3 #include "object-store.h"
4 #include "cache-tree.h"
16 #include "commit-slab.h"
18 #include "commit-graph.h"
20 define_commit_slab(blame_suspects
, struct blame_origin
*);
21 static struct blame_suspects blame_suspects
;
23 struct blame_origin
*get_blame_suspects(struct commit
*commit
)
25 struct blame_origin
**result
;
27 result
= blame_suspects_peek(&blame_suspects
, commit
);
29 return result
? *result
: NULL
;
32 static void set_blame_suspects(struct commit
*commit
, struct blame_origin
*origin
)
34 *blame_suspects_at(&blame_suspects
, commit
) = origin
;
37 void blame_origin_decref(struct blame_origin
*o
)
39 if (o
&& --o
->refcnt
<= 0) {
40 struct blame_origin
*p
, *l
= NULL
;
42 blame_origin_decref(o
->previous
);
44 /* Should be present exactly once in commit chain */
45 for (p
= get_blame_suspects(o
->commit
); p
; l
= p
, p
= p
->next
) {
50 set_blame_suspects(o
->commit
, p
->next
);
55 die("internal error in blame_origin_decref");
60 * Given a commit and a path in it, create a new origin structure.
61 * The callers that add blame to the scoreboard should use
62 * get_origin() to obtain shared, refcounted copy instead of calling
63 * this function directly.
65 static struct blame_origin
*make_origin(struct commit
*commit
, const char *path
)
67 struct blame_origin
*o
;
68 FLEX_ALLOC_STR(o
, path
, path
);
71 o
->next
= get_blame_suspects(commit
);
72 set_blame_suspects(commit
, o
);
77 * Locate an existing origin or create a new one.
78 * This moves the origin to front position in the commit util list.
80 static struct blame_origin
*get_origin(struct commit
*commit
, const char *path
)
82 struct blame_origin
*o
, *l
;
84 for (o
= get_blame_suspects(commit
), l
= NULL
; o
; l
= o
, o
= o
->next
) {
85 if (!strcmp(o
->path
, path
)) {
89 o
->next
= get_blame_suspects(commit
);
90 set_blame_suspects(commit
, o
);
92 return blame_origin_incref(o
);
95 return make_origin(commit
, path
);
100 static void verify_working_tree_path(struct repository
*r
,
101 struct commit
*work_tree
, const char *path
)
103 struct commit_list
*parents
;
106 for (parents
= work_tree
->parents
; parents
; parents
= parents
->next
) {
107 const struct object_id
*commit_oid
= &parents
->item
->object
.oid
;
108 struct object_id blob_oid
;
111 if (!get_tree_entry(r
, commit_oid
, path
, &blob_oid
, &mode
) &&
112 oid_object_info(r
, &blob_oid
, NULL
) == OBJ_BLOB
)
116 pos
= index_name_pos(r
->index
, path
, strlen(path
));
118 ; /* path is in the index */
119 else if (-1 - pos
< r
->index
->cache_nr
&&
120 !strcmp(r
->index
->cache
[-1 - pos
]->name
, path
))
121 ; /* path is in the index, unmerged */
123 die("no such path '%s' in HEAD", path
);
126 static struct commit_list
**append_parent(struct repository
*r
,
127 struct commit_list
**tail
,
128 const struct object_id
*oid
)
130 struct commit
*parent
;
132 parent
= lookup_commit_reference(r
, oid
);
134 die("no such commit %s", oid_to_hex(oid
));
135 return &commit_list_insert(parent
, tail
)->next
;
138 static void append_merge_parents(struct repository
*r
,
139 struct commit_list
**tail
)
142 struct strbuf line
= STRBUF_INIT
;
144 merge_head
= open(git_path_merge_head(r
), O_RDONLY
);
145 if (merge_head
< 0) {
148 die("cannot open '%s' for reading",
149 git_path_merge_head(r
));
152 while (!strbuf_getwholeline_fd(&line
, merge_head
, '\n')) {
153 struct object_id oid
;
154 if (get_oid_hex(line
.buf
, &oid
))
155 die("unknown line in '%s': %s",
156 git_path_merge_head(r
), line
.buf
);
157 tail
= append_parent(r
, tail
, &oid
);
160 strbuf_release(&line
);
164 * This isn't as simple as passing sb->buf and sb->len, because we
165 * want to transfer ownership of the buffer to the commit (so we
168 static void set_commit_buffer_from_strbuf(struct repository
*r
,
173 void *buf
= strbuf_detach(sb
, &len
);
174 set_commit_buffer(r
, c
, buf
, len
);
178 * Prepare a dummy commit that represents the work tree (or staged) item.
179 * Note that annotating work tree item never works in the reverse.
181 static struct commit
*fake_working_tree_commit(struct repository
*r
,
182 struct diff_options
*opt
,
184 const char *contents_from
,
185 struct object_id
*oid
)
187 struct commit
*commit
;
188 struct blame_origin
*origin
;
189 struct commit_list
**parent_tail
, *parent
;
190 struct strbuf buf
= STRBUF_INIT
;
194 struct cache_entry
*ce
;
196 struct strbuf msg
= STRBUF_INIT
;
200 commit
= alloc_commit_node(r
);
201 commit
->object
.parsed
= 1;
203 parent_tail
= &commit
->parents
;
205 parent_tail
= append_parent(r
, parent_tail
, oid
);
206 append_merge_parents(r
, parent_tail
);
207 verify_working_tree_path(r
, commit
, path
);
209 origin
= make_origin(commit
, path
);
211 ident
= fmt_ident("Not Committed Yet", "not.committed.yet",
212 WANT_BLANK_IDENT
, NULL
, 0);
213 strbuf_addstr(&msg
, "tree 0000000000000000000000000000000000000000\n");
214 for (parent
= commit
->parents
; parent
; parent
= parent
->next
)
215 strbuf_addf(&msg
, "parent %s\n",
216 oid_to_hex(&parent
->item
->object
.oid
));
220 "Version of %s from %s\n",
222 (!contents_from
? path
:
223 (!strcmp(contents_from
, "-") ? "standard input" : contents_from
)));
224 set_commit_buffer_from_strbuf(r
, commit
, &msg
);
226 if (!contents_from
|| strcmp("-", contents_from
)) {
228 const char *read_from
;
230 unsigned long buf_len
;
233 if (stat(contents_from
, &st
) < 0)
234 die_errno("Cannot stat '%s'", contents_from
);
235 read_from
= contents_from
;
238 if (lstat(path
, &st
) < 0)
239 die_errno("Cannot lstat '%s'", path
);
242 mode
= canon_mode(st
.st_mode
);
244 switch (st
.st_mode
& S_IFMT
) {
246 if (opt
->flags
.allow_textconv
&&
247 textconv_object(r
, read_from
, mode
, null_oid(), 0, &buf_ptr
, &buf_len
))
248 strbuf_attach(&buf
, buf_ptr
, buf_len
, buf_len
+ 1);
249 else if (strbuf_read_file(&buf
, read_from
, st
.st_size
) != st
.st_size
)
250 die_errno("cannot open or read '%s'", read_from
);
253 if (strbuf_readlink(&buf
, read_from
, st
.st_size
) < 0)
254 die_errno("cannot readlink '%s'", read_from
);
257 die("unsupported file type %s", read_from
);
261 /* Reading from stdin */
263 if (strbuf_read(&buf
, 0, 0) < 0)
264 die_errno("failed to read from stdin");
266 convert_to_git(r
->index
, path
, buf
.buf
, buf
.len
, &buf
, 0);
267 origin
->file
.ptr
= buf
.buf
;
268 origin
->file
.size
= buf
.len
;
269 pretend_object_file(buf
.buf
, buf
.len
, OBJ_BLOB
, &origin
->blob_oid
);
272 * Read the current index, replace the path entry with
273 * origin->blob_sha1 without mucking with its mode or type
274 * bits; we are not going to write this index out -- we just
275 * want to run "diff-index --cached".
277 discard_index(r
->index
);
282 int pos
= index_name_pos(r
->index
, path
, len
);
284 mode
= r
->index
->cache
[pos
]->ce_mode
;
286 /* Let's not bother reading from HEAD tree */
287 mode
= S_IFREG
| 0644;
289 ce
= make_empty_cache_entry(r
->index
, len
);
290 oidcpy(&ce
->oid
, &origin
->blob_oid
);
291 memcpy(ce
->name
, path
, len
);
292 ce
->ce_flags
= create_ce_flags(0);
293 ce
->ce_namelen
= len
;
294 ce
->ce_mode
= create_ce_mode(mode
);
295 add_index_entry(r
->index
, ce
,
296 ADD_CACHE_OK_TO_ADD
| ADD_CACHE_OK_TO_REPLACE
);
298 cache_tree_invalidate_path(r
->index
, path
);
305 static int diff_hunks(mmfile_t
*file_a
, mmfile_t
*file_b
,
306 xdl_emit_hunk_consume_func_t hunk_func
, void *cb_data
, int xdl_opts
)
309 xdemitconf_t xecfg
= {0};
310 xdemitcb_t ecb
= {NULL
};
312 xpp
.flags
= xdl_opts
;
313 xecfg
.hunk_func
= hunk_func
;
315 return xdi_diff(file_a
, file_b
, &xpp
, &xecfg
, &ecb
);
318 static const char *get_next_line(const char *start
, const char *end
)
320 const char *nl
= memchr(start
, '\n', end
- start
);
322 return nl
? nl
+ 1 : end
;
325 static int find_line_starts(int **line_starts
, const char *buf
,
328 const char *end
= buf
+ len
;
333 for (p
= buf
; p
< end
; p
= get_next_line(p
, end
))
336 ALLOC_ARRAY(*line_starts
, num
+ 1);
337 lineno
= *line_starts
;
339 for (p
= buf
; p
< end
; p
= get_next_line(p
, end
))
347 struct fingerprint_entry
;
349 /* A fingerprint is intended to loosely represent a string, such that two
350 * fingerprints can be quickly compared to give an indication of the similarity
351 * of the strings that they represent.
353 * A fingerprint is represented as a multiset of the lower-cased byte pairs in
354 * the string that it represents. Whitespace is added at each end of the
355 * string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
356 * For example, the string "Darth Radar" will be converted to the following
358 * {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
360 * The similarity between two fingerprints is the size of the intersection of
361 * their multisets, including repeated elements. See fingerprint_similarity for
364 * For ease of implementation, the fingerprint is implemented as a map
365 * of byte pairs to the count of that byte pair in the string, instead of
366 * allowing repeated elements in a set.
370 /* As we know the maximum number of entries in advance, it's
371 * convenient to store the entries in a single array instead of having
372 * the hashmap manage the memory.
374 struct fingerprint_entry
*entries
;
377 /* A byte pair in a fingerprint. Stores the number of times the byte pair
378 * occurs in the string that the fingerprint represents.
380 struct fingerprint_entry
{
381 /* The hashmap entry - the hash represents the byte pair in its
382 * entirety so we don't need to store the byte pair separately.
384 struct hashmap_entry entry
;
385 /* The number of times the byte pair occurs in the string that the
386 * fingerprint represents.
391 /* See `struct fingerprint` for an explanation of what a fingerprint is.
392 * \param result the fingerprint of the string is stored here. This must be
393 * freed later using free_fingerprint.
394 * \param line_begin the start of the string
395 * \param line_end the end of the string
397 static void get_fingerprint(struct fingerprint
*result
,
398 const char *line_begin
,
399 const char *line_end
)
401 unsigned int hash
, c0
= 0, c1
;
403 int max_map_entry_count
= 1 + line_end
- line_begin
;
404 struct fingerprint_entry
*entry
= xcalloc(max_map_entry_count
,
405 sizeof(struct fingerprint_entry
));
406 struct fingerprint_entry
*found_entry
;
408 hashmap_init(&result
->map
, NULL
, NULL
, max_map_entry_count
);
409 result
->entries
= entry
;
410 for (p
= line_begin
; p
<= line_end
; ++p
, c0
= c1
) {
411 /* Always terminate the string with whitespace.
412 * Normalise whitespace to 0, and normalise letters to
413 * lower case. This won't work for multibyte characters but at
414 * worst will match some unrelated characters.
416 if ((p
== line_end
) || isspace(*p
))
420 hash
= c0
| (c1
<< 8);
421 /* Ignore whitespace pairs */
424 hashmap_entry_init(&entry
->entry
, hash
);
426 found_entry
= hashmap_get_entry(&result
->map
, entry
,
427 /* member name */ entry
, NULL
);
429 found_entry
->count
+= 1;
432 hashmap_add(&result
->map
, &entry
->entry
);
438 static void free_fingerprint(struct fingerprint
*f
)
440 hashmap_clear(&f
->map
);
444 /* Calculates the similarity between two fingerprints as the size of the
445 * intersection of their multisets, including repeated elements. See
446 * `struct fingerprint` for an explanation of the fingerprint representation.
447 * The similarity between "cat mat" and "father rather" is 2 because "at" is
448 * present twice in both strings while the similarity between "tim" and "mit"
451 static int fingerprint_similarity(struct fingerprint
*a
, struct fingerprint
*b
)
453 int intersection
= 0;
454 struct hashmap_iter iter
;
455 const struct fingerprint_entry
*entry_a
, *entry_b
;
457 hashmap_for_each_entry(&b
->map
, &iter
, entry_b
,
458 entry
/* member name */) {
459 entry_a
= hashmap_get_entry(&a
->map
, entry_b
, entry
, NULL
);
461 intersection
+= entry_a
->count
< entry_b
->count
?
462 entry_a
->count
: entry_b
->count
;
468 /* Subtracts byte-pair elements in B from A, modifying A in place.
470 static void fingerprint_subtract(struct fingerprint
*a
, struct fingerprint
*b
)
472 struct hashmap_iter iter
;
473 struct fingerprint_entry
*entry_a
;
474 const struct fingerprint_entry
*entry_b
;
476 hashmap_iter_init(&b
->map
, &iter
);
478 hashmap_for_each_entry(&b
->map
, &iter
, entry_b
,
479 entry
/* member name */) {
480 entry_a
= hashmap_get_entry(&a
->map
, entry_b
, entry
, NULL
);
482 if (entry_a
->count
<= entry_b
->count
)
483 hashmap_remove(&a
->map
, &entry_b
->entry
, NULL
);
485 entry_a
->count
-= entry_b
->count
;
490 /* Calculate fingerprints for a series of lines.
491 * Puts the fingerprints in the fingerprints array, which must have been
492 * preallocated to allow storing line_count elements.
494 static void get_line_fingerprints(struct fingerprint
*fingerprints
,
495 const char *content
, const int *line_starts
,
496 long first_line
, long line_count
)
499 const char *linestart
, *lineend
;
501 line_starts
+= first_line
;
502 for (i
= 0; i
< line_count
; ++i
) {
503 linestart
= content
+ line_starts
[i
];
504 lineend
= content
+ line_starts
[i
+ 1];
505 get_fingerprint(fingerprints
+ i
, linestart
, lineend
);
509 static void free_line_fingerprints(struct fingerprint
*fingerprints
,
514 for (i
= 0; i
< nr_fingerprints
; i
++)
515 free_fingerprint(&fingerprints
[i
]);
518 /* This contains the data necessary to linearly map a line number in one half
519 * of a diff chunk to the line in the other half of the diff chunk that is
520 * closest in terms of its position as a fraction of the length of the chunk.
522 struct line_number_mapping
{
523 int destination_start
, destination_length
,
524 source_start
, source_length
;
527 /* Given a line number in one range, offset and scale it to map it onto the
529 * Essentially this mapping is a simple linear equation but the calculation is
530 * more complicated to allow performing it with integer operations.
531 * Another complication is that if a line could map onto many lines in the
532 * destination range then we want to choose the line at the center of those
534 * Example: if the chunk is 2 lines long in A and 10 lines long in B then the
535 * first 5 lines in B will map onto the first line in the A chunk, while the
536 * last 5 lines will all map onto the second line in the A chunk.
537 * Example: if the chunk is 10 lines long in A and 2 lines long in B then line
538 * 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
540 static int map_line_number(int line_number
,
541 const struct line_number_mapping
*mapping
)
543 return ((line_number
- mapping
->source_start
) * 2 + 1) *
544 mapping
->destination_length
/
545 (mapping
->source_length
* 2) +
546 mapping
->destination_start
;
549 /* Get a pointer to the element storing the similarity between a line in A
552 * The similarities are stored in a 2-dimensional array. Each "row" in the
553 * array contains the similarities for a line in B. The similarities stored in
554 * a row are the similarities between the line in B and the nearby lines in A.
555 * To keep the length of each row the same, it is padded out with values of -1
556 * where the search range extends beyond the lines in A.
557 * For example, if max_search_distance_a is 2 and the two sides of a diff chunk
564 * Then the similarity array will contain:
565 * [-1, -1, am, bm, cm,
566 * -1, an, bn, cn, dn,
567 * ao, bo, co, do, eo,
568 * bp, cp, dp, ep, -1,
569 * cq, dq, eq, -1, -1]
570 * Where similarities are denoted either by -1 for invalid, or the
571 * concatenation of the two lines in the diff being compared.
573 * \param similarities array of similarities between lines in A and B
574 * \param line_a the index of the line in A, in the same frame of reference as
576 * \param local_line_b the index of the line in B, relative to the first line
577 * in B that similarities represents.
578 * \param closest_line_a the index of the line in A that is deemed to be
579 * closest to local_line_b. This must be in the same
580 * frame of reference as line_a. This value defines
581 * where similarities is centered for the line in B.
582 * \param max_search_distance_a maximum distance in lines from the closest line
583 * in A for other lines in A for which
584 * similarities may be calculated.
586 static int *get_similarity(int *similarities
,
587 int line_a
, int local_line_b
,
588 int closest_line_a
, int max_search_distance_a
)
590 assert(abs(line_a
- closest_line_a
) <=
591 max_search_distance_a
);
592 return similarities
+ line_a
- closest_line_a
+
593 max_search_distance_a
+
594 local_line_b
* (max_search_distance_a
* 2 + 1);
597 #define CERTAIN_NOTHING_MATCHES -2
598 #define CERTAINTY_NOT_CALCULATED -1
600 /* Given a line in B, first calculate its similarities with nearby lines in A
601 * if not already calculated, then identify the most similar and second most
602 * similar lines. The "certainty" is calculated based on those two
605 * \param start_a the index of the first line of the chunk in A
606 * \param length_a the length in lines of the chunk in A
607 * \param local_line_b the index of the line in B, relative to the first line
609 * \param fingerprints_a array of fingerprints for the chunk in A
610 * \param fingerprints_b array of fingerprints for the chunk in B
611 * \param similarities 2-dimensional array of similarities between lines in A
612 * and B. See get_similarity() for more details.
613 * \param certainties array of values indicating how strongly a line in B is
614 * matched with some line in A.
615 * \param second_best_result array of absolute indices in A for the second
616 * closest match of a line in B.
617 * \param result array of absolute indices in A for the closest match of a line
619 * \param max_search_distance_a maximum distance in lines from the closest line
620 * in A for other lines in A for which
621 * similarities may be calculated.
622 * \param map_line_number_in_b_to_a parameter to map_line_number().
624 static void find_best_line_matches(
629 struct fingerprint
*fingerprints_a
,
630 struct fingerprint
*fingerprints_b
,
633 int *second_best_result
,
635 const int max_search_distance_a
,
636 const struct line_number_mapping
*map_line_number_in_b_to_a
)
639 int i
, search_start
, search_end
, closest_local_line_a
, *similarity
,
640 best_similarity
= 0, second_best_similarity
= 0,
641 best_similarity_index
= 0, second_best_similarity_index
= 0;
643 /* certainty has already been calculated so no need to redo the work */
644 if (certainties
[local_line_b
] != CERTAINTY_NOT_CALCULATED
)
647 closest_local_line_a
= map_line_number(
648 local_line_b
+ start_b
, map_line_number_in_b_to_a
) - start_a
;
650 search_start
= closest_local_line_a
- max_search_distance_a
;
651 if (search_start
< 0)
654 search_end
= closest_local_line_a
+ max_search_distance_a
+ 1;
655 if (search_end
> length_a
)
656 search_end
= length_a
;
658 for (i
= search_start
; i
< search_end
; ++i
) {
659 similarity
= get_similarity(similarities
,
661 closest_local_line_a
,
662 max_search_distance_a
);
663 if (*similarity
== -1) {
664 /* This value will never exceed 10 but assert just in
667 assert(abs(i
- closest_local_line_a
) < 1000);
668 /* scale the similarity by (1000 - distance from
669 * closest line) to act as a tie break between lines
670 * that otherwise are equally similar.
672 *similarity
= fingerprint_similarity(
673 fingerprints_b
+ local_line_b
,
674 fingerprints_a
+ i
) *
675 (1000 - abs(i
- closest_local_line_a
));
677 if (*similarity
> best_similarity
) {
678 second_best_similarity
= best_similarity
;
679 second_best_similarity_index
= best_similarity_index
;
680 best_similarity
= *similarity
;
681 best_similarity_index
= i
;
682 } else if (*similarity
> second_best_similarity
) {
683 second_best_similarity
= *similarity
;
684 second_best_similarity_index
= i
;
688 if (best_similarity
== 0) {
689 /* this line definitely doesn't match with anything. Mark it
690 * with this special value so it doesn't get invalidated and
691 * won't be recalculated.
693 certainties
[local_line_b
] = CERTAIN_NOTHING_MATCHES
;
694 result
[local_line_b
] = -1;
696 /* Calculate the certainty with which this line matches.
697 * If the line matches well with two lines then that reduces
698 * the certainty. However we still want to prioritise matching
699 * a line that matches very well with two lines over matching a
700 * line that matches poorly with one line, hence doubling
702 * This means that if we have
703 * line X that matches only one line with a score of 3,
704 * line Y that matches two lines equally with a score of 5,
705 * and line Z that matches only one line with a score or 2,
706 * then the lines in order of certainty are X, Y, Z.
708 certainties
[local_line_b
] = best_similarity
* 2 -
709 second_best_similarity
;
711 /* We keep both the best and second best results to allow us to
712 * check at a later stage of the matching process whether the
713 * result needs to be invalidated.
715 result
[local_line_b
] = start_a
+ best_similarity_index
;
716 second_best_result
[local_line_b
] =
717 start_a
+ second_best_similarity_index
;
722 * This finds the line that we can match with the most confidence, and
723 * uses it as a partition. It then calls itself on the lines on either side of
724 * that partition. In this way we avoid lines appearing out of order, and
725 * retain a sensible line ordering.
726 * \param start_a index of the first line in A with which lines in B may be
728 * \param start_b index of the first line in B for which matching should be
730 * \param length_a number of lines in A with which lines in B may be compared.
731 * \param length_b number of lines in B for which matching should be done.
732 * \param fingerprints_a mutable array of fingerprints in A. The first element
733 * corresponds to the line at start_a.
734 * \param fingerprints_b array of fingerprints in B. The first element
735 * corresponds to the line at start_b.
736 * \param similarities 2-dimensional array of similarities between lines in A
737 * and B. See get_similarity() for more details.
738 * \param certainties array of values indicating how strongly a line in B is
739 * matched with some line in A.
740 * \param second_best_result array of absolute indices in A for the second
741 * closest match of a line in B.
742 * \param result array of absolute indices in A for the closest match of a line
744 * \param max_search_distance_a maximum distance in lines from the closest line
745 * in A for other lines in A for which
746 * similarities may be calculated.
747 * \param max_search_distance_b an upper bound on the greatest possible
748 * distance between lines in B such that they will
749 * both be compared with the same line in A
750 * according to max_search_distance_a.
751 * \param map_line_number_in_b_to_a parameter to map_line_number().
753 static void fuzzy_find_matching_lines_recurse(
754 int start_a
, int start_b
,
755 int length_a
, int length_b
,
756 struct fingerprint
*fingerprints_a
,
757 struct fingerprint
*fingerprints_b
,
760 int *second_best_result
,
762 int max_search_distance_a
,
763 int max_search_distance_b
,
764 const struct line_number_mapping
*map_line_number_in_b_to_a
)
766 int i
, invalidate_min
, invalidate_max
, offset_b
,
767 second_half_start_a
, second_half_start_b
,
768 second_half_length_a
, second_half_length_b
,
769 most_certain_line_a
, most_certain_local_line_b
= -1,
770 most_certain_line_certainty
= -1,
771 closest_local_line_a
;
773 for (i
= 0; i
< length_b
; ++i
) {
774 find_best_line_matches(start_a
,
784 max_search_distance_a
,
785 map_line_number_in_b_to_a
);
787 if (certainties
[i
] > most_certain_line_certainty
) {
788 most_certain_line_certainty
= certainties
[i
];
789 most_certain_local_line_b
= i
;
794 if (most_certain_local_line_b
== -1)
797 most_certain_line_a
= result
[most_certain_local_line_b
];
800 * Subtract the most certain line's fingerprint in B from the matched
801 * fingerprint in A. This means that other lines in B can't also match
802 * the same parts of the line in A.
804 fingerprint_subtract(fingerprints_a
+ most_certain_line_a
- start_a
,
805 fingerprints_b
+ most_certain_local_line_b
);
807 /* Invalidate results that may be affected by the choice of most
810 invalidate_min
= most_certain_local_line_b
- max_search_distance_b
;
811 invalidate_max
= most_certain_local_line_b
+ max_search_distance_b
+ 1;
812 if (invalidate_min
< 0)
814 if (invalidate_max
> length_b
)
815 invalidate_max
= length_b
;
817 /* As the fingerprint in A has changed, discard previously calculated
818 * similarity values with that fingerprint.
820 for (i
= invalidate_min
; i
< invalidate_max
; ++i
) {
821 closest_local_line_a
= map_line_number(
822 i
+ start_b
, map_line_number_in_b_to_a
) - start_a
;
824 /* Check that the lines in A and B are close enough that there
825 * is a similarity value for them.
827 if (abs(most_certain_line_a
- start_a
- closest_local_line_a
) >
828 max_search_distance_a
) {
832 *get_similarity(similarities
, most_certain_line_a
- start_a
,
833 i
, closest_local_line_a
,
834 max_search_distance_a
) = -1;
837 /* More invalidating of results that may be affected by the choice of
839 * Discard the matches for lines in B that are currently matched with a
840 * line in A such that their ordering contradicts the ordering imposed
841 * by the choice of most certain line.
843 for (i
= most_certain_local_line_b
- 1; i
>= invalidate_min
; --i
) {
844 /* In this loop we discard results for lines in B that are
845 * before most-certain-line-B but are matched with a line in A
846 * that is after most-certain-line-A.
848 if (certainties
[i
] >= 0 &&
849 (result
[i
] >= most_certain_line_a
||
850 second_best_result
[i
] >= most_certain_line_a
)) {
851 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
854 for (i
= most_certain_local_line_b
+ 1; i
< invalidate_max
; ++i
) {
855 /* In this loop we discard results for lines in B that are
856 * after most-certain-line-B but are matched with a line in A
857 * that is before most-certain-line-A.
859 if (certainties
[i
] >= 0 &&
860 (result
[i
] <= most_certain_line_a
||
861 second_best_result
[i
] <= most_certain_line_a
)) {
862 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
866 /* Repeat the matching process for lines before the most certain line.
868 if (most_certain_local_line_b
> 0) {
869 fuzzy_find_matching_lines_recurse(
871 most_certain_line_a
+ 1 - start_a
,
872 most_certain_local_line_b
,
873 fingerprints_a
, fingerprints_b
, similarities
,
874 certainties
, second_best_result
, result
,
875 max_search_distance_a
,
876 max_search_distance_b
,
877 map_line_number_in_b_to_a
);
879 /* Repeat the matching process for lines after the most certain line.
881 if (most_certain_local_line_b
+ 1 < length_b
) {
882 second_half_start_a
= most_certain_line_a
;
883 offset_b
= most_certain_local_line_b
+ 1;
884 second_half_start_b
= start_b
+ offset_b
;
885 second_half_length_a
=
886 length_a
+ start_a
- second_half_start_a
;
887 second_half_length_b
=
888 length_b
+ start_b
- second_half_start_b
;
889 fuzzy_find_matching_lines_recurse(
890 second_half_start_a
, second_half_start_b
,
891 second_half_length_a
, second_half_length_b
,
892 fingerprints_a
+ second_half_start_a
- start_a
,
893 fingerprints_b
+ offset_b
,
895 offset_b
* (max_search_distance_a
* 2 + 1),
896 certainties
+ offset_b
,
897 second_best_result
+ offset_b
, result
+ offset_b
,
898 max_search_distance_a
,
899 max_search_distance_b
,
900 map_line_number_in_b_to_a
);
904 /* Find the lines in the parent line range that most closely match the lines in
905 * the target line range. This is accomplished by matching fingerprints in each
906 * blame_origin, and choosing the best matches that preserve the line ordering.
907 * See struct fingerprint for details of fingerprint matching, and
908 * fuzzy_find_matching_lines_recurse for details of preserving line ordering.
910 * The performance is believed to be O(n log n) in the typical case and O(n^2)
911 * in a pathological case, where n is the number of lines in the target range.
913 static int *fuzzy_find_matching_lines(struct blame_origin
*parent
,
914 struct blame_origin
*target
,
915 int tlno
, int parent_slno
, int same
,
918 /* We use the terminology "A" for the left hand side of the diff AKA
919 * parent, and "B" for the right hand side of the diff AKA target. */
920 int start_a
= parent_slno
;
921 int length_a
= parent_len
;
923 int length_b
= same
- tlno
;
925 struct line_number_mapping map_line_number_in_b_to_a
= {
926 start_a
, length_a
, start_b
, length_b
929 struct fingerprint
*fingerprints_a
= parent
->fingerprints
;
930 struct fingerprint
*fingerprints_b
= target
->fingerprints
;
932 int i
, *result
, *second_best_result
,
933 *certainties
, *similarities
, similarity_count
;
936 * max_search_distance_a means that given a line in B, compare it to
937 * the line in A that is closest to its position, and the lines in A
938 * that are no greater than max_search_distance_a lines away from the
941 * max_search_distance_b is an upper bound on the greatest possible
942 * distance between lines in B such that they will both be compared
943 * with the same line in A according to max_search_distance_a.
945 int max_search_distance_a
= 10, max_search_distance_b
;
950 if (max_search_distance_a
>= length_a
)
951 max_search_distance_a
= length_a
? length_a
- 1 : 0;
953 max_search_distance_b
= ((2 * max_search_distance_a
+ 1) * length_b
956 CALLOC_ARRAY(result
, length_b
);
957 CALLOC_ARRAY(second_best_result
, length_b
);
958 CALLOC_ARRAY(certainties
, length_b
);
960 /* See get_similarity() for details of similarities. */
961 similarity_count
= length_b
* (max_search_distance_a
* 2 + 1);
962 CALLOC_ARRAY(similarities
, similarity_count
);
964 for (i
= 0; i
< length_b
; ++i
) {
966 second_best_result
[i
] = -1;
967 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
970 for (i
= 0; i
< similarity_count
; ++i
)
971 similarities
[i
] = -1;
973 fuzzy_find_matching_lines_recurse(start_a
, start_b
,
975 fingerprints_a
+ start_a
,
976 fingerprints_b
+ start_b
,
981 max_search_distance_a
,
982 max_search_distance_b
,
983 &map_line_number_in_b_to_a
);
987 free(second_best_result
);
992 static void fill_origin_fingerprints(struct blame_origin
*o
)
998 o
->num_lines
= find_line_starts(&line_starts
, o
->file
.ptr
,
1000 CALLOC_ARRAY(o
->fingerprints
, o
->num_lines
);
1001 get_line_fingerprints(o
->fingerprints
, o
->file
.ptr
, line_starts
,
1006 static void drop_origin_fingerprints(struct blame_origin
*o
)
1008 if (o
->fingerprints
) {
1009 free_line_fingerprints(o
->fingerprints
, o
->num_lines
);
1011 FREE_AND_NULL(o
->fingerprints
);
1016 * Given an origin, prepare mmfile_t structure to be used by the
1019 static void fill_origin_blob(struct diff_options
*opt
,
1020 struct blame_origin
*o
, mmfile_t
*file
,
1021 int *num_read_blob
, int fill_fingerprints
)
1024 enum object_type type
;
1025 unsigned long file_size
;
1028 if (opt
->flags
.allow_textconv
&&
1029 textconv_object(opt
->repo
, o
->path
, o
->mode
,
1030 &o
->blob_oid
, 1, &file
->ptr
, &file_size
))
1033 file
->ptr
= repo_read_object_file(the_repository
,
1034 &o
->blob_oid
, &type
,
1036 file
->size
= file_size
;
1039 die("Cannot read blob %s for path %s",
1040 oid_to_hex(&o
->blob_oid
),
1046 if (fill_fingerprints
)
1047 fill_origin_fingerprints(o
);
1050 static void drop_origin_blob(struct blame_origin
*o
)
1052 FREE_AND_NULL(o
->file
.ptr
);
1053 drop_origin_fingerprints(o
);
1057 * Any merge of blames happens on lists of blames that arrived via
1058 * different parents in a single suspect. In this case, we want to
1059 * sort according to the suspect line numbers as opposed to the final
1060 * image line numbers. The function body is somewhat longish because
1061 * it avoids unnecessary writes.
1064 static struct blame_entry
*blame_merge(struct blame_entry
*list1
,
1065 struct blame_entry
*list2
)
1067 struct blame_entry
*p1
= list1
, *p2
= list2
,
1075 if (p1
->s_lno
<= p2
->s_lno
) {
1078 if (!(p1
= *tail
)) {
1082 } while (p1
->s_lno
<= p2
->s_lno
);
1088 if (!(p2
= *tail
)) {
1092 } while (p1
->s_lno
> p2
->s_lno
);
1096 if (!(p1
= *tail
)) {
1100 } while (p1
->s_lno
<= p2
->s_lno
);
1104 DEFINE_LIST_SORT(static, sort_blame_entries
, struct blame_entry
, next
);
1107 * Final image line numbers are all different, so we don't need a
1108 * three-way comparison here.
1111 static int compare_blame_final(const struct blame_entry
*e1
,
1112 const struct blame_entry
*e2
)
1114 return e1
->lno
> e2
->lno
? 1 : -1;
1117 static int compare_blame_suspect(const struct blame_entry
*s1
,
1118 const struct blame_entry
*s2
)
1121 * to allow for collating suspects, we sort according to the
1122 * respective pointer value as the primary sorting criterion.
1123 * The actual relation is pretty unimportant as long as it
1124 * establishes a total order. Comparing as integers gives us
1127 if (s1
->suspect
!= s2
->suspect
)
1128 return (intptr_t)s1
->suspect
> (intptr_t)s2
->suspect
? 1 : -1;
1129 if (s1
->s_lno
== s2
->s_lno
)
1131 return s1
->s_lno
> s2
->s_lno
? 1 : -1;
1134 void blame_sort_final(struct blame_scoreboard
*sb
)
1136 sort_blame_entries(&sb
->ent
, compare_blame_final
);
1139 static int compare_commits_by_reverse_commit_date(const void *a
,
1143 return -compare_commits_by_commit_date(a
, b
, c
);
1147 * For debugging -- origin is refcounted, and this asserts that
1148 * we do not underflow.
1150 static void sanity_check_refcnt(struct blame_scoreboard
*sb
)
1153 struct blame_entry
*ent
;
1155 for (ent
= sb
->ent
; ent
; ent
= ent
->next
) {
1156 /* Nobody should have zero or negative refcnt */
1157 if (ent
->suspect
->refcnt
<= 0) {
1158 fprintf(stderr
, "%s in %s has negative refcnt %d\n",
1160 oid_to_hex(&ent
->suspect
->commit
->object
.oid
),
1161 ent
->suspect
->refcnt
);
1166 sb
->on_sanity_fail(sb
, baa
);
1170 * If two blame entries that are next to each other came from
1171 * contiguous lines in the same origin (i.e. <commit, path> pair),
1172 * merge them together.
1174 void blame_coalesce(struct blame_scoreboard
*sb
)
1176 struct blame_entry
*ent
, *next
;
1178 for (ent
= sb
->ent
; ent
&& (next
= ent
->next
); ent
= next
) {
1179 if (ent
->suspect
== next
->suspect
&&
1180 ent
->s_lno
+ ent
->num_lines
== next
->s_lno
&&
1181 ent
->lno
+ ent
->num_lines
== next
->lno
&&
1182 ent
->ignored
== next
->ignored
&&
1183 ent
->unblamable
== next
->unblamable
) {
1184 ent
->num_lines
+= next
->num_lines
;
1185 ent
->next
= next
->next
;
1186 blame_origin_decref(next
->suspect
);
1189 next
= ent
; /* again */
1193 if (sb
->debug
) /* sanity */
1194 sanity_check_refcnt(sb
);
1198 * Merge the given sorted list of blames into a preexisting origin.
1199 * If there were no previous blames to that commit, it is entered into
1200 * the commit priority queue of the score board.
1203 static void queue_blames(struct blame_scoreboard
*sb
, struct blame_origin
*porigin
,
1204 struct blame_entry
*sorted
)
1206 if (porigin
->suspects
)
1207 porigin
->suspects
= blame_merge(porigin
->suspects
, sorted
);
1209 struct blame_origin
*o
;
1210 for (o
= get_blame_suspects(porigin
->commit
); o
; o
= o
->next
) {
1212 porigin
->suspects
= sorted
;
1216 porigin
->suspects
= sorted
;
1217 prio_queue_put(&sb
->commits
, porigin
->commit
);
1222 * Fill the blob_sha1 field of an origin if it hasn't, so that later
1223 * call to fill_origin_blob() can use it to locate the data. blob_sha1
1224 * for an origin is also used to pass the blame for the entire file to
1225 * the parent to detect the case where a child's blob is identical to
1226 * that of its parent's.
1228 * This also fills origin->mode for corresponding tree path.
1230 static int fill_blob_sha1_and_mode(struct repository
*r
,
1231 struct blame_origin
*origin
)
1233 if (!is_null_oid(&origin
->blob_oid
))
1235 if (get_tree_entry(r
, &origin
->commit
->object
.oid
, origin
->path
, &origin
->blob_oid
, &origin
->mode
))
1237 if (oid_object_info(r
, &origin
->blob_oid
, NULL
) != OBJ_BLOB
)
1241 oidclr(&origin
->blob_oid
);
1242 origin
->mode
= S_IFINVALID
;
1246 struct blame_bloom_data
{
1248 * Changed-path Bloom filter keys. These can help prevent
1249 * computing diffs against first parents, but we need to
1250 * expand the list as code is moved or files are renamed.
1252 struct bloom_filter_settings
*settings
;
1253 struct bloom_key
**keys
;
1258 static int bloom_count_queries
= 0;
1259 static int bloom_count_no
= 0;
1260 static int maybe_changed_path(struct repository
*r
,
1261 struct blame_origin
*origin
,
1262 struct blame_bloom_data
*bd
)
1265 struct bloom_filter
*filter
;
1270 if (commit_graph_generation(origin
->commit
) == GENERATION_NUMBER_INFINITY
)
1273 filter
= get_bloom_filter(r
, origin
->commit
);
1278 bloom_count_queries
++;
1279 for (i
= 0; i
< bd
->nr
; i
++) {
1280 if (bloom_filter_contains(filter
,
1290 static void add_bloom_key(struct blame_bloom_data
*bd
,
1296 if (bd
->nr
>= bd
->alloc
) {
1298 REALLOC_ARRAY(bd
->keys
, bd
->alloc
);
1301 bd
->keys
[bd
->nr
] = xmalloc(sizeof(struct bloom_key
));
1302 fill_bloom_key(path
, strlen(path
), bd
->keys
[bd
->nr
], bd
->settings
);
1307 * We have an origin -- check if the same path exists in the
1308 * parent and return an origin structure to represent it.
1310 static struct blame_origin
*find_origin(struct repository
*r
,
1311 struct commit
*parent
,
1312 struct blame_origin
*origin
,
1313 struct blame_bloom_data
*bd
)
1315 struct blame_origin
*porigin
;
1316 struct diff_options diff_opts
;
1317 const char *paths
[2];
1319 /* First check any existing origins */
1320 for (porigin
= get_blame_suspects(parent
); porigin
; porigin
= porigin
->next
)
1321 if (!strcmp(porigin
->path
, origin
->path
)) {
1323 * The same path between origin and its parent
1324 * without renaming -- the most common case.
1326 return blame_origin_incref (porigin
);
1329 /* See if the origin->path is different between parent
1330 * and origin first. Most of the time they are the
1331 * same and diff-tree is fairly efficient about this.
1333 repo_diff_setup(r
, &diff_opts
);
1334 diff_opts
.flags
.recursive
= 1;
1335 diff_opts
.detect_rename
= 0;
1336 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
1337 paths
[0] = origin
->path
;
1340 parse_pathspec(&diff_opts
.pathspec
,
1341 PATHSPEC_ALL_MAGIC
& ~PATHSPEC_LITERAL
,
1342 PATHSPEC_LITERAL_PATH
, "", paths
);
1343 diff_setup_done(&diff_opts
);
1345 if (is_null_oid(&origin
->commit
->object
.oid
))
1346 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
1348 int compute_diff
= 1;
1349 if (origin
->commit
->parents
&&
1350 oideq(&parent
->object
.oid
,
1351 &origin
->commit
->parents
->item
->object
.oid
))
1352 compute_diff
= maybe_changed_path(r
, origin
, bd
);
1355 diff_tree_oid(get_commit_tree_oid(parent
),
1356 get_commit_tree_oid(origin
->commit
),
1359 diffcore_std(&diff_opts
);
1361 if (!diff_queued_diff
.nr
) {
1362 /* The path is the same as parent */
1363 porigin
= get_origin(parent
, origin
->path
);
1364 oidcpy(&porigin
->blob_oid
, &origin
->blob_oid
);
1365 porigin
->mode
= origin
->mode
;
1368 * Since origin->path is a pathspec, if the parent
1369 * commit had it as a directory, we will see a whole
1370 * bunch of deletion of files in the directory that we
1371 * do not care about.
1374 struct diff_filepair
*p
= NULL
;
1375 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
1377 p
= diff_queued_diff
.queue
[i
];
1378 name
= p
->one
->path
? p
->one
->path
: p
->two
->path
;
1379 if (!strcmp(name
, origin
->path
))
1383 die("internal error in blame::find_origin");
1384 switch (p
->status
) {
1386 die("internal error in blame::find_origin (%c)",
1389 porigin
= get_origin(parent
, origin
->path
);
1390 oidcpy(&porigin
->blob_oid
, &p
->one
->oid
);
1391 porigin
->mode
= p
->one
->mode
;
1395 /* Did not exist in parent, or type changed */
1399 diff_flush(&diff_opts
);
1404 * We have an origin -- find the path that corresponds to it in its
1405 * parent and return an origin structure to represent it.
1407 static struct blame_origin
*find_rename(struct repository
*r
,
1408 struct commit
*parent
,
1409 struct blame_origin
*origin
,
1410 struct blame_bloom_data
*bd
)
1412 struct blame_origin
*porigin
= NULL
;
1413 struct diff_options diff_opts
;
1416 repo_diff_setup(r
, &diff_opts
);
1417 diff_opts
.flags
.recursive
= 1;
1418 diff_opts
.detect_rename
= DIFF_DETECT_RENAME
;
1419 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
1420 diff_opts
.single_follow
= origin
->path
;
1421 diff_setup_done(&diff_opts
);
1423 if (is_null_oid(&origin
->commit
->object
.oid
))
1424 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
1426 diff_tree_oid(get_commit_tree_oid(parent
),
1427 get_commit_tree_oid(origin
->commit
),
1429 diffcore_std(&diff_opts
);
1431 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
1432 struct diff_filepair
*p
= diff_queued_diff
.queue
[i
];
1433 if ((p
->status
== 'R' || p
->status
== 'C') &&
1434 !strcmp(p
->two
->path
, origin
->path
)) {
1435 add_bloom_key(bd
, p
->one
->path
);
1436 porigin
= get_origin(parent
, p
->one
->path
);
1437 oidcpy(&porigin
->blob_oid
, &p
->one
->oid
);
1438 porigin
->mode
= p
->one
->mode
;
1442 diff_flush(&diff_opts
);
1447 * Append a new blame entry to a given output queue.
1449 static void add_blame_entry(struct blame_entry
***queue
,
1450 const struct blame_entry
*src
)
1452 struct blame_entry
*e
= xmalloc(sizeof(*e
));
1453 memcpy(e
, src
, sizeof(*e
));
1454 blame_origin_incref(e
->suspect
);
1462 * src typically is on-stack; we want to copy the information in it to
1463 * a malloced blame_entry that gets added to the given queue. The
1464 * origin of dst loses a refcnt.
1466 static void dup_entry(struct blame_entry
***queue
,
1467 struct blame_entry
*dst
, struct blame_entry
*src
)
1469 blame_origin_incref(src
->suspect
);
1470 blame_origin_decref(dst
->suspect
);
1471 memcpy(dst
, src
, sizeof(*src
));
1472 dst
->next
= **queue
;
1474 *queue
= &dst
->next
;
1477 const char *blame_nth_line(struct blame_scoreboard
*sb
, long lno
)
1479 return sb
->final_buf
+ sb
->lineno
[lno
];
1483 * It is known that lines between tlno to same came from parent, and e
1484 * has an overlap with that range. it also is known that parent's
1485 * line plno corresponds to e's line tlno.
1491 * <------------------>
1493 * Split e into potentially three parts; before this chunk, the chunk
1494 * to be blamed for the parent, and after that portion.
1496 static void split_overlap(struct blame_entry
*split
,
1497 struct blame_entry
*e
,
1498 int tlno
, int plno
, int same
,
1499 struct blame_origin
*parent
)
1503 memset(split
, 0, sizeof(struct blame_entry
[3]));
1505 for (i
= 0; i
< 3; i
++) {
1506 split
[i
].ignored
= e
->ignored
;
1507 split
[i
].unblamable
= e
->unblamable
;
1510 if (e
->s_lno
< tlno
) {
1511 /* there is a pre-chunk part not blamed on parent */
1512 split
[0].suspect
= blame_origin_incref(e
->suspect
);
1513 split
[0].lno
= e
->lno
;
1514 split
[0].s_lno
= e
->s_lno
;
1515 split
[0].num_lines
= tlno
- e
->s_lno
;
1516 split
[1].lno
= e
->lno
+ tlno
- e
->s_lno
;
1517 split
[1].s_lno
= plno
;
1520 split
[1].lno
= e
->lno
;
1521 split
[1].s_lno
= plno
+ (e
->s_lno
- tlno
);
1524 if (same
< e
->s_lno
+ e
->num_lines
) {
1525 /* there is a post-chunk part not blamed on parent */
1526 split
[2].suspect
= blame_origin_incref(e
->suspect
);
1527 split
[2].lno
= e
->lno
+ (same
- e
->s_lno
);
1528 split
[2].s_lno
= e
->s_lno
+ (same
- e
->s_lno
);
1529 split
[2].num_lines
= e
->s_lno
+ e
->num_lines
- same
;
1530 chunk_end_lno
= split
[2].lno
;
1533 chunk_end_lno
= e
->lno
+ e
->num_lines
;
1534 split
[1].num_lines
= chunk_end_lno
- split
[1].lno
;
1537 * if it turns out there is nothing to blame the parent for,
1538 * forget about the splitting. !split[1].suspect signals this.
1540 if (split
[1].num_lines
< 1)
1542 split
[1].suspect
= blame_origin_incref(parent
);
1546 * split_overlap() divided an existing blame e into up to three parts
1547 * in split. Any assigned blame is moved to queue to
1548 * reflect the split.
1550 static void split_blame(struct blame_entry
***blamed
,
1551 struct blame_entry
***unblamed
,
1552 struct blame_entry
*split
,
1553 struct blame_entry
*e
)
1555 if (split
[0].suspect
&& split
[2].suspect
) {
1556 /* The first part (reuse storage for the existing entry e) */
1557 dup_entry(unblamed
, e
, &split
[0]);
1559 /* The last part -- me */
1560 add_blame_entry(unblamed
, &split
[2]);
1562 /* ... and the middle part -- parent */
1563 add_blame_entry(blamed
, &split
[1]);
1565 else if (!split
[0].suspect
&& !split
[2].suspect
)
1567 * The parent covers the entire area; reuse storage for
1568 * e and replace it with the parent.
1570 dup_entry(blamed
, e
, &split
[1]);
1571 else if (split
[0].suspect
) {
1572 /* me and then parent */
1573 dup_entry(unblamed
, e
, &split
[0]);
1574 add_blame_entry(blamed
, &split
[1]);
1577 /* parent and then me */
1578 dup_entry(blamed
, e
, &split
[1]);
1579 add_blame_entry(unblamed
, &split
[2]);
1584 * After splitting the blame, the origins used by the
1585 * on-stack blame_entry should lose one refcnt each.
1587 static void decref_split(struct blame_entry
*split
)
1591 for (i
= 0; i
< 3; i
++)
1592 blame_origin_decref(split
[i
].suspect
);
1596 * reverse_blame reverses the list given in head, appending tail.
1597 * That allows us to build lists in reverse order, then reverse them
1598 * afterwards. This can be faster than building the list in proper
1599 * order right away. The reason is that building in proper order
1600 * requires writing a link in the _previous_ element, while building
1601 * in reverse order just requires placing the list head into the
1602 * _current_ element.
1605 static struct blame_entry
*reverse_blame(struct blame_entry
*head
,
1606 struct blame_entry
*tail
)
1609 struct blame_entry
*next
= head
->next
;
1618 * Splits a blame entry into two entries at 'len' lines. The original 'e'
1619 * consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
1620 * which is returned, consists of the remainder: [e->lno + len, e->lno +
1621 * e->num_lines). The caller needs to sort out the reference counting for the
1622 * new entry's suspect.
1624 static struct blame_entry
*split_blame_at(struct blame_entry
*e
, int len
,
1625 struct blame_origin
*new_suspect
)
1627 struct blame_entry
*n
= xcalloc(1, sizeof(struct blame_entry
));
1629 n
->suspect
= new_suspect
;
1630 n
->ignored
= e
->ignored
;
1631 n
->unblamable
= e
->unblamable
;
1632 n
->lno
= e
->lno
+ len
;
1633 n
->s_lno
= e
->s_lno
+ len
;
1634 n
->num_lines
= e
->num_lines
- len
;
1640 struct blame_line_tracker
{
1645 static int are_lines_adjacent(struct blame_line_tracker
*first
,
1646 struct blame_line_tracker
*second
)
1648 return first
->is_parent
== second
->is_parent
&&
1649 first
->s_lno
+ 1 == second
->s_lno
;
1652 static int scan_parent_range(struct fingerprint
*p_fps
,
1653 struct fingerprint
*t_fps
, int t_idx
,
1654 int from
, int nr_lines
)
1657 #define FINGERPRINT_FILE_THRESHOLD 10
1658 int best_sim_val
= FINGERPRINT_FILE_THRESHOLD
;
1659 int best_sim_idx
= -1;
1661 for (p_idx
= from
; p_idx
< from
+ nr_lines
; p_idx
++) {
1662 sim
= fingerprint_similarity(&t_fps
[t_idx
], &p_fps
[p_idx
]);
1663 if (sim
< best_sim_val
)
1665 /* Break ties with the closest-to-target line number */
1666 if (sim
== best_sim_val
&& best_sim_idx
!= -1 &&
1667 abs(best_sim_idx
- t_idx
) < abs(p_idx
- t_idx
))
1670 best_sim_idx
= p_idx
;
1672 return best_sim_idx
;
1676 * The first pass checks the blame entry (from the target) against the parent's
1677 * diff chunk. If that fails for a line, the second pass tries to match that
1678 * line to any part of parent file. That catches cases where a change was
1679 * broken into two chunks by 'context.'
1681 static void guess_line_blames(struct blame_origin
*parent
,
1682 struct blame_origin
*target
,
1683 int tlno
, int offset
, int same
, int parent_len
,
1684 struct blame_line_tracker
*line_blames
)
1686 int i
, best_idx
, target_idx
;
1687 int parent_slno
= tlno
+ offset
;
1690 fuzzy_matches
= fuzzy_find_matching_lines(parent
, target
,
1691 tlno
, parent_slno
, same
,
1693 for (i
= 0; i
< same
- tlno
; i
++) {
1694 target_idx
= tlno
+ i
;
1695 if (fuzzy_matches
&& fuzzy_matches
[i
] >= 0) {
1696 best_idx
= fuzzy_matches
[i
];
1698 best_idx
= scan_parent_range(parent
->fingerprints
,
1699 target
->fingerprints
,
1703 if (best_idx
>= 0) {
1704 line_blames
[i
].is_parent
= 1;
1705 line_blames
[i
].s_lno
= best_idx
;
1707 line_blames
[i
].is_parent
= 0;
1708 line_blames
[i
].s_lno
= target_idx
;
1711 free(fuzzy_matches
);
1715 * This decides which parts of a blame entry go to the parent (added to the
1716 * ignoredp list) and which stay with the target (added to the diffp list). The
1717 * actual decision was made in a separate heuristic function, and those answers
1718 * for the lines in 'e' are in line_blames. This consumes e, essentially
1719 * putting it on a list.
1721 * Note that the blame entries on the ignoredp list are not necessarily sorted
1722 * with respect to the parent's line numbers yet.
1724 static void ignore_blame_entry(struct blame_entry
*e
,
1725 struct blame_origin
*parent
,
1726 struct blame_entry
**diffp
,
1727 struct blame_entry
**ignoredp
,
1728 struct blame_line_tracker
*line_blames
)
1730 int entry_len
, nr_lines
, i
;
1733 * We carve new entries off the front of e. Each entry comes from a
1734 * contiguous chunk of lines: adjacent lines from the same origin
1735 * (either the parent or the target).
1738 nr_lines
= e
->num_lines
; /* e changes in the loop */
1739 for (i
= 0; i
< nr_lines
; i
++) {
1740 struct blame_entry
*next
= NULL
;
1743 * We are often adjacent to the next line - only split the blame
1744 * entry when we have to.
1746 if (i
+ 1 < nr_lines
) {
1747 if (are_lines_adjacent(&line_blames
[i
],
1748 &line_blames
[i
+ 1])) {
1752 next
= split_blame_at(e
, entry_len
,
1753 blame_origin_incref(e
->suspect
));
1755 if (line_blames
[i
].is_parent
) {
1757 blame_origin_decref(e
->suspect
);
1758 e
->suspect
= blame_origin_incref(parent
);
1759 e
->s_lno
= line_blames
[i
- entry_len
+ 1].s_lno
;
1760 e
->next
= *ignoredp
;
1764 /* e->s_lno is already in the target's address space. */
1768 assert(e
->num_lines
== entry_len
);
1776 * Process one hunk from the patch between the current suspect for
1777 * blame_entry e and its parent. This first blames any unfinished
1778 * entries before the chunk (which is where target and parent start
1779 * differing) on the parent, and then splits blame entries at the
1780 * start and at the end of the difference region. Since use of -M and
1781 * -C options may lead to overlapping/duplicate source line number
1782 * ranges, all we can rely on from sorting/merging is the order of the
1783 * first suspect line number.
1785 * tlno: line number in the target where this chunk begins
1786 * same: line number in the target where this chunk ends
1787 * offset: add to tlno to get the chunk starting point in the parent
1788 * parent_len: number of lines in the parent chunk
1790 static void blame_chunk(struct blame_entry
***dstq
, struct blame_entry
***srcq
,
1791 int tlno
, int offset
, int same
, int parent_len
,
1792 struct blame_origin
*parent
,
1793 struct blame_origin
*target
, int ignore_diffs
)
1795 struct blame_entry
*e
= **srcq
;
1796 struct blame_entry
*samep
= NULL
, *diffp
= NULL
, *ignoredp
= NULL
;
1797 struct blame_line_tracker
*line_blames
= NULL
;
1799 while (e
&& e
->s_lno
< tlno
) {
1800 struct blame_entry
*next
= e
->next
;
1802 * current record starts before differing portion. If
1803 * it reaches into it, we need to split it up and
1804 * examine the second part separately.
1806 if (e
->s_lno
+ e
->num_lines
> tlno
) {
1807 /* Move second half to a new record */
1808 struct blame_entry
*n
;
1810 n
= split_blame_at(e
, tlno
- e
->s_lno
, e
->suspect
);
1811 /* Push new record to diffp */
1815 blame_origin_decref(e
->suspect
);
1816 /* Pass blame for everything before the differing
1817 * chunk to the parent */
1818 e
->suspect
= blame_origin_incref(parent
);
1825 * As we don't know how much of a common stretch after this
1826 * diff will occur, the currently blamed parts are all that we
1827 * can assign to the parent for now.
1831 **dstq
= reverse_blame(samep
, **dstq
);
1832 *dstq
= &samep
->next
;
1835 * Prepend the split off portions: everything after e starts
1836 * after the blameable portion.
1838 e
= reverse_blame(diffp
, e
);
1841 * Now retain records on the target while parts are different
1847 if (ignore_diffs
&& same
- tlno
> 0) {
1848 CALLOC_ARRAY(line_blames
, same
- tlno
);
1849 guess_line_blames(parent
, target
, tlno
, offset
, same
,
1850 parent_len
, line_blames
);
1853 while (e
&& e
->s_lno
< same
) {
1854 struct blame_entry
*next
= e
->next
;
1857 * If current record extends into sameness, need to split.
1859 if (e
->s_lno
+ e
->num_lines
> same
) {
1861 * Move second half to a new record to be
1862 * processed by later chunks
1864 struct blame_entry
*n
;
1866 n
= split_blame_at(e
, same
- e
->s_lno
,
1867 blame_origin_incref(e
->suspect
));
1868 /* Push new record to samep */
1873 ignore_blame_entry(e
, parent
, &diffp
, &ignoredp
,
1874 line_blames
+ e
->s_lno
- tlno
);
1884 * Note ignoredp is not sorted yet, and thus neither is dstq.
1885 * That list must be sorted before we queue_blames(). We defer
1886 * sorting until after all diff hunks are processed, so that
1887 * guess_line_blames() can pick *any* line in the parent. The
1888 * slight drawback is that we end up sorting all blame entries
1889 * passed to the parent, including those that are unrelated to
1890 * changes made by the ignored commit.
1892 **dstq
= reverse_blame(ignoredp
, **dstq
);
1893 *dstq
= &ignoredp
->next
;
1895 **srcq
= reverse_blame(diffp
, reverse_blame(samep
, e
));
1896 /* Move across elements that are in the unblamable portion */
1898 *srcq
= &diffp
->next
;
1901 struct blame_chunk_cb_data
{
1902 struct blame_origin
*parent
;
1903 struct blame_origin
*target
;
1906 struct blame_entry
**dstq
;
1907 struct blame_entry
**srcq
;
1910 /* diff chunks are from parent to target */
1911 static int blame_chunk_cb(long start_a
, long count_a
,
1912 long start_b
, long count_b
, void *data
)
1914 struct blame_chunk_cb_data
*d
= data
;
1915 if (start_a
- start_b
!= d
->offset
)
1916 die("internal error in blame::blame_chunk_cb");
1917 blame_chunk(&d
->dstq
, &d
->srcq
, start_b
, start_a
- start_b
,
1918 start_b
+ count_b
, count_a
, d
->parent
, d
->target
,
1920 d
->offset
= start_a
+ count_a
- (start_b
+ count_b
);
1925 * We are looking at the origin 'target' and aiming to pass blame
1926 * for the lines it is suspected to its parent. Run diff to find
1927 * which lines came from parent and pass blame for them.
1929 static void pass_blame_to_parent(struct blame_scoreboard
*sb
,
1930 struct blame_origin
*target
,
1931 struct blame_origin
*parent
, int ignore_diffs
)
1933 mmfile_t file_p
, file_o
;
1934 struct blame_chunk_cb_data d
;
1935 struct blame_entry
*newdest
= NULL
;
1937 if (!target
->suspects
)
1938 return; /* nothing remains for this target */
1943 d
.ignore_diffs
= ignore_diffs
;
1944 d
.dstq
= &newdest
; d
.srcq
= &target
->suspects
;
1946 fill_origin_blob(&sb
->revs
->diffopt
, parent
, &file_p
,
1947 &sb
->num_read_blob
, ignore_diffs
);
1948 fill_origin_blob(&sb
->revs
->diffopt
, target
, &file_o
,
1949 &sb
->num_read_blob
, ignore_diffs
);
1950 sb
->num_get_patch
++;
1952 if (diff_hunks(&file_p
, &file_o
, blame_chunk_cb
, &d
, sb
->xdl_opts
))
1953 die("unable to generate diff (%s -> %s)",
1954 oid_to_hex(&parent
->commit
->object
.oid
),
1955 oid_to_hex(&target
->commit
->object
.oid
));
1956 /* The rest are the same as the parent */
1957 blame_chunk(&d
.dstq
, &d
.srcq
, INT_MAX
, d
.offset
, INT_MAX
, 0,
1961 sort_blame_entries(&newdest
, compare_blame_suspect
);
1962 queue_blames(sb
, parent
, newdest
);
1968 * The lines in blame_entry after splitting blames many times can become
1969 * very small and trivial, and at some point it becomes pointless to
1970 * blame the parents. E.g. "\t\t}\n\t}\n\n" appears everywhere in any
1971 * ordinary C program, and it is not worth to say it was copied from
1972 * totally unrelated file in the parent.
1974 * Compute how trivial the lines in the blame_entry are.
1976 unsigned blame_entry_score(struct blame_scoreboard
*sb
, struct blame_entry
*e
)
1979 const char *cp
, *ep
;
1985 cp
= blame_nth_line(sb
, e
->lno
);
1986 ep
= blame_nth_line(sb
, e
->lno
+ e
->num_lines
);
1988 unsigned ch
= *((unsigned char *)cp
);
1998 * best_so_far[] and potential[] are both a split of an existing blame_entry
1999 * that passes blame to the parent. Maintain best_so_far the best split so
2000 * far, by comparing potential and best_so_far and copying potential into
2001 * bst_so_far as needed.
2003 static void copy_split_if_better(struct blame_scoreboard
*sb
,
2004 struct blame_entry
*best_so_far
,
2005 struct blame_entry
*potential
)
2009 if (!potential
[1].suspect
)
2011 if (best_so_far
[1].suspect
) {
2012 if (blame_entry_score(sb
, &potential
[1]) <
2013 blame_entry_score(sb
, &best_so_far
[1]))
2017 for (i
= 0; i
< 3; i
++)
2018 blame_origin_incref(potential
[i
].suspect
);
2019 decref_split(best_so_far
);
2020 memcpy(best_so_far
, potential
, sizeof(struct blame_entry
[3]));
2024 * We are looking at a part of the final image represented by
2025 * ent (tlno and same are offset by ent->s_lno).
2026 * tlno is where we are looking at in the final image.
2027 * up to (but not including) same match preimage.
2028 * plno is where we are looking at in the preimage.
2030 * <-------------- final image ---------------------->
2033 * <---------preimage----->
2036 * All line numbers are 0-based.
2038 static void handle_split(struct blame_scoreboard
*sb
,
2039 struct blame_entry
*ent
,
2040 int tlno
, int plno
, int same
,
2041 struct blame_origin
*parent
,
2042 struct blame_entry
*split
)
2044 if (ent
->num_lines
<= tlno
)
2047 struct blame_entry potential
[3];
2050 split_overlap(potential
, ent
, tlno
, plno
, same
, parent
);
2051 copy_split_if_better(sb
, split
, potential
);
2052 decref_split(potential
);
2056 struct handle_split_cb_data
{
2057 struct blame_scoreboard
*sb
;
2058 struct blame_entry
*ent
;
2059 struct blame_origin
*parent
;
2060 struct blame_entry
*split
;
2065 static int handle_split_cb(long start_a
, long count_a
,
2066 long start_b
, long count_b
, void *data
)
2068 struct handle_split_cb_data
*d
= data
;
2069 handle_split(d
->sb
, d
->ent
, d
->tlno
, d
->plno
, start_b
, d
->parent
,
2071 d
->plno
= start_a
+ count_a
;
2072 d
->tlno
= start_b
+ count_b
;
2077 * Find the lines from parent that are the same as ent so that
2078 * we can pass blames to it. file_p has the blob contents for
2081 static void find_copy_in_blob(struct blame_scoreboard
*sb
,
2082 struct blame_entry
*ent
,
2083 struct blame_origin
*parent
,
2084 struct blame_entry
*split
,
2089 struct handle_split_cb_data d
;
2091 memset(&d
, 0, sizeof(d
));
2092 d
.sb
= sb
; d
.ent
= ent
; d
.parent
= parent
; d
.split
= split
;
2094 * Prepare mmfile that contains only the lines in ent.
2096 cp
= blame_nth_line(sb
, ent
->lno
);
2097 file_o
.ptr
= (char *) cp
;
2098 file_o
.size
= blame_nth_line(sb
, ent
->lno
+ ent
->num_lines
) - cp
;
2101 * file_o is a part of final image we are annotating.
2102 * file_p partially may match that image.
2104 memset(split
, 0, sizeof(struct blame_entry
[3]));
2105 if (diff_hunks(file_p
, &file_o
, handle_split_cb
, &d
, sb
->xdl_opts
))
2106 die("unable to generate diff (%s)",
2107 oid_to_hex(&parent
->commit
->object
.oid
));
2108 /* remainder, if any, all match the preimage */
2109 handle_split(sb
, ent
, d
.tlno
, d
.plno
, ent
->num_lines
, parent
, split
);
2112 /* Move all blame entries from list *source that have a score smaller
2113 * than score_min to the front of list *small.
2114 * Returns a pointer to the link pointing to the old head of the small list.
2117 static struct blame_entry
**filter_small(struct blame_scoreboard
*sb
,
2118 struct blame_entry
**small
,
2119 struct blame_entry
**source
,
2122 struct blame_entry
*p
= *source
;
2123 struct blame_entry
*oldsmall
= *small
;
2125 if (blame_entry_score(sb
, p
) <= score_min
) {
2141 * See if lines currently target is suspected for can be attributed to
2144 static void find_move_in_parent(struct blame_scoreboard
*sb
,
2145 struct blame_entry
***blamed
,
2146 struct blame_entry
**toosmall
,
2147 struct blame_origin
*target
,
2148 struct blame_origin
*parent
)
2150 struct blame_entry
*e
, split
[3];
2151 struct blame_entry
*unblamed
= target
->suspects
;
2152 struct blame_entry
*leftover
= NULL
;
2156 return; /* nothing remains for this target */
2158 fill_origin_blob(&sb
->revs
->diffopt
, parent
, &file_p
,
2159 &sb
->num_read_blob
, 0);
2163 /* At each iteration, unblamed has a NULL-terminated list of
2164 * entries that have not yet been tested for blame. leftover
2165 * contains the reversed list of entries that have been tested
2166 * without being assignable to the parent.
2169 struct blame_entry
**unblamedtail
= &unblamed
;
2170 struct blame_entry
*next
;
2171 for (e
= unblamed
; e
; e
= next
) {
2173 find_copy_in_blob(sb
, e
, parent
, split
, &file_p
);
2174 if (split
[1].suspect
&&
2175 sb
->move_score
< blame_entry_score(sb
, &split
[1])) {
2176 split_blame(blamed
, &unblamedtail
, split
, e
);
2181 decref_split(split
);
2183 *unblamedtail
= NULL
;
2184 toosmall
= filter_small(sb
, toosmall
, &unblamed
, sb
->move_score
);
2186 target
->suspects
= reverse_blame(leftover
, NULL
);
2190 struct blame_entry
*ent
;
2191 struct blame_entry split
[3];
2195 * Count the number of entries the target is suspected for,
2196 * and prepare a list of entry and the best split.
2198 static struct blame_list
*setup_blame_list(struct blame_entry
*unblamed
,
2201 struct blame_entry
*e
;
2203 struct blame_list
*blame_list
= NULL
;
2205 for (e
= unblamed
, num_ents
= 0; e
; e
= e
->next
)
2208 CALLOC_ARRAY(blame_list
, num_ents
);
2209 for (e
= unblamed
, i
= 0; e
; e
= e
->next
)
2210 blame_list
[i
++].ent
= e
;
2212 *num_ents_p
= num_ents
;
2217 * For lines target is suspected for, see if we can find code movement
2218 * across file boundary from the parent commit. porigin is the path
2219 * in the parent we already tried.
2221 static void find_copy_in_parent(struct blame_scoreboard
*sb
,
2222 struct blame_entry
***blamed
,
2223 struct blame_entry
**toosmall
,
2224 struct blame_origin
*target
,
2225 struct commit
*parent
,
2226 struct blame_origin
*porigin
,
2229 struct diff_options diff_opts
;
2231 struct blame_list
*blame_list
;
2233 struct blame_entry
*unblamed
= target
->suspects
;
2234 struct blame_entry
*leftover
= NULL
;
2237 return; /* nothing remains for this target */
2239 repo_diff_setup(sb
->repo
, &diff_opts
);
2240 diff_opts
.flags
.recursive
= 1;
2241 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
2243 diff_setup_done(&diff_opts
);
2245 /* Try "find copies harder" on new path if requested;
2246 * we do not want to use diffcore_rename() actually to
2247 * match things up; find_copies_harder is set only to
2248 * force diff_tree_oid() to feed all filepairs to diff_queue,
2249 * and this code needs to be after diff_setup_done(), which
2250 * usually makes find-copies-harder imply copy detection.
2252 if ((opt
& PICKAXE_BLAME_COPY_HARDEST
)
2253 || ((opt
& PICKAXE_BLAME_COPY_HARDER
)
2254 && (!porigin
|| strcmp(target
->path
, porigin
->path
))))
2255 diff_opts
.flags
.find_copies_harder
= 1;
2257 if (is_null_oid(&target
->commit
->object
.oid
))
2258 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
2260 diff_tree_oid(get_commit_tree_oid(parent
),
2261 get_commit_tree_oid(target
->commit
),
2264 if (!diff_opts
.flags
.find_copies_harder
)
2265 diffcore_std(&diff_opts
);
2268 struct blame_entry
**unblamedtail
= &unblamed
;
2269 blame_list
= setup_blame_list(unblamed
, &num_ents
);
2271 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
2272 struct diff_filepair
*p
= diff_queued_diff
.queue
[i
];
2273 struct blame_origin
*norigin
;
2275 struct blame_entry potential
[3];
2277 if (!DIFF_FILE_VALID(p
->one
))
2278 continue; /* does not exist in parent */
2279 if (S_ISGITLINK(p
->one
->mode
))
2280 continue; /* ignore git links */
2281 if (porigin
&& !strcmp(p
->one
->path
, porigin
->path
))
2282 /* find_move already dealt with this path */
2285 norigin
= get_origin(parent
, p
->one
->path
);
2286 oidcpy(&norigin
->blob_oid
, &p
->one
->oid
);
2287 norigin
->mode
= p
->one
->mode
;
2288 fill_origin_blob(&sb
->revs
->diffopt
, norigin
, &file_p
,
2289 &sb
->num_read_blob
, 0);
2293 for (j
= 0; j
< num_ents
; j
++) {
2294 find_copy_in_blob(sb
, blame_list
[j
].ent
,
2295 norigin
, potential
, &file_p
);
2296 copy_split_if_better(sb
, blame_list
[j
].split
,
2298 decref_split(potential
);
2300 blame_origin_decref(norigin
);
2303 for (j
= 0; j
< num_ents
; j
++) {
2304 struct blame_entry
*split
= blame_list
[j
].split
;
2305 if (split
[1].suspect
&&
2306 sb
->copy_score
< blame_entry_score(sb
, &split
[1])) {
2307 split_blame(blamed
, &unblamedtail
, split
,
2310 blame_list
[j
].ent
->next
= leftover
;
2311 leftover
= blame_list
[j
].ent
;
2313 decref_split(split
);
2316 *unblamedtail
= NULL
;
2317 toosmall
= filter_small(sb
, toosmall
, &unblamed
, sb
->copy_score
);
2319 target
->suspects
= reverse_blame(leftover
, NULL
);
2320 diff_flush(&diff_opts
);
2324 * The blobs of origin and porigin exactly match, so everything
2325 * origin is suspected for can be blamed on the parent.
2327 static void pass_whole_blame(struct blame_scoreboard
*sb
,
2328 struct blame_origin
*origin
, struct blame_origin
*porigin
)
2330 struct blame_entry
*e
, *suspects
;
2332 if (!porigin
->file
.ptr
&& origin
->file
.ptr
) {
2333 /* Steal its file */
2334 porigin
->file
= origin
->file
;
2335 origin
->file
.ptr
= NULL
;
2337 suspects
= origin
->suspects
;
2338 origin
->suspects
= NULL
;
2339 for (e
= suspects
; e
; e
= e
->next
) {
2340 blame_origin_incref(porigin
);
2341 blame_origin_decref(e
->suspect
);
2342 e
->suspect
= porigin
;
2344 queue_blames(sb
, porigin
, suspects
);
2348 * We pass blame from the current commit to its parents. We keep saying
2349 * "parent" (and "porigin"), but what we mean is to find scapegoat to
2350 * exonerate ourselves.
2352 static struct commit_list
*first_scapegoat(struct rev_info
*revs
, struct commit
*commit
,
2356 if (revs
->first_parent_only
&&
2358 commit
->parents
->next
) {
2359 free_commit_list(commit
->parents
->next
);
2360 commit
->parents
->next
= NULL
;
2362 return commit
->parents
;
2364 return lookup_decoration(&revs
->children
, &commit
->object
);
2367 static int num_scapegoats(struct rev_info
*revs
, struct commit
*commit
, int reverse
)
2369 struct commit_list
*l
= first_scapegoat(revs
, commit
, reverse
);
2370 return commit_list_count(l
);
2373 /* Distribute collected unsorted blames to the respected sorted lists
2374 * in the various origins.
2376 static void distribute_blame(struct blame_scoreboard
*sb
, struct blame_entry
*blamed
)
2378 sort_blame_entries(&blamed
, compare_blame_suspect
);
2381 struct blame_origin
*porigin
= blamed
->suspect
;
2382 struct blame_entry
*suspects
= NULL
;
2384 struct blame_entry
*next
= blamed
->next
;
2385 blamed
->next
= suspects
;
2388 } while (blamed
&& blamed
->suspect
== porigin
);
2389 suspects
= reverse_blame(suspects
, NULL
);
2390 queue_blames(sb
, porigin
, suspects
);
2396 typedef struct blame_origin
*(*blame_find_alg
)(struct repository
*,
2398 struct blame_origin
*,
2399 struct blame_bloom_data
*);
2401 static void pass_blame(struct blame_scoreboard
*sb
, struct blame_origin
*origin
, int opt
)
2403 struct rev_info
*revs
= sb
->revs
;
2404 int i
, pass
, num_sg
;
2405 struct commit
*commit
= origin
->commit
;
2406 struct commit_list
*sg
;
2407 struct blame_origin
*sg_buf
[MAXSG
];
2408 struct blame_origin
*porigin
, **sg_origin
= sg_buf
;
2409 struct blame_entry
*toosmall
= NULL
;
2410 struct blame_entry
*blames
, **blametail
= &blames
;
2412 num_sg
= num_scapegoats(revs
, commit
, sb
->reverse
);
2415 else if (num_sg
< ARRAY_SIZE(sg_buf
))
2416 memset(sg_buf
, 0, sizeof(sg_buf
));
2418 CALLOC_ARRAY(sg_origin
, num_sg
);
2421 * The first pass looks for unrenamed path to optimize for
2422 * common cases, then we look for renames in the second pass.
2424 for (pass
= 0; pass
< 2 - sb
->no_whole_file_rename
; pass
++) {
2425 blame_find_alg find
= pass
? find_rename
: find_origin
;
2427 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2429 sg
= sg
->next
, i
++) {
2430 struct commit
*p
= sg
->item
;
2435 if (repo_parse_commit(the_repository
, p
))
2437 porigin
= find(sb
->repo
, p
, origin
, sb
->bloom_data
);
2440 if (oideq(&porigin
->blob_oid
, &origin
->blob_oid
)) {
2441 pass_whole_blame(sb
, origin
, porigin
);
2442 blame_origin_decref(porigin
);
2445 for (j
= same
= 0; j
< i
; j
++)
2447 oideq(&sg_origin
[j
]->blob_oid
, &porigin
->blob_oid
)) {
2452 sg_origin
[i
] = porigin
;
2454 blame_origin_decref(porigin
);
2459 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2461 sg
= sg
->next
, i
++) {
2462 struct blame_origin
*porigin
= sg_origin
[i
];
2465 if (!origin
->previous
) {
2466 blame_origin_incref(porigin
);
2467 origin
->previous
= porigin
;
2469 pass_blame_to_parent(sb
, origin
, porigin
, 0);
2470 if (!origin
->suspects
)
2475 * Pass remaining suspects for ignored commits to their parents.
2477 if (oidset_contains(&sb
->ignore_list
, &commit
->object
.oid
)) {
2478 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2480 sg
= sg
->next
, i
++) {
2481 struct blame_origin
*porigin
= sg_origin
[i
];
2485 pass_blame_to_parent(sb
, origin
, porigin
, 1);
2487 * Preemptively drop porigin so we can refresh the
2488 * fingerprints if we use the parent again, which can
2489 * occur if you ignore back-to-back commits.
2491 drop_origin_blob(porigin
);
2492 if (!origin
->suspects
)
2498 * Optionally find moves in parents' files.
2500 if (opt
& PICKAXE_BLAME_MOVE
) {
2501 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->move_score
);
2502 if (origin
->suspects
) {
2503 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2505 sg
= sg
->next
, i
++) {
2506 struct blame_origin
*porigin
= sg_origin
[i
];
2509 find_move_in_parent(sb
, &blametail
, &toosmall
, origin
, porigin
);
2510 if (!origin
->suspects
)
2517 * Optionally find copies from parents' files.
2519 if (opt
& PICKAXE_BLAME_COPY
) {
2520 if (sb
->copy_score
> sb
->move_score
)
2521 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->copy_score
);
2522 else if (sb
->copy_score
< sb
->move_score
) {
2523 origin
->suspects
= blame_merge(origin
->suspects
, toosmall
);
2525 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->copy_score
);
2527 if (!origin
->suspects
)
2530 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2532 sg
= sg
->next
, i
++) {
2533 struct blame_origin
*porigin
= sg_origin
[i
];
2534 find_copy_in_parent(sb
, &blametail
, &toosmall
,
2535 origin
, sg
->item
, porigin
, opt
);
2536 if (!origin
->suspects
)
2543 distribute_blame(sb
, blames
);
2545 * prepend toosmall to origin->suspects
2547 * There is no point in sorting: this ends up on a big
2548 * unsorted list in the caller anyway.
2551 struct blame_entry
**tail
= &toosmall
;
2553 tail
= &(*tail
)->next
;
2554 *tail
= origin
->suspects
;
2555 origin
->suspects
= toosmall
;
2557 for (i
= 0; i
< num_sg
; i
++) {
2559 if (!sg_origin
[i
]->suspects
)
2560 drop_origin_blob(sg_origin
[i
]);
2561 blame_origin_decref(sg_origin
[i
]);
2564 drop_origin_blob(origin
);
2565 if (sg_buf
!= sg_origin
)
2570 * The main loop -- while we have blobs with lines whose true origin
2571 * is still unknown, pick one blob, and allow its lines to pass blames
2572 * to its parents. */
2573 void assign_blame(struct blame_scoreboard
*sb
, int opt
)
2575 struct rev_info
*revs
= sb
->revs
;
2576 struct commit
*commit
= prio_queue_get(&sb
->commits
);
2579 struct blame_entry
*ent
;
2580 struct blame_origin
*suspect
= get_blame_suspects(commit
);
2582 /* find one suspect to break down */
2583 while (suspect
&& !suspect
->suspects
)
2584 suspect
= suspect
->next
;
2587 commit
= prio_queue_get(&sb
->commits
);
2591 assert(commit
== suspect
->commit
);
2594 * We will use this suspect later in the loop,
2595 * so hold onto it in the meantime.
2597 blame_origin_incref(suspect
);
2598 repo_parse_commit(the_repository
, commit
);
2600 (!(commit
->object
.flags
& UNINTERESTING
) &&
2601 !(revs
->max_age
!= -1 && commit
->date
< revs
->max_age
)))
2602 pass_blame(sb
, suspect
, opt
);
2604 commit
->object
.flags
|= UNINTERESTING
;
2605 if (commit
->object
.parsed
)
2606 mark_parents_uninteresting(sb
->revs
, commit
);
2608 /* treat root commit as boundary */
2609 if (!commit
->parents
&& !sb
->show_root
)
2610 commit
->object
.flags
|= UNINTERESTING
;
2612 /* Take responsibility for the remaining entries */
2613 ent
= suspect
->suspects
;
2615 suspect
->guilty
= 1;
2617 struct blame_entry
*next
= ent
->next
;
2618 if (sb
->found_guilty_entry
)
2619 sb
->found_guilty_entry(ent
, sb
->found_guilty_entry_data
);
2624 ent
->next
= sb
->ent
;
2625 sb
->ent
= suspect
->suspects
;
2626 suspect
->suspects
= NULL
;
2630 blame_origin_decref(suspect
);
2632 if (sb
->debug
) /* sanity */
2633 sanity_check_refcnt(sb
);
2638 * To allow quick access to the contents of nth line in the
2639 * final image, prepare an index in the scoreboard.
2641 static int prepare_lines(struct blame_scoreboard
*sb
)
2643 sb
->num_lines
= find_line_starts(&sb
->lineno
, sb
->final_buf
,
2644 sb
->final_buf_size
);
2645 return sb
->num_lines
;
2648 static struct commit
*find_single_final(struct rev_info
*revs
,
2649 const char **name_p
)
2652 struct commit
*found
= NULL
;
2653 const char *name
= NULL
;
2655 for (i
= 0; i
< revs
->pending
.nr
; i
++) {
2656 struct object
*obj
= revs
->pending
.objects
[i
].item
;
2657 if (obj
->flags
& UNINTERESTING
)
2659 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2660 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2661 die("Non commit %s?", revs
->pending
.objects
[i
].name
);
2663 die("More than one commit to dig from %s and %s?",
2664 revs
->pending
.objects
[i
].name
, name
);
2665 found
= (struct commit
*)obj
;
2666 name
= revs
->pending
.objects
[i
].name
;
2669 *name_p
= xstrdup_or_null(name
);
2673 static struct commit
*dwim_reverse_initial(struct rev_info
*revs
,
2674 const char **name_p
)
2677 * DWIM "git blame --reverse ONE -- PATH" as
2678 * "git blame --reverse ONE..HEAD -- PATH" but only do so
2679 * when it makes sense.
2682 struct commit
*head_commit
;
2683 struct object_id head_oid
;
2685 if (revs
->pending
.nr
!= 1)
2688 /* Is that sole rev a committish? */
2689 obj
= revs
->pending
.objects
[0].item
;
2690 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2691 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2694 /* Do we have HEAD? */
2695 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING
, &head_oid
, NULL
))
2697 head_commit
= lookup_commit_reference_gently(revs
->repo
,
2702 /* Turn "ONE" into "ONE..HEAD" then */
2703 obj
->flags
|= UNINTERESTING
;
2704 add_pending_object(revs
, &head_commit
->object
, "HEAD");
2707 *name_p
= revs
->pending
.objects
[0].name
;
2708 return (struct commit
*)obj
;
2711 static struct commit
*find_single_initial(struct rev_info
*revs
,
2712 const char **name_p
)
2715 struct commit
*found
= NULL
;
2716 const char *name
= NULL
;
2719 * There must be one and only one negative commit, and it must be
2722 for (i
= 0; i
< revs
->pending
.nr
; i
++) {
2723 struct object
*obj
= revs
->pending
.objects
[i
].item
;
2724 if (!(obj
->flags
& UNINTERESTING
))
2726 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2727 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2728 die("Non commit %s?", revs
->pending
.objects
[i
].name
);
2730 die("More than one commit to dig up from, %s and %s?",
2731 revs
->pending
.objects
[i
].name
, name
);
2732 found
= (struct commit
*) obj
;
2733 name
= revs
->pending
.objects
[i
].name
;
2737 found
= dwim_reverse_initial(revs
, &name
);
2739 die("No commit to dig up from?");
2742 *name_p
= xstrdup(name
);
2746 void init_scoreboard(struct blame_scoreboard
*sb
)
2748 memset(sb
, 0, sizeof(struct blame_scoreboard
));
2749 sb
->move_score
= BLAME_DEFAULT_MOVE_SCORE
;
2750 sb
->copy_score
= BLAME_DEFAULT_COPY_SCORE
;
2753 void setup_scoreboard(struct blame_scoreboard
*sb
,
2754 struct blame_origin
**orig
)
2756 const char *final_commit_name
= NULL
;
2757 struct blame_origin
*o
;
2758 struct commit
*final_commit
= NULL
;
2759 enum object_type type
;
2761 init_blame_suspects(&blame_suspects
);
2763 if (sb
->reverse
&& sb
->contents_from
)
2764 die(_("--contents and --reverse do not blend well."));
2767 BUG("repo is NULL");
2770 sb
->final
= find_single_final(sb
->revs
, &final_commit_name
);
2771 sb
->commits
.compare
= compare_commits_by_commit_date
;
2773 sb
->final
= find_single_initial(sb
->revs
, &final_commit_name
);
2774 sb
->commits
.compare
= compare_commits_by_reverse_commit_date
;
2777 if (sb
->reverse
&& sb
->revs
->first_parent_only
)
2778 sb
->revs
->children
.name
= NULL
;
2780 if (sb
->contents_from
|| !sb
->final
) {
2781 struct object_id head_oid
, *parent_oid
;
2784 * Build a fake commit at the top of the history, when
2785 * (1) "git blame [^A] --path", i.e. with no positive end
2786 * of the history range, in which case we build such
2787 * a fake commit on top of the HEAD to blame in-tree
2789 * (2) "git blame --contents=file [A] -- path", with or
2790 * without positive end of the history range but with
2791 * --contents, in which case we pretend that there is
2792 * a fake commit on top of the positive end (defaulting to
2793 * HEAD) that has the given contents in the path.
2796 parent_oid
= &sb
->final
->object
.oid
;
2798 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING
, &head_oid
, NULL
))
2799 die("no such ref: HEAD");
2800 parent_oid
= &head_oid
;
2804 sb
->final
= fake_working_tree_commit(sb
->repo
,
2806 sb
->path
, sb
->contents_from
,
2808 add_pending_object(sb
->revs
, &(sb
->final
->object
), ":");
2811 if (sb
->reverse
&& sb
->revs
->first_parent_only
) {
2812 final_commit
= find_single_final(sb
->revs
, NULL
);
2814 die(_("--reverse and --first-parent together require specified latest commit"));
2818 * If we have bottom, this will mark the ancestors of the
2819 * bottom commits we would reach while traversing as
2822 if (prepare_revision_walk(sb
->revs
))
2823 die(_("revision walk setup failed"));
2825 if (sb
->reverse
&& sb
->revs
->first_parent_only
) {
2826 struct commit
*c
= final_commit
;
2828 sb
->revs
->children
.name
= "children";
2829 while (c
->parents
&&
2830 !oideq(&c
->object
.oid
, &sb
->final
->object
.oid
)) {
2831 struct commit_list
*l
= xcalloc(1, sizeof(*l
));
2834 if (add_decoration(&sb
->revs
->children
,
2835 &c
->parents
->item
->object
, l
))
2836 BUG("not unique item in first-parent chain");
2837 c
= c
->parents
->item
;
2840 if (!oideq(&c
->object
.oid
, &sb
->final
->object
.oid
))
2841 die(_("--reverse --first-parent together require range along first-parent chain"));
2844 if (is_null_oid(&sb
->final
->object
.oid
)) {
2845 o
= get_blame_suspects(sb
->final
);
2846 sb
->final_buf
= xmemdupz(o
->file
.ptr
, o
->file
.size
);
2847 sb
->final_buf_size
= o
->file
.size
;
2850 o
= get_origin(sb
->final
, sb
->path
);
2851 if (fill_blob_sha1_and_mode(sb
->repo
, o
))
2852 die(_("no such path %s in %s"), sb
->path
, final_commit_name
);
2854 if (sb
->revs
->diffopt
.flags
.allow_textconv
&&
2855 textconv_object(sb
->repo
, sb
->path
, o
->mode
, &o
->blob_oid
, 1, (char **) &sb
->final_buf
,
2856 &sb
->final_buf_size
))
2859 sb
->final_buf
= repo_read_object_file(the_repository
,
2862 &sb
->final_buf_size
);
2865 die(_("cannot read blob %s for path %s"),
2866 oid_to_hex(&o
->blob_oid
),
2869 sb
->num_read_blob
++;
2875 free((char *)final_commit_name
);
2880 struct blame_entry
*blame_entry_prepend(struct blame_entry
*head
,
2881 long start
, long end
,
2882 struct blame_origin
*o
)
2884 struct blame_entry
*new_head
= xcalloc(1, sizeof(struct blame_entry
));
2885 new_head
->lno
= start
;
2886 new_head
->num_lines
= end
- start
;
2887 new_head
->suspect
= o
;
2888 new_head
->s_lno
= start
;
2889 new_head
->next
= head
;
2890 blame_origin_incref(o
);
2894 void setup_blame_bloom_data(struct blame_scoreboard
*sb
)
2896 struct blame_bloom_data
*bd
;
2897 struct bloom_filter_settings
*bs
;
2899 if (!sb
->repo
->objects
->commit_graph
)
2902 bs
= get_bloom_filter_settings(sb
->repo
);
2906 bd
= xmalloc(sizeof(struct blame_bloom_data
));
2912 ALLOC_ARRAY(bd
->keys
, bd
->alloc
);
2914 add_bloom_key(bd
, sb
->path
);
2916 sb
->bloom_data
= bd
;
2919 void cleanup_scoreboard(struct blame_scoreboard
*sb
)
2921 if (sb
->bloom_data
) {
2923 for (i
= 0; i
< sb
->bloom_data
->nr
; i
++) {
2924 free(sb
->bloom_data
->keys
[i
]->hashes
);
2925 free(sb
->bloom_data
->keys
[i
]);
2927 free(sb
->bloom_data
->keys
);
2928 FREE_AND_NULL(sb
->bloom_data
);
2930 trace2_data_intmax("blame", sb
->repo
,
2931 "bloom/queries", bloom_count_queries
);
2932 trace2_data_intmax("blame", sb
->repo
,
2933 "bloom/response-no", bloom_count_no
);