file_o,
1949 &sb->num_read_blob, ignore_diffs);
1950 sb->num_get_patch++;
1952 if (diff_hunks(&file_p, &file_o, blame_chunk_cb, &d, sb->xdl_opts))
1953 die("unable to generate diff (%s -> %s)",
1954 oid_to_hex(&parent->commit->object.oid),
1955 oid_to_hex(&target->commit->object.oid));
1956 /* The rest are the same as the parent */
1957 blame_chunk(&d.dstq, &d.srcq, INT_MAX, d.offset, INT_MAX, 0,
1958 parent, target, 0);
1959 *d.dstq = NULL;
1960 if (ignore_diffs)
1961 sort_blame_entries(&newdest, compare_blame_suspect);
1962 queue_blames(sb, parent, newdest);
1964 return;
1968 * The lines in blame_entry after splitting blames many times can become
1969 * very small and trivial, and at some point it becomes pointless to
1970 * blame the parents. E.g. "\t\t}\n\t}\n\n" appears everywhere in any
1971 * ordinary C program, and it is not worth to say it was copied from
1972 * totally unrelated file in the parent.
1974 * Compute how trivial the lines in the blame_entry are.
1976 unsigned blame_entry_score(struct blame_scoreboard *sb, struct blame_entry *e)
1978 unsigned score;
1979 const char *cp, *ep;
1981 if (e->score)
1982 return e->score;
1984 score = 1;
1985 cp = blame_nth_line(sb, e->lno);
1986 ep = blame_nth_line(sb, e->lno + e->num_lines);
1987 while (cp < ep) {
1988 unsigned ch = *((unsigned char *)cp);
1989 if (isalnum(ch))
1990 score++;
1991 cp++;
1993 e->score = score;
1994 return score;
1998 * best_so_far[] and potential[] are both a split of an existing blame_entry
1999 * that passes blame to the parent. Maintain best_so_far the best split so
2000 * far, by comparing potential and best_so_far and copying potential into
2001 * bst_so_far as needed.
2003 static void copy_split_if_better(struct blame_scoreboard *sb,
2004 struct blame_entry *best_so_far,
2005 struct blame_entry *potential)
2007 int i;
2009 if (!potential[1].suspect)
2010 return;
2011 if (best_so_far[1].suspect) {
2012 if (blame_entry_score(sb, &potential[1]) <
2013 blame_entry_score(sb, &best_so_far[1]))
2014 return;
2017 for (i = 0; i < 3; i++)
2018 blame_origin_incref(potential[i].suspect);
2019 decref_split(best_so_far);
2020 memcpy(best_so_far, potential, sizeof(struct blame_entry[3]));
2024 * We are looking at a part of the final image represented by
2025 * ent (tlno and same are offset by ent->s_lno).
2026 * tlno is where we are looking at in the final image.
2027 * up to (but not including) same match preimage.
2028 * plno is where we are looking at in the preimage.
2030 * <-------------- final image ---------------------->
2031 * <------ent------>
2032 * ^tlno ^same
2033 * <---------preimage----->
2034 * ^plno
2036 * All line numbers are 0-based.
2038 static void handle_split(struct blame_scoreboard *sb,
2039 struct blame_entry *ent,
2040 int tlno, int plno, int same,
2041 struct blame_origin *parent,
2042 struct blame_entry *split)
2044 if (ent->num_lines <= tlno)
2045 return;
2046 if (tlno < same) {
2047 struct blame_entry potential[3];
2048 tlno += ent->s_lno;
2049 same += ent->s_lno;
2050 split_overlap(potential, ent, tlno, plno, same, parent);
2051 copy_split_if_better(sb, split, potential);
2052 decref_split(potential);
2056 struct handle_split_cb_data {
2057 struct blame_scoreboard *sb;
2058 struct blame_entry *ent;
2059 struct blame_origin *parent;
2060 struct blame_entry *split;
2061 long plno;
2062 long tlno;
2065 static int handle_split_cb(long start_a, long count_a,
2066 long start_b, long count_b, void *data)
2068 struct handle_split_cb_data *d = data;
2069 handle_split(d->sb, d->ent, d->tlno, d->plno, start_b, d->parent,
2070 d->split);
2071 d->plno = start_a + count_a;
2072 d->tlno = start_b + count_b;
2073 return 0;
2077 * Find the lines from parent that are the same as ent so that
2078 * we can pass blames to it. file_p has the blob contents for
2079 * the parent.
2081 static void find_copy_in_blob(struct blame_scoreboard *sb,
2082 struct blame_entry *ent,
2083 struct blame_origin *parent,
2084 struct blame_entry *split,
2085 mmfile_t *file_p)
2087 const char *cp;
2088 mmfile_t file_o;
2089 struct handle_split_cb_data d;
2091 memset(&d, 0, sizeof(d));
2092 d.sb = sb; d.ent = ent; d.parent = parent; d.split = split;
2094 * Prepare mmfile that contains only the lines in ent.
2096 cp = blame_nth_line(sb, ent->lno);
2097 file_o.ptr = (char *) cp;
2098 file_o.size = blame_nth_line(sb, ent->lno + ent->num_lines) - cp;
2101 * file_o is a part of final image we are annotating.
2102 * file_p partially may match that image.
2104 memset(split, 0, sizeof(struct blame_entry [3]));
2105 if (diff_hunks(file_p, &file_o, handle_split_cb, &d, sb->xdl_opts))
2106 die("unable to generate diff (%s)",
2107 oid_to_hex(&parent->commit->object.oid));
2108 /* remainder, if any, all match the preimage */
2109 handle_split(sb, ent, d.tlno, d.plno, ent->num_lines, parent, split);
2112 /* Move all blame entries from list *source that have a score smaller
2113 * than score_min to the front of list *small.
2114 * Returns a pointer to the link pointing to the old head of the small list.
2117 static struct blame_entry **filter_small(struct blame_scoreboard *sb,
2118 struct blame_entry **small,
2119 struct blame_entry **source,
2120 unsigned score_min)
2122 struct blame_entry *p = *source;
2123 struct blame_entry *oldsmall = *small;
2124 while (p) {
2125 if (blame_entry_score(sb, p) <= score_min) {
2126 *small = p;
2127 small = &p->next;
2128 p = *small;
2129 } else {
2130 *source = p;
2131 source = &p->next;
2132 p = *source;
2135 *small = oldsmall;
2136 *source = NULL;
2137 return small;
2141 * See if lines currently target is suspected for can be attributed to
2142 * parent.
2144 static void find_move_in_parent(struct blame_scoreboard *sb,
2145 struct blame_entry ***blamed,
2146 struct blame_entry **toosmall,
2147 struct blame_origin *target,
2148 struct blame_origin *parent)
2150 struct blame_entry *e, split[3];
2151 struct blame_entry *unblamed = target->suspects;
2152 struct blame_entry *leftover = NULL;
2153 mmfile_t file_p;
2155 if (!unblamed)
2156 return; /* nothing remains for this target */
2158 fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
2159 &sb->num_read_blob, 0);
2160 if (!file_p.ptr)
2161 return;
2163 /* At each iteration, unblamed has a NULL-terminated list of
2164 * entries that have not yet been tested for blame. leftover
2165 * contains the reversed list of entries that have been tested
2166 * without being assignable to the parent.
2168 do {
2169 struct blame_entry **unblamedtail = &unblamed;
2170 struct blame_entry *next;
2171 for (e = unblamed; e; e = next) {
2172 next = e->next;
2173 find_copy_in_blob(sb, e, parent, split, &file_p);
2174 if (split[1].suspect &&
2175 sb->move_score < blame_entry_score(sb, &split[1])) {
2176 split_blame(blamed, &unblamedtail, split, e);
2177 } else {
2178 e->next = leftover;
2179 leftover = e;
2181 decref_split(split);
2183 *unblamedtail = NULL;
2184 toosmall = filter_small(sb, toosmall, &unblamed, sb->move_score);
2185 } while (unblamed);
2186 target->suspects = reverse_blame(leftover, NULL);
2189 struct blame_list {
2190 struct blame_entry *ent;
2191 struct blame_entry split[3];
2195 * Count the number of entries the target is suspected for,
2196 * and prepare a list of entry and the best split.
2198 static struct blame_list *setup_blame_list(struct blame_entry *unblamed,
2199 int *num_ents_p)
2201 struct blame_entry *e;
2202 int num_ents, i;
2203 struct blame_list *blame_list = NULL;
2205 for (e = unblamed, num_ents = 0; e; e = e->next)
2206 num_ents++;
2207 if (num_ents) {
2208 CALLOC_ARRAY(blame_list, num_ents);
2209 for (e = unblamed, i = 0; e; e = e->next)
2210 blame_list[i++].ent = e;
2212 *num_ents_p = num_ents;
2213 return blame_list;
2217 * For lines target is suspected for, see if we can find code movement
2218 * across file boundary from the parent commit. porigin is the path
2219 * in the parent we already tried.
2221 static void find_copy_in_parent(struct blame_scoreboard *sb,
2222 struct blame_entry ***blamed,
2223 struct blame_entry **toosmall,
2224 struct blame_origin *target,
2225 struct commit *parent,
2226 struct blame_origin *porigin,
2227 int opt)
2229 struct diff_options diff_opts;
2230 int i, j;
2231 struct blame_list *blame_list;
2232 int num_ents;
2233 struct blame_entry *unblamed = target->suspects;
2234 struct blame_entry *leftover = NULL;
2236 if (!unblamed)
2237 return; /* nothing remains for this target */
2239 repo_diff_setup(sb->repo, &diff_opts);
2240 diff_opts.flags.recursive = 1;
2241 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2243 diff_setup_done(&diff_opts);
2245 /* Try "find copies harder" on new path if requested;
2246 * we do not want to use diffcore_rename() actually to
2247 * match things up; find_copies_harder is set only to
2248 * force diff_tree_oid() to feed all filepairs to diff_queue,
2249 * and this code needs to be after diff_setup_done(), which
2250 * usually makes find-copies-harder imply copy detection.
2252 if ((opt & PICKAXE_BLAME_COPY_HARDEST)
2253 || ((opt & PICKAXE_BLAME_COPY_HARDER)
2254 && (!porigin || strcmp(target->path, porigin->path))))
2255 diff_opts.flags.find_copies_harder = 1;
2257 if (is_null_oid(&target->commit->object.oid))
2258 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
2259 else
2260 diff_tree_oid(get_commit_tree_oid(parent),
2261 get_commit_tree_oid(target->commit),
2262 "", &diff_opts);
2264 if (!diff_opts.flags.find_copies_harder)
2265 diffcore_std(&diff_opts);
2267 do {
2268 struct blame_entry **unblamedtail = &unblamed;
2269 blame_list = setup_blame_list(unblamed, &num_ents);
2271 for (i = 0; i < diff_queued_diff.nr; i++) {
2272 struct diff_filepair *p = diff_queued_diff.queue[i];
2273 struct blame_origin *norigin;
2274 mmfile_t file_p;
2275 struct blame_entry potential[3];
2277 if (!DIFF_FILE_VALID(p->one))
2278 continue; /* does not exist in parent */
2279 if (S_ISGITLINK(p->one->mode))
2280 continue; /* ignore git links */
2281 if (porigin && !strcmp(p->one->path, porigin->path))
2282 /* find_move already dealt with this path */
2283 continue;
2285 norigin = get_origin(parent, p->one->path);
2286 oidcpy(&norigin->blob_oid, &p->one->oid);
2287 norigin->mode = p->one->mode;
2288 fill_origin_blob(&sb->revs->diffopt, norigin, &file_p,
2289 &sb->num_read_blob, 0);
2290 if (!file_p.ptr)
2291 continue;
2293 for (j = 0; j < num_ents; j++) {
2294 find_copy_in_blob(sb, blame_list[j].ent,
2295 norigin, potential, &file_p);
2296 copy_split_if_better(sb, blame_list[j].split,
2297 potential);
2298 decref_split(potential);
2300 blame_origin_decref(norigin);
2303 for (j = 0; j < num_ents; j++) {
2304 struct blame_entry *split = blame_list[j].split;
2305 if (split[1].suspect &&
2306 sb->copy_score < blame_entry_score(sb, &split[1])) {
2307 split_blame(blamed, &unblamedtail, split,
2308 blame_list[j].ent);
2309 } else {
2310 blame_list[j].ent->next = leftover;
2311 leftover = blame_list[j].ent;
2313 decref_split(split);
2315 free(blame_list);
2316 *unblamedtail = NULL;
2317 toosmall = filter_small(sb, toosmall, &unblamed, sb->copy_score);
2318 } while (unblamed);
2319 target->suspects = reverse_blame(leftover, NULL);
2320 diff_flush(&diff_opts);
2324 * The blobs of origin and porigin exactly match, so everything
2325 * origin is suspected for can be blamed on the parent.
2327 static void pass_whole_blame(struct blame_scoreboard *sb,
2328 struct blame_origin *origin, struct blame_origin *porigin)
2330 struct blame_entry *e, *suspects;
2332 if (!porigin->file.ptr && origin->file.ptr) {
2333 /* Steal its file */
2334 porigin->file = origin->file;
2335 origin->file.ptr = NULL;
2337 suspects = origin->suspects;
2338 origin->suspects = NULL;
2339 for (e = suspects; e; e = e->next) {
2340 blame_origin_incref(porigin);
2341 blame_origin_decref(e->suspect);
2342 e->suspect = porigin;
2344 queue_blames(sb, porigin, suspects);
2348 * We pass blame from the current commit to its parents. We keep saying
2349 * "parent" (and "porigin"), but what we mean is to find scapegoat to
2350 * exonerate ourselves.
2352 static struct commit_list *first_scapegoat(struct rev_info *revs, struct commit *commit,
2353 int reverse)
2355 if (!reverse) {
2356 if (revs->first_parent_only &&
2357 commit->parents &&
2358 commit->parents->next) {
2359 free_commit_list(commit->parents->next);
2360 commit->parents->next = NULL;
2362 return commit->parents;
2364 return lookup_decoration(&revs->children, &commit->object);
2367 static int num_scapegoats(struct rev_info *revs, struct commit *commit, int reverse)
2369 struct commit_list *l = first_scapegoat(revs, commit, reverse);
2370 return commit_list_count(l);
2373 /* Distribute collected unsorted blames to the respected sorted lists
2374 * in the various origins.
2376 static void distribute_blame(struct blame_scoreboard *sb, struct blame_entry *blamed)
2378 sort_blame_entries(&blamed, compare_blame_suspect);
2379 while (blamed)
2381 struct blame_origin *porigin = blamed->suspect;
2382 struct blame_entry *suspects = NULL;
2383 do {
2384 struct blame_entry *next = blamed->next;
2385 blamed->next = suspects;
2386 suspects = blamed;
2387 blamed = next;
2388 } while (blamed && blamed->suspect == porigin);
2389 suspects = reverse_blame(suspects, NULL);
2390 queue_blames(sb, porigin, suspects);
2394 #define MAXSG 16
2396 typedef struct blame_origin *(*blame_find_alg)(struct repository *,
2397 struct commit *,
2398 struct blame_origin *,
2399 struct blame_bloom_data *);
2401 static void pass_blame(struct blame_scoreboard *sb, struct blame_origin *origin, int opt)
2403 struct rev_info *revs = sb->revs;
2404 int i, pass, num_sg;
2405 struct commit *commit = origin->commit;
2406 struct commit_list *sg;
2407 struct blame_origin *sg_buf[MAXSG];
2408 struct blame_origin *porigin, **sg_origin = sg_buf;
2409 struct blame_entry *toosmall = NULL;
2410 struct blame_entry *blames, **blametail = &blames;
2412 num_sg = num_scapegoats(revs, commit, sb->reverse);
2413 if (!num_sg)
2414 goto finish;
2415 else if (num_sg < ARRAY_SIZE(sg_buf))
2416 memset(sg_buf, 0, sizeof(sg_buf));
2417 else
2418 CALLOC_ARRAY(sg_origin, num_sg);
2421 * The first pass looks for unrenamed path to optimize for
2422 * common cases, then we look for renames in the second pass.
2424 for (pass = 0; pass < 2 - sb->no_whole_file_rename; pass++) {
2425 blame_find_alg find = pass ? find_rename : find_origin;
2427 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2428 i < num_sg && sg;
2429 sg = sg->next, i++) {
2430 struct commit *p = sg->item;
2431 int j, same;
2433 if (sg_origin[i])
2434 continue;
2435 if (repo_parse_commit(the_repository, p))
2436 continue;
2437 porigin = find(sb->repo, p, origin, sb->bloom_data);
2438 if (!porigin)
2439 continue;
2440 if (oideq(&porigin->blob_oid, &origin->blob_oid)) {
2441 pass_whole_blame(sb, origin, porigin);
2442 blame_origin_decref(porigin);
2443 goto finish;
2445 for (j = same = 0; j < i; j++)
2446 if (sg_origin[j] &&
2447 oideq(&sg_origin[j]->blob_oid, &porigin->blob_oid)) {
2448 same = 1;
2449 break;
2451 if (!same)
2452 sg_origin[i] = porigin;
2453 else
2454 blame_origin_decref(porigin);
2458 sb->num_commits++;
2459 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2460 i < num_sg && sg;
2461 sg = sg->next, i++) {
2462 struct blame_origin *porigin = sg_origin[i];
2463 if (!porigin)
2464 continue;
2465 if (!origin->previous) {
2466 blame_origin_incref(porigin);
2467 origin->previous = porigin;
2469 pass_blame_to_parent(sb, origin, porigin, 0);
2470 if (!origin->suspects)
2471 goto finish;
2475 * Pass remaining suspects for ignored commits to their parents.
2477 if (oidset_contains(&sb->ignore_list, &commit->object.oid)) {
2478 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2479 i < num_sg && sg;
2480 sg = sg->next, i++) {
2481 struct blame_origin *porigin = sg_origin[i];
2483 if (!porigin)
2484 continue;
2485 pass_blame_to_parent(sb, origin, porigin, 1);
2487 * Preemptively drop porigin so we can refresh the
2488 * fingerprints if we use the parent again, which can
2489 * occur if you ignore back-to-back commits.
2491 drop_origin_blob(porigin);
2492 if (!origin->suspects)
2493 goto finish;
2498 * Optionally find moves in parents' files.
2500 if (opt & PICKAXE_BLAME_MOVE) {
2501 filter_small(sb, &toosmall, &origin->suspects, sb->move_score);
2502 if (origin->suspects) {
2503 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2504 i < num_sg && sg;
2505 sg = sg->next, i++) {
2506 struct blame_origin *porigin = sg_origin[i];
2507 if (!porigin)
2508 continue;
2509 find_move_in_parent(sb, &blametail, &toosmall, origin, porigin);
2510 if (!origin->suspects)
2511 break;
2517 * Optionally find copies from parents' files.
2519 if (opt & PICKAXE_BLAME_COPY) {
2520 if (sb->copy_score > sb->move_score)
2521 filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2522 else if (sb->copy_score < sb->move_score) {
2523 origin->suspects = blame_merge(origin->suspects, toosmall);
2524 toosmall = NULL;
2525 filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2527 if (!origin->suspects)
2528 goto finish;
2530 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2531 i < num_sg && sg;
2532 sg = sg->next, i++) {
2533 struct blame_origin *porigin = sg_origin[i];
2534 find_copy_in_parent(sb, &blametail, &toosmall,
2535 origin, sg->item, porigin, opt);
2536 if (!origin->suspects)
2537 goto finish;
2541 finish:
2542 *blametail = NULL;
2543 distribute_blame(sb, blames);
2545 * prepend toosmall to origin->suspects
2547 * There is no point in sorting: this ends up on a big
2548 * unsorted list in the caller anyway.
2550 if (toosmall) {
2551 struct blame_entry **tail = &toosmall;
2552 while (*tail)
2553 tail = &(*tail)->next;
2554 *tail = origin->suspects;
2555 origin->suspects = toosmall;
2557 for (i = 0; i < num_sg; i++) {
2558 if (sg_origin[i]) {
2559 if (!sg_origin[i]->suspects)
2560 drop_origin_blob(sg_origin[i]);
2561 blame_origin_decref(sg_origin[i]);
2564 drop_origin_blob(origin);
2565 if (sg_buf != sg_origin)
2566 free(sg_origin);
2570 * The main loop -- while we have blobs with lines whose true origin
2571 * is still unknown, pick one blob, and allow its lines to pass blames
2572 * to its parents. */
2573 void assign_blame(struct blame_scoreboard *sb, int opt)
2575 struct rev_info *revs = sb->revs;
2576 struct commit *commit = prio_queue_get(&sb->commits);
2578 while (commit) {
2579 struct blame_entry *ent;
2580 struct blame_origin *suspect = get_blame_suspects(commit);
2582 /* find one suspect to break down */
2583 while (suspect && !suspect->suspects)
2584 suspect = suspect->next;
2586 if (!suspect) {
2587 commit = prio_queue_get(&sb->commits);
2588 continue;
2591 assert(commit == suspect->commit);
2594 * We will use this suspect later in the loop,
2595 * so hold onto it in the meantime.
2597 blame_origin_incref(suspect);
2598 repo_parse_commit(the_repository, commit);
2599 if (sb->reverse ||
2600 (!(commit->object.flags & UNINTERESTING) &&
2601 !(revs->max_age != -1 && commit->date < revs->max_age)))
2602 pass_blame(sb, suspect, opt);
2603 else {
2604 commit->object.flags |= UNINTERESTING;
2605 if (commit->object.parsed)
2606 mark_parents_uninteresting(sb->revs, commit);
2608 /* treat root commit as boundary */
2609 if (!commit->parents && !sb->show_root)
2610 commit->object.flags |= UNINTERESTING;
2612 /* Take responsibility for the remaining entries */
2613 ent = suspect->suspects;
2614 if (ent) {
2615 suspect->guilty = 1;
2616 for (;;) {
2617 struct blame_entry *next = ent->next;
2618 if (sb->found_guilty_entry)
2619 sb->found_guilty_entry(ent, sb->found_guilty_entry_data);
2620 if (next) {
2621 ent = next;
2622 continue;
2624 ent->next = sb->ent;
2625 sb->ent = suspect->suspects;
2626 suspect->suspects = NULL;
2627 break;
2630 blame_origin_decref(suspect);
2632 if (sb->debug) /* sanity */
2633 sanity_check_refcnt(sb);
2638 * To allow quick access to the contents of nth line in the
2639 * final image, prepare an index in the scoreboard.
2641 static int prepare_lines(struct blame_scoreboard *sb)
2643 sb->num_lines = find_line_starts(&sb->lineno, sb->final_buf,
2644 sb->final_buf_size);
2645 return sb->num_lines;
2648 static struct commit *find_single_final(struct rev_info *revs,
2649 const char **name_p)
2651 int i;
2652 struct commit *found = NULL;
2653 const char *name = NULL;
2655 for (i = 0; i < revs->pending.nr; i++) {
2656 struct object *obj = revs->pending.objects[i].item;
2657 if (obj->flags & UNINTERESTING)
2658 continue;
2659 obj = deref_tag(revs->repo, obj, NULL, 0);
2660 if (!obj || obj->type != OBJ_COMMIT)
2661 die("Non commit %s?", revs->pending.objects[i].name);
2662 if (found)
2663 die("More than one commit to dig from %s and %s?",
2664 revs->pending.objects[i].name, name);
2665 found = (struct commit *)obj;
2666 name = revs->pending.objects[i].name;
2668 if (name_p)
2669 *name_p = xstrdup_or_null(name);
2670 return found;
2673 static struct commit *dwim_reverse_initial(struct rev_info *revs,
2674 const char **name_p)
2677 * DWIM "git blame --reverse ONE -- PATH" as
2678 * "git blame --reverse ONE..HEAD -- PATH" but only do so
2679 * when it makes sense.
2681 struct object *obj;
2682 struct commit *head_commit;
2683 struct object_id head_oid;
2685 if (revs->pending.nr != 1)
2686 return NULL;
2688 /* Is that sole rev a committish? */
2689 obj = revs->pending.objects[0].item;
2690 obj = deref_tag(revs->repo, obj, NULL, 0);
2691 if (!obj || obj->type != OBJ_COMMIT)
2692 return NULL;
2694 /* Do we have HEAD? */
2695 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING, &head_oid, NULL))
2696 return NULL;
2697 head_commit = lookup_commit_reference_gently(revs->repo,
2698 &head_oid, 1);
2699 if (!head_commit)
2700 return NULL;
2702 /* Turn "ONE" into "ONE..HEAD" then */
2703 obj->flags |= UNINTERESTING;
2704 add_pending_object(revs, &head_commit->object, "HEAD");
2706 if (name_p)
2707 *name_p = revs->pending.objects[0].name;
2708 return (struct commit *)obj;
2711 static struct commit *find_single_initial(struct rev_info *revs,
2712 const char **name_p)
2714 int i;
2715 struct commit *found = NULL;
2716 const char *name = NULL;
2719 * There must be one and only one negative commit, and it must be
2720 * the boundary.
2722 for (i = 0; i < revs->pending.nr; i++) {
2723 struct object *obj = revs->pending.objects[i].item;
2724 if (!(obj->flags & UNINTERESTING))
2725 continue;
2726 obj = deref_tag(revs->repo, obj, NULL, 0);
2727 if (!obj || obj->type != OBJ_COMMIT)
2728 die("Non commit %s?", revs->pending.objects[i].name);
2729 if (found)
2730 die("More than one commit to dig up from, %s and %s?",
2731 revs->pending.objects[i].name, name);
2732 found = (struct commit *) obj;
2733 name = revs->pending.objects[i].name;
2736 if (!name)
2737 found = dwim_reverse_initial(revs, &name);
2738 if (!name)
2739 die("No commit to dig up from?");
2741 if (name_p)
2742 *name_p = xstrdup(name);
2743 return found;
2746 void init_scoreboard(struct blame_scoreboard *sb)
2748 memset(sb, 0, sizeof(struct blame_scoreboard));
2749 sb->move_score = BLAME_DEFAULT_MOVE_SCORE;
2750 sb->copy_score = BLAME_DEFAULT_COPY_SCORE;
2753 void setup_scoreboard(struct blame_scoreboard *sb,
2754 struct blame_origin **orig)
2756 const char *final_commit_name = NULL;
2757 struct blame_origin *o;
2758 struct commit *final_commit = NULL;
2759 enum object_type type;
2761 init_blame_suspects(&blame_suspects);
2763 if (sb->reverse && sb->contents_from)
2764 die(_("--contents and --reverse do not blend well."));
2766 if (!sb->repo)
2767 BUG("repo is NULL");
2769 if (!sb->reverse) {
2770 sb->final = find_single_final(sb->revs, &final_commit_name);
2771 sb->commits.compare = compare_commits_by_commit_date;
2772 } else {
2773 sb->final = find_single_initial(sb->revs, &final_commit_name);
2774 sb->commits.compare = compare_commits_by_reverse_commit_date;
2777 if (sb->reverse && sb->revs->first_parent_only)
2778 sb->revs->children.name = NULL;
2780 if (sb->contents_from || !sb->final) {
2781 struct object_id head_oid, *parent_oid;
2784 * Build a fake commit at the top of the history, when
2785 * (1) "git blame [^A] --path", i.e. with no positive end
2786 * of the history range, in which case we build such
2787 * a fake commit on top of the HEAD to blame in-tree
2788 * modifications.
2789 * (2) "git blame --contents=file [A] -- path", with or
2790 * without positive end of the history range but with
2791 * --contents, in which case we pretend that there is
2792 * a fake commit on top of the positive end (defaulting to
2793 * HEAD) that has the given contents in the path.
2795 if (sb->final) {
2796 parent_oid = &sb->final->object.oid;
2797 } else {
2798 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING, &head_oid, NULL))
2799 die("no such ref: HEAD");
2800 parent_oid = &head_oid;
2803 setup_work_tree();
2804 sb->final = fake_working_tree_commit(sb->repo,
2805 &sb->revs->diffopt,
2806 sb->path, sb->contents_from,
2807 parent_oid);
2808 add_pending_object(sb->revs, &(sb->final->object), ":");
2811 if (sb->reverse && sb->revs->first_parent_only) {
2812 final_commit = find_single_final(sb->revs, NULL);
2813 if (!final_commit)
2814 die(_("--reverse and --first-parent together require specified latest commit"));
2818 * If we have bottom, this will mark the ancestors of the
2819 * bottom commits we would reach while traversing as
2820 * uninteresting.
2822 if (prepare_revision_walk(sb->revs))
2823 die(_("revision walk setup failed"));
2825 if (sb->reverse && sb->revs->first_parent_only) {
2826 struct commit *c = final_commit;
2828 sb->revs->children.name = "children";
2829 while (c->parents &&
2830 !oideq(&c->object.oid, &sb->final->object.oid)) {
2831 struct commit_list *l = xcalloc(1, sizeof(*l));
2833 l->item = c;
2834 if (add_decoration(&sb->revs->children,
2835 &c->parents->item->object, l))
2836 BUG("not unique item in first-parent chain");
2837 c = c->parents->item;
2840 if (!oideq(&c->object.oid, &sb->final->object.oid))
2841 die(_("--reverse --first-parent together require range along first-parent chain"));
2844 if (is_null_oid(&sb->final->object.oid)) {
2845 o = get_blame_suspects(sb->final);
2846 sb->final_buf = xmemdupz(o->file.ptr, o->file.size);
2847 sb->final_buf_size = o->file.size;
2849 else {
2850 o = get_origin(sb->final, sb->path);
2851 if (fill_blob_sha1_and_mode(sb->repo, o))
2852 die(_("no such path %s in %s"), sb->path, final_commit_name);
2854 if (sb->revs->diffopt.flags.allow_textconv &&
2855 textconv_object(sb->repo, sb->path, o->mode, &o->blob_oid, 1, (char **) &sb->final_buf,
2856 &sb->final_buf_size))
2858 else
2859 sb->final_buf = repo_read_object_file(the_repository,
2860 &o->blob_oid,
2861 &type,
2862 &sb->final_buf_size);
2864 if (!sb->final_buf)
2865 die(_("cannot read blob %s for path %s"),
2866 oid_to_hex(&o->blob_oid),
2867 sb->path);
2869 sb->num_read_blob++;
2870 prepare_lines(sb);
2872 if (orig)
2873 *orig = o;
2875 free((char *)final_commit_name);
2880 struct blame_entry *blame_entry_prepend(struct blame_entry *head,
2881 long start, long end,
2882 struct blame_origin *o)
2884 struct blame_entry *new_head = xcalloc(1, sizeof(struct blame_entry));
2885 new_head->lno = start;
2886 new_head->num_lines = end - start;
2887 new_head->suspect = o;
2888 new_head->s_lno = start;
2889 new_head->next = head;
2890 blame_origin_incref(o);
2891 return new_head;
2894 void setup_blame_bloom_data(struct blame_scoreboard *sb)
2896 struct blame_bloom_data *bd;
2897 struct bloom_filter_settings *bs;
2899 if (!sb->repo->objects->commit_graph)
2900 return;
2902 bs = get_bloom_filter_settings(sb->repo);
2903 if (!bs)
2904 return;
2906 bd = xmalloc(sizeof(struct blame_bloom_data));
2908 bd->settings = bs;
2910 bd->alloc = 4;
2911 bd->nr = 0;
2912 ALLOC_ARRAY(bd->keys, bd->alloc);
2914 add_bloom_key(bd, sb->path);
2916 sb->bloom_data = bd;
2919 void cleanup_scoreboard(struct blame_scoreboard *sb)
2921 if (sb->bloom_data) {
2922 int i;
2923 for (i = 0; i < sb->bloom_data->nr; i++) {
2924 free(sb->bloom_data->keys[i]->hashes);
2925 free(sb->bloom_data->keys[i]);
2927 free(sb->bloom_data->keys);
2928 FREE_AND_NULL(sb->bloom_data);
2930 trace2_data_intmax("blame", sb->repo,
2931 "bloom/queries", bloom_count_queries);
2932 trace2_data_intmax("blame", sb->repo,
2933 "bloom/response-no", bloom_count_no);