8 #include "string-list.h"
12 * Use a non-balancing simple 16-tree structure with struct int_node as
13 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
14 * 16-array of pointers to its children.
15 * The bottom 2 bits of each pointer is used to identify the pointer type
16 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
17 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
18 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
19 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
21 * The root node is a statically allocated struct int_node.
28 * Leaf nodes come in two variants, note entries and subtree entries,
29 * distinguished by the LSb of the leaf node pointer (see above).
30 * As a note entry, the key is the SHA1 of the referenced object, and the
31 * value is the SHA1 of the note object.
32 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
33 * referenced object, using the last byte of the key to store the length of
34 * the prefix. The value is the SHA1 of the tree object containing the notes
38 unsigned char key_sha1
[20];
39 unsigned char val_sha1
[20];
43 * A notes tree may contain entries that are not notes, and that do not follow
44 * the naming conventions of notes. There are typically none/few of these, but
45 * we still need to keep track of them. Keep a simple linked list sorted alpha-
46 * betically on the non-note path. The list is populated when parsing tree
47 * objects in load_subtree(), and the non-notes are correctly written back into
48 * the tree objects produced by write_notes_tree().
51 struct non_note
*next
; /* grounded (last->next == NULL) */
54 unsigned char sha1
[20];
57 #define PTR_TYPE_NULL 0
58 #define PTR_TYPE_INTERNAL 1
59 #define PTR_TYPE_NOTE 2
60 #define PTR_TYPE_SUBTREE 3
62 #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
63 #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
64 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
66 #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
68 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
69 (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
71 struct notes_tree default_notes_tree
;
73 static struct string_list display_notes_refs
;
74 static struct notes_tree
**display_notes_trees
;
76 static void load_subtree(struct notes_tree
*t
, struct leaf_node
*subtree
,
77 struct int_node
*node
, unsigned int n
);
80 * Search the tree until the appropriate location for the given key is found:
81 * 1. Start at the root node, with n = 0
82 * 2. If a[0] at the current level is a matching subtree entry, unpack that
83 * subtree entry and remove it; restart search at the current level.
84 * 3. Use the nth nibble of the key as an index into a:
85 * - If a[n] is an int_node, recurse from #2 into that node and increment n
86 * - If a matching subtree entry, unpack that subtree entry (and remove it);
87 * restart search at the current level.
88 * - Otherwise, we have found one of the following:
89 * - a subtree entry which does not match the key
90 * - a note entry which may or may not match the key
91 * - an unused leaf node (NULL)
92 * In any case, set *tree and *n, and return pointer to the tree location.
94 static void **note_tree_search(struct notes_tree
*t
, struct int_node
**tree
,
95 unsigned char *n
, const unsigned char *key_sha1
)
99 void *p
= (*tree
)->a
[0];
101 if (GET_PTR_TYPE(p
) == PTR_TYPE_SUBTREE
) {
102 l
= (struct leaf_node
*) CLR_PTR_TYPE(p
);
103 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1
, l
->key_sha1
)) {
104 /* unpack tree and resume search */
105 (*tree
)->a
[0] = NULL
;
106 load_subtree(t
, l
, *tree
, *n
);
108 return note_tree_search(t
, tree
, n
, key_sha1
);
112 i
= GET_NIBBLE(*n
, key_sha1
);
114 switch (GET_PTR_TYPE(p
)) {
115 case PTR_TYPE_INTERNAL
:
116 *tree
= CLR_PTR_TYPE(p
);
118 return note_tree_search(t
, tree
, n
, key_sha1
);
119 case PTR_TYPE_SUBTREE
:
120 l
= (struct leaf_node
*) CLR_PTR_TYPE(p
);
121 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1
, l
->key_sha1
)) {
122 /* unpack tree and resume search */
123 (*tree
)->a
[i
] = NULL
;
124 load_subtree(t
, l
, *tree
, *n
);
126 return note_tree_search(t
, tree
, n
, key_sha1
);
130 return &((*tree
)->a
[i
]);
135 * To find a leaf_node:
136 * Search to the tree location appropriate for the given key:
137 * If a note entry with matching key, return the note entry, else return NULL.
139 static struct leaf_node
*note_tree_find(struct notes_tree
*t
,
140 struct int_node
*tree
, unsigned char n
,
141 const unsigned char *key_sha1
)
143 void **p
= note_tree_search(t
, &tree
, &n
, key_sha1
);
144 if (GET_PTR_TYPE(*p
) == PTR_TYPE_NOTE
) {
145 struct leaf_node
*l
= (struct leaf_node
*) CLR_PTR_TYPE(*p
);
146 if (!hashcmp(key_sha1
, l
->key_sha1
))
153 * How to consolidate an int_node:
154 * If there are > 1 non-NULL entries, give up and return non-zero.
155 * Otherwise replace the int_node at the given index in the given parent node
156 * with the only entry (or a NULL entry if no entries) from the given tree,
159 static int note_tree_consolidate(struct int_node
*tree
,
160 struct int_node
*parent
, unsigned char index
)
165 assert(tree
&& parent
);
166 assert(CLR_PTR_TYPE(parent
->a
[index
]) == tree
);
168 for (i
= 0; i
< 16; i
++) {
169 if (GET_PTR_TYPE(tree
->a
[i
]) != PTR_TYPE_NULL
) {
170 if (p
) /* more than one entry */
176 /* replace tree with p in parent[index] */
177 parent
->a
[index
] = p
;
183 * To remove a leaf_node:
184 * Search to the tree location appropriate for the given leaf_node's key:
185 * - If location does not hold a matching entry, abort and do nothing.
186 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
187 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
189 static void note_tree_remove(struct notes_tree
*t
, struct int_node
*tree
,
190 unsigned char n
, struct leaf_node
*entry
)
193 struct int_node
*parent_stack
[20];
195 void **p
= note_tree_search(t
, &tree
, &n
, entry
->key_sha1
);
197 assert(GET_PTR_TYPE(entry
) == 0); /* no type bits set */
198 if (GET_PTR_TYPE(*p
) != PTR_TYPE_NOTE
)
199 return; /* type mismatch, nothing to remove */
200 l
= (struct leaf_node
*) CLR_PTR_TYPE(*p
);
201 if (hashcmp(l
->key_sha1
, entry
->key_sha1
))
202 return; /* key mismatch, nothing to remove */
204 /* we have found a matching entry */
206 *p
= SET_PTR_TYPE(NULL
, PTR_TYPE_NULL
);
208 /* consolidate this tree level, and parent levels, if possible */
210 return; /* cannot consolidate top level */
211 /* first, build stack of ancestors between root and current node */
212 parent_stack
[0] = t
->root
;
213 for (i
= 0; i
< n
; i
++) {
214 j
= GET_NIBBLE(i
, entry
->key_sha1
);
215 parent_stack
[i
+ 1] = CLR_PTR_TYPE(parent_stack
[i
]->a
[j
]);
217 assert(i
== n
&& parent_stack
[i
] == tree
);
218 /* next, unwind stack until note_tree_consolidate() is done */
220 !note_tree_consolidate(parent_stack
[i
], parent_stack
[i
- 1],
221 GET_NIBBLE(i
- 1, entry
->key_sha1
)))
226 * To insert a leaf_node:
227 * Search to the tree location appropriate for the given leaf_node's key:
228 * - If location is unused (NULL), store the tweaked pointer directly there
229 * - If location holds a note entry that matches the note-to-be-inserted, then
230 * combine the two notes (by calling the given combine_notes function).
231 * - If location holds a note entry that matches the subtree-to-be-inserted,
232 * then unpack the subtree-to-be-inserted into the location.
233 * - If location holds a matching subtree entry, unpack the subtree at that
234 * location, and restart the insert operation from that level.
235 * - Else, create a new int_node, holding both the node-at-location and the
236 * node-to-be-inserted, and store the new int_node into the location.
238 static int note_tree_insert(struct notes_tree
*t
, struct int_node
*tree
,
239 unsigned char n
, struct leaf_node
*entry
, unsigned char type
,
240 combine_notes_fn combine_notes
)
242 struct int_node
*new_node
;
244 void **p
= note_tree_search(t
, &tree
, &n
, entry
->key_sha1
);
247 assert(GET_PTR_TYPE(entry
) == 0); /* no type bits set */
248 l
= (struct leaf_node
*) CLR_PTR_TYPE(*p
);
249 switch (GET_PTR_TYPE(*p
)) {
252 if (is_null_sha1(entry
->val_sha1
))
255 *p
= SET_PTR_TYPE(entry
, type
);
260 if (!hashcmp(l
->key_sha1
, entry
->key_sha1
)) {
261 /* skip concatenation if l == entry */
262 if (!hashcmp(l
->val_sha1
, entry
->val_sha1
))
265 ret
= combine_notes(l
->val_sha1
,
267 if (!ret
&& is_null_sha1(l
->val_sha1
))
268 note_tree_remove(t
, tree
, n
, entry
);
273 case PTR_TYPE_SUBTREE
:
274 if (!SUBTREE_SHA1_PREFIXCMP(l
->key_sha1
,
277 load_subtree(t
, entry
, tree
, n
);
284 case PTR_TYPE_SUBTREE
:
285 if (!SUBTREE_SHA1_PREFIXCMP(entry
->key_sha1
, l
->key_sha1
)) {
286 /* unpack 'l' and restart insert */
288 load_subtree(t
, l
, tree
, n
);
290 return note_tree_insert(t
, tree
, n
, entry
, type
,
296 /* non-matching leaf_node */
297 assert(GET_PTR_TYPE(*p
) == PTR_TYPE_NOTE
||
298 GET_PTR_TYPE(*p
) == PTR_TYPE_SUBTREE
);
299 if (is_null_sha1(entry
->val_sha1
)) { /* skip insertion of empty note */
303 new_node
= (struct int_node
*) xcalloc(sizeof(struct int_node
), 1);
304 ret
= note_tree_insert(t
, new_node
, n
+ 1, l
, GET_PTR_TYPE(*p
),
308 *p
= SET_PTR_TYPE(new_node
, PTR_TYPE_INTERNAL
);
309 return note_tree_insert(t
, new_node
, n
+ 1, entry
, type
, combine_notes
);
312 /* Free the entire notes data contained in the given tree */
313 static void note_tree_free(struct int_node
*tree
)
316 for (i
= 0; i
< 16; i
++) {
317 void *p
= tree
->a
[i
];
318 switch (GET_PTR_TYPE(p
)) {
319 case PTR_TYPE_INTERNAL
:
320 note_tree_free(CLR_PTR_TYPE(p
));
323 case PTR_TYPE_SUBTREE
:
324 free(CLR_PTR_TYPE(p
));
330 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
331 * - hex - Partial SHA1 segment in ASCII hex format
332 * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40
333 * - sha1 - Partial SHA1 value is written here
334 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
335 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
336 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
337 * Pads sha1 with NULs up to sha1_len (not included in returned length).
339 static int get_sha1_hex_segment(const char *hex
, unsigned int hex_len
,
340 unsigned char *sha1
, unsigned int sha1_len
)
342 unsigned int i
, len
= hex_len
>> 1;
343 if (hex_len
% 2 != 0 || len
> sha1_len
)
345 for (i
= 0; i
< len
; i
++) {
346 unsigned int val
= (hexval(hex
[0]) << 4) | hexval(hex
[1]);
352 for (; i
< sha1_len
; i
++)
357 static int non_note_cmp(const struct non_note
*a
, const struct non_note
*b
)
359 return strcmp(a
->path
, b
->path
);
362 static void add_non_note(struct notes_tree
*t
, const char *path
,
363 unsigned int mode
, const unsigned char *sha1
)
365 struct non_note
*p
= t
->prev_non_note
, *n
;
366 n
= (struct non_note
*) xmalloc(sizeof(struct non_note
));
368 n
->path
= xstrdup(path
);
370 hashcpy(n
->sha1
, sha1
);
371 t
->prev_non_note
= n
;
373 if (!t
->first_non_note
) {
374 t
->first_non_note
= n
;
378 if (non_note_cmp(p
, n
) < 0)
380 else if (non_note_cmp(t
->first_non_note
, n
) <= 0)
381 p
= t
->first_non_note
;
383 /* n sorts before t->first_non_note */
384 n
->next
= t
->first_non_note
;
385 t
->first_non_note
= n
;
389 /* n sorts equal or after p */
390 while (p
->next
&& non_note_cmp(p
->next
, n
) <= 0)
393 if (non_note_cmp(p
, n
) == 0) { /* n ~= p; overwrite p with n */
394 assert(strcmp(p
->path
, n
->path
) == 0);
396 hashcpy(p
->sha1
, n
->sha1
);
398 t
->prev_non_note
= p
;
402 /* n sorts between p and p->next */
407 static void load_subtree(struct notes_tree
*t
, struct leaf_node
*subtree
,
408 struct int_node
*node
, unsigned int n
)
410 unsigned char object_sha1
[20];
411 unsigned int prefix_len
;
413 struct tree_desc desc
;
414 struct name_entry entry
;
419 buf
= fill_tree_descriptor(&desc
, subtree
->val_sha1
);
421 die("Could not read %s for notes-index",
422 sha1_to_hex(subtree
->val_sha1
));
424 prefix_len
= subtree
->key_sha1
[19];
425 assert(prefix_len
* 2 >= n
);
426 memcpy(object_sha1
, subtree
->key_sha1
, prefix_len
);
427 while (tree_entry(&desc
, &entry
)) {
428 path_len
= strlen(entry
.path
);
429 len
= get_sha1_hex_segment(entry
.path
, path_len
,
430 object_sha1
+ prefix_len
, 20 - prefix_len
);
432 goto handle_non_note
; /* entry.path is not a SHA1 */
436 * If object SHA1 is complete (len == 20), assume note object
437 * If object SHA1 is incomplete (len < 20), and current
438 * component consists of 2 hex chars, assume note subtree
441 type
= PTR_TYPE_NOTE
;
442 l
= (struct leaf_node
*)
443 xcalloc(sizeof(struct leaf_node
), 1);
444 hashcpy(l
->key_sha1
, object_sha1
);
445 hashcpy(l
->val_sha1
, entry
.sha1
);
447 if (!S_ISDIR(entry
.mode
) || path_len
!= 2)
448 goto handle_non_note
; /* not subtree */
449 l
->key_sha1
[19] = (unsigned char) len
;
450 type
= PTR_TYPE_SUBTREE
;
452 if (note_tree_insert(t
, node
, n
, l
, type
,
453 combine_notes_concatenate
))
454 die("Failed to load %s %s into notes tree "
456 type
== PTR_TYPE_NOTE
? "note" : "subtree",
457 sha1_to_hex(l
->key_sha1
), t
->ref
);
463 * Determine full path for this non-note entry:
464 * The filename is already found in entry.path, but the
465 * directory part of the path must be deduced from the subtree
466 * containing this entry. We assume here that the overall notes
467 * tree follows a strict byte-based progressive fanout
468 * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
469 * e.g. 4/36 fanout). This means that if a non-note is found at
470 * path "dead/beef", the following code will register it as
471 * being found on "de/ad/beef".
472 * On the other hand, if you use such non-obvious non-note
473 * paths in the middle of a notes tree, you deserve what's
474 * coming to you ;). Note that for non-notes that are not
475 * SHA1-like at the top level, there will be no problems.
477 * To conclude, it is strongly advised to make sure non-notes
478 * have at least one non-hex character in the top-level path
482 char non_note_path
[PATH_MAX
];
483 char *p
= non_note_path
;
484 const char *q
= sha1_to_hex(subtree
->key_sha1
);
486 for (i
= 0; i
< prefix_len
; i
++) {
491 strcpy(p
, entry
.path
);
492 add_non_note(t
, non_note_path
, entry
.mode
, entry
.sha1
);
499 * Determine optimal on-disk fanout for this part of the notes tree
501 * Given a (sub)tree and the level in the internal tree structure, determine
502 * whether or not the given existing fanout should be expanded for this
505 * Values of the 'fanout' variable:
506 * - 0: No fanout (all notes are stored directly in the root notes tree)
509 * - 3: 2/2/2/34 fanout
512 static unsigned char determine_fanout(struct int_node
*tree
, unsigned char n
,
513 unsigned char fanout
)
516 * The following is a simple heuristic that works well in practice:
517 * For each even-numbered 16-tree level (remember that each on-disk
518 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
519 * entries at that tree level. If all of them are either int_nodes or
520 * subtree entries, then there are likely plenty of notes below this
521 * level, so we return an incremented fanout.
524 if ((n
% 2) || (n
> 2 * fanout
))
526 for (i
= 0; i
< 16; i
++) {
527 switch (GET_PTR_TYPE(tree
->a
[i
])) {
528 case PTR_TYPE_SUBTREE
:
529 case PTR_TYPE_INTERNAL
:
538 static void construct_path_with_fanout(const unsigned char *sha1
,
539 unsigned char fanout
, char *path
)
541 unsigned int i
= 0, j
= 0;
542 const char *hex_sha1
= sha1_to_hex(sha1
);
545 path
[i
++] = hex_sha1
[j
++];
546 path
[i
++] = hex_sha1
[j
++];
550 strcpy(path
+ i
, hex_sha1
+ j
);
553 static int for_each_note_helper(struct notes_tree
*t
, struct int_node
*tree
,
554 unsigned char n
, unsigned char fanout
, int flags
,
555 each_note_fn fn
, void *cb_data
)
561 static char path
[40 + 19 + 1]; /* hex SHA1 + 19 * '/' + NUL */
563 fanout
= determine_fanout(tree
, n
, fanout
);
564 for (i
= 0; i
< 16; i
++) {
567 switch (GET_PTR_TYPE(p
)) {
568 case PTR_TYPE_INTERNAL
:
569 /* recurse into int_node */
570 ret
= for_each_note_helper(t
, CLR_PTR_TYPE(p
), n
+ 1,
571 fanout
, flags
, fn
, cb_data
);
573 case PTR_TYPE_SUBTREE
:
574 l
= (struct leaf_node
*) CLR_PTR_TYPE(p
);
576 * Subtree entries in the note tree represent parts of
577 * the note tree that have not yet been explored. There
578 * is a direct relationship between subtree entries at
579 * level 'n' in the tree, and the 'fanout' variable:
580 * Subtree entries at level 'n <= 2 * fanout' should be
581 * preserved, since they correspond exactly to a fanout
582 * directory in the on-disk structure. However, subtree
583 * entries at level 'n > 2 * fanout' should NOT be
584 * preserved, but rather consolidated into the above
585 * notes tree level. We achieve this by unconditionally
586 * unpacking subtree entries that exist below the
587 * threshold level at 'n = 2 * fanout'.
589 if (n
<= 2 * fanout
&&
590 flags
& FOR_EACH_NOTE_YIELD_SUBTREES
) {
591 /* invoke callback with subtree */
592 unsigned int path_len
=
593 l
->key_sha1
[19] * 2 + fanout
;
594 assert(path_len
< 40 + 19);
595 construct_path_with_fanout(l
->key_sha1
, fanout
,
597 /* Create trailing slash, if needed */
598 if (path
[path_len
- 1] != '/')
599 path
[path_len
++] = '/';
600 path
[path_len
] = '\0';
601 ret
= fn(l
->key_sha1
, l
->val_sha1
, path
,
604 if (n
> fanout
* 2 ||
605 !(flags
& FOR_EACH_NOTE_DONT_UNPACK_SUBTREES
)) {
606 /* unpack subtree and resume traversal */
608 load_subtree(t
, l
, tree
, n
);
614 l
= (struct leaf_node
*) CLR_PTR_TYPE(p
);
615 construct_path_with_fanout(l
->key_sha1
, fanout
, path
);
616 ret
= fn(l
->key_sha1
, l
->val_sha1
, path
, cb_data
);
625 struct tree_write_stack
{
626 struct tree_write_stack
*next
;
628 char path
[2]; /* path to subtree in next, if any */
631 static inline int matches_tree_write_stack(struct tree_write_stack
*tws
,
632 const char *full_path
)
634 return full_path
[0] == tws
->path
[0] &&
635 full_path
[1] == tws
->path
[1] &&
639 static void write_tree_entry(struct strbuf
*buf
, unsigned int mode
,
640 const char *path
, unsigned int path_len
, const
643 strbuf_addf(buf
, "%o %.*s%c", mode
, path_len
, path
, '\0');
644 strbuf_add(buf
, sha1
, 20);
647 static void tree_write_stack_init_subtree(struct tree_write_stack
*tws
,
650 struct tree_write_stack
*n
;
652 assert(tws
->path
[0] == '\0' && tws
->path
[1] == '\0');
653 n
= (struct tree_write_stack
*)
654 xmalloc(sizeof(struct tree_write_stack
));
656 strbuf_init(&n
->buf
, 256 * (32 + 40)); /* assume 256 entries per tree */
657 n
->path
[0] = n
->path
[1] = '\0';
659 tws
->path
[0] = path
[0];
660 tws
->path
[1] = path
[1];
663 static int tree_write_stack_finish_subtree(struct tree_write_stack
*tws
)
666 struct tree_write_stack
*n
= tws
->next
;
669 ret
= tree_write_stack_finish_subtree(n
);
672 ret
= write_sha1_file(n
->buf
.buf
, n
->buf
.len
, tree_type
, s
);
675 strbuf_release(&n
->buf
);
678 write_tree_entry(&tws
->buf
, 040000, tws
->path
, 2, s
);
679 tws
->path
[0] = tws
->path
[1] = '\0';
684 static int write_each_note_helper(struct tree_write_stack
*tws
,
685 const char *path
, unsigned int mode
,
686 const unsigned char *sha1
)
688 size_t path_len
= strlen(path
);
692 /* Determine common part of tree write stack */
693 while (tws
&& 3 * n
< path_len
&&
694 matches_tree_write_stack(tws
, path
+ 3 * n
)) {
699 /* tws point to last matching tree_write_stack entry */
700 ret
= tree_write_stack_finish_subtree(tws
);
704 /* Start subtrees needed to satisfy path */
705 while (3 * n
+ 2 < path_len
&& path
[3 * n
+ 2] == '/') {
706 tree_write_stack_init_subtree(tws
, path
+ 3 * n
);
711 /* There should be no more directory components in the given path */
712 assert(memchr(path
+ 3 * n
, '/', path_len
- (3 * n
)) == NULL
);
714 /* Finally add given entry to the current tree object */
715 write_tree_entry(&tws
->buf
, mode
, path
+ 3 * n
, path_len
- (3 * n
),
721 struct write_each_note_data
{
722 struct tree_write_stack
*root
;
723 struct non_note
*next_non_note
;
726 static int write_each_non_note_until(const char *note_path
,
727 struct write_each_note_data
*d
)
729 struct non_note
*n
= d
->next_non_note
;
731 while (n
&& (!note_path
|| (cmp
= strcmp(n
->path
, note_path
)) <= 0)) {
732 if (note_path
&& cmp
== 0)
733 ; /* do nothing, prefer note to non-note */
735 ret
= write_each_note_helper(d
->root
, n
->path
, n
->mode
,
742 d
->next_non_note
= n
;
746 static int write_each_note(const unsigned char *object_sha1
,
747 const unsigned char *note_sha1
, char *note_path
,
750 struct write_each_note_data
*d
=
751 (struct write_each_note_data
*) cb_data
;
752 size_t note_path_len
= strlen(note_path
);
753 unsigned int mode
= 0100644;
755 if (note_path
[note_path_len
- 1] == '/') {
758 note_path
[note_path_len
] = '\0';
761 assert(note_path_len
<= 40 + 19);
763 /* Weave non-note entries into note entries */
764 return write_each_non_note_until(note_path
, d
) ||
765 write_each_note_helper(d
->root
, note_path
, mode
, note_sha1
);
768 struct note_delete_list
{
769 struct note_delete_list
*next
;
770 const unsigned char *sha1
;
773 static int prune_notes_helper(const unsigned char *object_sha1
,
774 const unsigned char *note_sha1
, char *note_path
,
777 struct note_delete_list
**l
= (struct note_delete_list
**) cb_data
;
778 struct note_delete_list
*n
;
780 if (has_sha1_file(object_sha1
))
781 return 0; /* nothing to do for this note */
783 /* failed to find object => prune this note */
784 n
= (struct note_delete_list
*) xmalloc(sizeof(*n
));
786 n
->sha1
= object_sha1
;
791 int combine_notes_concatenate(unsigned char *cur_sha1
,
792 const unsigned char *new_sha1
)
794 char *cur_msg
= NULL
, *new_msg
= NULL
, *buf
;
795 unsigned long cur_len
, new_len
, buf_len
;
796 enum object_type cur_type
, new_type
;
799 /* read in both note blob objects */
800 if (!is_null_sha1(new_sha1
))
801 new_msg
= read_sha1_file(new_sha1
, &new_type
, &new_len
);
802 if (!new_msg
|| !new_len
|| new_type
!= OBJ_BLOB
) {
806 if (!is_null_sha1(cur_sha1
))
807 cur_msg
= read_sha1_file(cur_sha1
, &cur_type
, &cur_len
);
808 if (!cur_msg
|| !cur_len
|| cur_type
!= OBJ_BLOB
) {
811 hashcpy(cur_sha1
, new_sha1
);
815 /* we will separate the notes by a newline anyway */
816 if (cur_msg
[cur_len
- 1] == '\n')
819 /* concatenate cur_msg and new_msg into buf */
820 buf_len
= cur_len
+ 1 + new_len
;
821 buf
= (char *) xmalloc(buf_len
);
822 memcpy(buf
, cur_msg
, cur_len
);
824 memcpy(buf
+ cur_len
+ 1, new_msg
, new_len
);
828 /* create a new blob object from buf */
829 ret
= write_sha1_file(buf
, buf_len
, blob_type
, cur_sha1
);
834 int combine_notes_overwrite(unsigned char *cur_sha1
,
835 const unsigned char *new_sha1
)
837 hashcpy(cur_sha1
, new_sha1
);
841 int combine_notes_ignore(unsigned char *cur_sha1
,
842 const unsigned char *new_sha1
)
847 static int string_list_add_one_ref(const char *path
, const unsigned char *sha1
,
850 struct string_list
*refs
= cb
;
851 if (!unsorted_string_list_has_string(refs
, path
))
852 string_list_append(refs
, path
);
856 void string_list_add_refs_by_glob(struct string_list
*list
, const char *glob
)
858 if (has_glob_specials(glob
)) {
859 for_each_glob_ref(string_list_add_one_ref
, glob
, list
);
861 unsigned char sha1
[20];
862 if (get_sha1(glob
, sha1
))
863 warning("notes ref %s is invalid", glob
);
864 if (!unsorted_string_list_has_string(list
, glob
))
865 string_list_append(list
, glob
);
869 void string_list_add_refs_from_colon_sep(struct string_list
*list
,
872 struct strbuf globbuf
= STRBUF_INIT
;
873 struct strbuf
**split
;
876 strbuf_addstr(&globbuf
, globs
);
877 split
= strbuf_split(&globbuf
, ':');
879 for (i
= 0; split
[i
]; i
++) {
882 if (split
[i
]->buf
[split
[i
]->len
-1] == ':')
883 strbuf_setlen(split
[i
], split
[i
]->len
-1);
884 string_list_add_refs_by_glob(list
, split
[i
]->buf
);
887 strbuf_list_free(split
);
888 strbuf_release(&globbuf
);
891 static int string_list_add_refs_from_list(struct string_list_item
*item
,
894 struct string_list
*list
= cb
;
895 string_list_add_refs_by_glob(list
, item
->string
);
899 static int notes_display_config(const char *k
, const char *v
, void *cb
)
903 if (*load_refs
&& !strcmp(k
, "notes.displayref")) {
905 config_error_nonbool(k
);
906 string_list_add_refs_by_glob(&display_notes_refs
, v
);
912 const char *default_notes_ref(void)
914 const char *notes_ref
= NULL
;
916 notes_ref
= getenv(GIT_NOTES_REF_ENVIRONMENT
);
918 notes_ref
= notes_ref_name
; /* value of core.notesRef config */
920 notes_ref
= GIT_NOTES_DEFAULT_REF
;
924 void init_notes(struct notes_tree
*t
, const char *notes_ref
,
925 combine_notes_fn combine_notes
, int flags
)
927 unsigned char sha1
[20], object_sha1
[20];
929 struct leaf_node root_tree
;
932 t
= &default_notes_tree
;
933 assert(!t
->initialized
);
936 notes_ref
= default_notes_ref();
939 combine_notes
= combine_notes_concatenate
;
941 t
->root
= (struct int_node
*) xcalloc(sizeof(struct int_node
), 1);
942 t
->first_non_note
= NULL
;
943 t
->prev_non_note
= NULL
;
944 t
->ref
= notes_ref
? xstrdup(notes_ref
) : NULL
;
945 t
->combine_notes
= combine_notes
;
949 if (flags
& NOTES_INIT_EMPTY
|| !notes_ref
||
950 read_ref(notes_ref
, object_sha1
))
952 if (get_tree_entry(object_sha1
, "", sha1
, &mode
))
953 die("Failed to read notes tree referenced by %s (%s)",
954 notes_ref
, sha1_to_hex(object_sha1
));
956 hashclr(root_tree
.key_sha1
);
957 hashcpy(root_tree
.val_sha1
, sha1
);
958 load_subtree(t
, &root_tree
, t
->root
, 0);
961 struct load_notes_cb_data
{
963 struct notes_tree
**trees
;
966 static int load_one_display_note_ref(struct string_list_item
*item
,
969 struct load_notes_cb_data
*c
= cb_data
;
970 struct notes_tree
*t
= xcalloc(1, sizeof(struct notes_tree
));
971 init_notes(t
, item
->string
, combine_notes_ignore
, 0);
972 c
->trees
[c
->counter
++] = t
;
976 struct notes_tree
**load_notes_trees(struct string_list
*refs
)
978 struct notes_tree
**trees
;
979 struct load_notes_cb_data cb_data
;
980 trees
= xmalloc((refs
->nr
+1) * sizeof(struct notes_tree
*));
982 cb_data
.trees
= trees
;
983 for_each_string_list(refs
, load_one_display_note_ref
, &cb_data
);
984 trees
[cb_data
.counter
] = NULL
;
988 void init_display_notes(struct display_notes_opt
*opt
)
990 char *display_ref_env
;
991 int load_config_refs
= 0;
992 display_notes_refs
.strdup_strings
= 1;
994 assert(!display_notes_trees
);
996 if (!opt
|| !opt
->suppress_default_notes
) {
997 string_list_append(&display_notes_refs
, default_notes_ref());
998 display_ref_env
= getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT
);
999 if (display_ref_env
) {
1000 string_list_add_refs_from_colon_sep(&display_notes_refs
,
1002 load_config_refs
= 0;
1004 load_config_refs
= 1;
1007 git_config(notes_display_config
, &load_config_refs
);
1009 if (opt
&& opt
->extra_notes_refs
)
1010 for_each_string_list(opt
->extra_notes_refs
,
1011 string_list_add_refs_from_list
,
1012 &display_notes_refs
);
1014 display_notes_trees
= load_notes_trees(&display_notes_refs
);
1015 string_list_clear(&display_notes_refs
, 0);
1018 int add_note(struct notes_tree
*t
, const unsigned char *object_sha1
,
1019 const unsigned char *note_sha1
, combine_notes_fn combine_notes
)
1021 struct leaf_node
*l
;
1024 t
= &default_notes_tree
;
1025 assert(t
->initialized
);
1028 combine_notes
= t
->combine_notes
;
1029 l
= (struct leaf_node
*) xmalloc(sizeof(struct leaf_node
));
1030 hashcpy(l
->key_sha1
, object_sha1
);
1031 hashcpy(l
->val_sha1
, note_sha1
);
1032 return note_tree_insert(t
, t
->root
, 0, l
, PTR_TYPE_NOTE
, combine_notes
);
1035 void remove_note(struct notes_tree
*t
, const unsigned char *object_sha1
)
1040 t
= &default_notes_tree
;
1041 assert(t
->initialized
);
1043 hashcpy(l
.key_sha1
, object_sha1
);
1044 hashclr(l
.val_sha1
);
1045 note_tree_remove(t
, t
->root
, 0, &l
);
1048 const unsigned char *get_note(struct notes_tree
*t
,
1049 const unsigned char *object_sha1
)
1051 struct leaf_node
*found
;
1054 t
= &default_notes_tree
;
1055 assert(t
->initialized
);
1056 found
= note_tree_find(t
, t
->root
, 0, object_sha1
);
1057 return found
? found
->val_sha1
: NULL
;
1060 int for_each_note(struct notes_tree
*t
, int flags
, each_note_fn fn
,
1064 t
= &default_notes_tree
;
1065 assert(t
->initialized
);
1066 return for_each_note_helper(t
, t
->root
, 0, 0, flags
, fn
, cb_data
);
1069 int write_notes_tree(struct notes_tree
*t
, unsigned char *result
)
1071 struct tree_write_stack root
;
1072 struct write_each_note_data cb_data
;
1076 t
= &default_notes_tree
;
1077 assert(t
->initialized
);
1079 /* Prepare for traversal of current notes tree */
1080 root
.next
= NULL
; /* last forward entry in list is grounded */
1081 strbuf_init(&root
.buf
, 256 * (32 + 40)); /* assume 256 entries */
1082 root
.path
[0] = root
.path
[1] = '\0';
1083 cb_data
.root
= &root
;
1084 cb_data
.next_non_note
= t
->first_non_note
;
1086 /* Write tree objects representing current notes tree */
1087 ret
= for_each_note(t
, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES
|
1088 FOR_EACH_NOTE_YIELD_SUBTREES
,
1089 write_each_note
, &cb_data
) ||
1090 write_each_non_note_until(NULL
, &cb_data
) ||
1091 tree_write_stack_finish_subtree(&root
) ||
1092 write_sha1_file(root
.buf
.buf
, root
.buf
.len
, tree_type
, result
);
1093 strbuf_release(&root
.buf
);
1097 void prune_notes(struct notes_tree
*t
, int flags
)
1099 struct note_delete_list
*l
= NULL
;
1102 t
= &default_notes_tree
;
1103 assert(t
->initialized
);
1105 for_each_note(t
, 0, prune_notes_helper
, &l
);
1108 if (flags
& NOTES_PRUNE_VERBOSE
)
1109 printf("%s\n", sha1_to_hex(l
->sha1
));
1110 if (!(flags
& NOTES_PRUNE_DRYRUN
))
1111 remove_note(t
, l
->sha1
);
1116 void free_notes(struct notes_tree
*t
)
1119 t
= &default_notes_tree
;
1121 note_tree_free(t
->root
);
1123 while (t
->first_non_note
) {
1124 t
->prev_non_note
= t
->first_non_note
->next
;
1125 free(t
->first_non_note
->path
);
1126 free(t
->first_non_note
);
1127 t
->first_non_note
= t
->prev_non_note
;
1130 memset(t
, 0, sizeof(struct notes_tree
));
1133 void format_note(struct notes_tree
*t
, const unsigned char *object_sha1
,
1134 struct strbuf
*sb
, const char *output_encoding
, int flags
)
1136 static const char utf8
[] = "utf-8";
1137 const unsigned char *sha1
;
1139 unsigned long linelen
, msglen
;
1140 enum object_type type
;
1143 t
= &default_notes_tree
;
1144 if (!t
->initialized
)
1145 init_notes(t
, NULL
, NULL
, 0);
1147 sha1
= get_note(t
, object_sha1
);
1151 if (!(msg
= read_sha1_file(sha1
, &type
, &msglen
)) || !msglen
||
1157 if (output_encoding
&& *output_encoding
&&
1158 strcmp(utf8
, output_encoding
)) {
1159 char *reencoded
= reencode_string(msg
, output_encoding
, utf8
);
1163 msglen
= strlen(msg
);
1167 /* we will end the annotation by a newline anyway */
1168 if (msglen
&& msg
[msglen
- 1] == '\n')
1171 if (flags
& NOTES_SHOW_HEADER
) {
1172 const char *ref
= t
->ref
;
1173 if (!ref
|| !strcmp(ref
, GIT_NOTES_DEFAULT_REF
)) {
1174 strbuf_addstr(sb
, "\nNotes:\n");
1176 if (!prefixcmp(ref
, "refs/"))
1178 if (!prefixcmp(ref
, "notes/"))
1180 strbuf_addf(sb
, "\nNotes (%s):\n", ref
);
1184 for (msg_p
= msg
; msg_p
< msg
+ msglen
; msg_p
+= linelen
+ 1) {
1185 linelen
= strchrnul(msg_p
, '\n') - msg_p
;
1187 if (flags
& NOTES_INDENT
)
1188 strbuf_addstr(sb
, " ");
1189 strbuf_add(sb
, msg_p
, linelen
);
1190 strbuf_addch(sb
, '\n');
1196 void format_display_notes(const unsigned char *object_sha1
,
1197 struct strbuf
*sb
, const char *output_encoding
, int flags
)
1200 assert(display_notes_trees
);
1201 for (i
= 0; display_notes_trees
[i
]; i
++)
1202 format_note(display_notes_trees
[i
], object_sha1
, sb
,
1203 output_encoding
, flags
);
1206 int copy_note(struct notes_tree
*t
,
1207 const unsigned char *from_obj
, const unsigned char *to_obj
,
1208 int force
, combine_notes_fn combine_notes
)
1210 const unsigned char *note
= get_note(t
, from_obj
);
1211 const unsigned char *existing_note
= get_note(t
, to_obj
);
1213 if (!force
&& existing_note
)
1217 return add_note(t
, to_obj
, note
, combine_notes
);
1218 else if (existing_note
)
1219 return add_note(t
, to_obj
, null_sha1
, combine_notes
);