2 * LibXDiff by Davide Libenzi ( File Differential Library )
3 * Copyright (C) 2003 Davide Libenzi
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, see
17 * <http://www.gnu.org/licenses/>.
19 * Davide Libenzi <davidel@xmailserver.org>
25 #define XDL_MAX_COST_MIN 256
26 #define XDL_HEUR_MIN_COST 256
27 #define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
28 #define XDL_SNAKE_CNT 20
31 typedef struct s_xdpsplit
{
37 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
38 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
39 * the forward diagonal starting from (off1, off2) and the backward diagonal
40 * starting from (lim1, lim2). If the K values on the same diagonal crosses
41 * returns the furthest point of reach. We might encounter expensive edge cases
42 * using this algorithm, so a little bit of heuristic is needed to cut the
43 * search and to return a suboptimal point.
45 static long xdl_split(unsigned long const *ha1
, long off1
, long lim1
,
46 unsigned long const *ha2
, long off2
, long lim2
,
47 long *kvdf
, long *kvdb
, int need_min
, xdpsplit_t
*spl
,
49 long dmin
= off1
- lim2
, dmax
= lim1
- off2
;
50 long fmid
= off1
- off2
, bmid
= lim1
- lim2
;
51 long odd
= (fmid
- bmid
) & 1;
52 long fmin
= fmid
, fmax
= fmid
;
53 long bmin
= bmid
, bmax
= bmid
;
54 long ec
, d
, i1
, i2
, prev1
, best
, dd
, v
, k
;
57 * Set initial diagonal values for both forward and backward path.
66 * We need to extend the diagonal "domain" by one. If the next
67 * values exits the box boundaries we need to change it in the
68 * opposite direction because (max - min) must be a power of
71 * Also we initialize the external K value to -1 so that we can
72 * avoid extra conditions in the check inside the core loop.
75 kvdf
[--fmin
- 1] = -1;
79 kvdf
[++fmax
+ 1] = -1;
83 for (d
= fmax
; d
>= fmin
; d
-= 2) {
84 if (kvdf
[d
- 1] >= kvdf
[d
+ 1])
90 for (; i1
< lim1
&& i2
< lim2
&& ha1
[i1
] == ha2
[i2
]; i1
++, i2
++);
91 if (i1
- prev1
> xenv
->snake_cnt
)
94 if (odd
&& bmin
<= d
&& d
<= bmax
&& kvdb
[d
] <= i1
) {
97 spl
->min_lo
= spl
->min_hi
= 1;
103 * We need to extend the diagonal "domain" by one. If the next
104 * values exits the box boundaries we need to change it in the
105 * opposite direction because (max - min) must be a power of
108 * Also we initialize the external K value to -1 so that we can
109 * avoid extra conditions in the check inside the core loop.
112 kvdb
[--bmin
- 1] = XDL_LINE_MAX
;
116 kvdb
[++bmax
+ 1] = XDL_LINE_MAX
;
120 for (d
= bmax
; d
>= bmin
; d
-= 2) {
121 if (kvdb
[d
- 1] < kvdb
[d
+ 1])
124 i1
= kvdb
[d
+ 1] - 1;
127 for (; i1
> off1
&& i2
> off2
&& ha1
[i1
- 1] == ha2
[i2
- 1]; i1
--, i2
--);
128 if (prev1
- i1
> xenv
->snake_cnt
)
131 if (!odd
&& fmin
<= d
&& d
<= fmax
&& i1
<= kvdf
[d
]) {
134 spl
->min_lo
= spl
->min_hi
= 1;
143 * If the edit cost is above the heuristic trigger and if
144 * we got a good snake, we sample current diagonals to see
145 * if some of them have reached an "interesting" path. Our
146 * measure is a function of the distance from the diagonal
147 * corner (i1 + i2) penalized with the distance from the
148 * mid diagonal itself. If this value is above the current
149 * edit cost times a magic factor (XDL_K_HEUR) we consider
152 if (got_snake
&& ec
> xenv
->heur_min
) {
153 for (best
= 0, d
= fmax
; d
>= fmin
; d
-= 2) {
154 dd
= d
> fmid
? d
- fmid
: fmid
- d
;
157 v
= (i1
- off1
) + (i2
- off2
) - dd
;
159 if (v
> XDL_K_HEUR
* ec
&& v
> best
&&
160 off1
+ xenv
->snake_cnt
<= i1
&& i1
< lim1
&&
161 off2
+ xenv
->snake_cnt
<= i2
&& i2
< lim2
) {
162 for (k
= 1; ha1
[i1
- k
] == ha2
[i2
- k
]; k
++)
163 if (k
== xenv
->snake_cnt
) {
177 for (best
= 0, d
= bmax
; d
>= bmin
; d
-= 2) {
178 dd
= d
> bmid
? d
- bmid
: bmid
- d
;
181 v
= (lim1
- i1
) + (lim2
- i2
) - dd
;
183 if (v
> XDL_K_HEUR
* ec
&& v
> best
&&
184 off1
< i1
&& i1
<= lim1
- xenv
->snake_cnt
&&
185 off2
< i2
&& i2
<= lim2
- xenv
->snake_cnt
) {
186 for (k
= 0; ha1
[i1
+ k
] == ha2
[i2
+ k
]; k
++)
187 if (k
== xenv
->snake_cnt
- 1) {
203 * Enough is enough. We spent too much time here and now we
204 * collect the furthest reaching path using the (i1 + i2)
207 if (ec
>= xenv
->mxcost
) {
208 long fbest
, fbest1
, bbest
, bbest1
;
211 for (d
= fmax
; d
>= fmin
; d
-= 2) {
212 i1
= XDL_MIN(kvdf
[d
], lim1
);
215 i1
= lim2
+ d
, i2
= lim2
;
216 if (fbest
< i1
+ i2
) {
222 bbest
= bbest1
= XDL_LINE_MAX
;
223 for (d
= bmax
; d
>= bmin
; d
-= 2) {
224 i1
= XDL_MAX(off1
, kvdb
[d
]);
227 i1
= off2
+ d
, i2
= off2
;
228 if (i1
+ i2
< bbest
) {
234 if ((lim1
+ lim2
) - bbest
< fbest
- (off1
+ off2
)) {
236 spl
->i2
= fbest
- fbest1
;
241 spl
->i2
= bbest
- bbest1
;
252 * Rule: "Divide et Impera" (divide & conquer). Recursively split the box in
253 * sub-boxes by calling the box splitting function. Note that the real job
254 * (marking changed lines) is done in the two boundary reaching checks.
256 int xdl_recs_cmp(diffdata_t
*dd1
, long off1
, long lim1
,
257 diffdata_t
*dd2
, long off2
, long lim2
,
258 long *kvdf
, long *kvdb
, int need_min
, xdalgoenv_t
*xenv
) {
259 unsigned long const *ha1
= dd1
->ha
, *ha2
= dd2
->ha
;
262 * Shrink the box by walking through each diagonal snake (SW and NE).
264 for (; off1
< lim1
&& off2
< lim2
&& ha1
[off1
] == ha2
[off2
]; off1
++, off2
++);
265 for (; off1
< lim1
&& off2
< lim2
&& ha1
[lim1
- 1] == ha2
[lim2
- 1]; lim1
--, lim2
--);
268 * If one dimension is empty, then all records on the other one must
269 * be obviously changed.
272 char *rchg2
= dd2
->rchg
;
273 long *rindex2
= dd2
->rindex
;
275 for (; off2
< lim2
; off2
++)
276 rchg2
[rindex2
[off2
]] = 1;
277 } else if (off2
== lim2
) {
278 char *rchg1
= dd1
->rchg
;
279 long *rindex1
= dd1
->rindex
;
281 for (; off1
< lim1
; off1
++)
282 rchg1
[rindex1
[off1
]] = 1;
290 if (xdl_split(ha1
, off1
, lim1
, ha2
, off2
, lim2
, kvdf
, kvdb
,
291 need_min
, &spl
, xenv
) < 0) {
299 if (xdl_recs_cmp(dd1
, off1
, spl
.i1
, dd2
, off2
, spl
.i2
,
300 kvdf
, kvdb
, spl
.min_lo
, xenv
) < 0 ||
301 xdl_recs_cmp(dd1
, spl
.i1
, lim1
, dd2
, spl
.i2
, lim2
,
302 kvdf
, kvdb
, spl
.min_hi
, xenv
) < 0) {
312 int xdl_do_diff(mmfile_t
*mf1
, mmfile_t
*mf2
, xpparam_t
const *xpp
,
315 long *kvd
, *kvdf
, *kvdb
;
320 if (xdl_prepare_env(mf1
, mf2
, xpp
, xe
) < 0)
323 if (XDF_DIFF_ALG(xpp
->flags
) == XDF_PATIENCE_DIFF
) {
324 res
= xdl_do_patience_diff(mf1
, mf2
, xpp
, xe
);
328 if (XDF_DIFF_ALG(xpp
->flags
) == XDF_HISTOGRAM_DIFF
) {
329 res
= xdl_do_histogram_diff(mf1
, mf2
, xpp
, xe
);
334 * Allocate and setup K vectors to be used by the differential
337 * One is to store the forward path and one to store the backward path.
339 ndiags
= xe
->xdf1
.nreff
+ xe
->xdf2
.nreff
+ 3;
340 if (!(kvd
= (long *) xdl_malloc((2 * ndiags
+ 2) * sizeof(long)))) {
346 kvdb
= kvdf
+ ndiags
;
347 kvdf
+= xe
->xdf2
.nreff
+ 1;
348 kvdb
+= xe
->xdf2
.nreff
+ 1;
350 xenv
.mxcost
= xdl_bogosqrt(ndiags
);
351 if (xenv
.mxcost
< XDL_MAX_COST_MIN
)
352 xenv
.mxcost
= XDL_MAX_COST_MIN
;
353 xenv
.snake_cnt
= XDL_SNAKE_CNT
;
354 xenv
.heur_min
= XDL_HEUR_MIN_COST
;
356 dd1
.nrec
= xe
->xdf1
.nreff
;
357 dd1
.ha
= xe
->xdf1
.ha
;
358 dd1
.rchg
= xe
->xdf1
.rchg
;
359 dd1
.rindex
= xe
->xdf1
.rindex
;
360 dd2
.nrec
= xe
->xdf2
.nreff
;
361 dd2
.ha
= xe
->xdf2
.ha
;
362 dd2
.rchg
= xe
->xdf2
.rchg
;
363 dd2
.rindex
= xe
->xdf2
.rindex
;
365 res
= xdl_recs_cmp(&dd1
, 0, dd1
.nrec
, &dd2
, 0, dd2
.nrec
,
366 kvdf
, kvdb
, (xpp
->flags
& XDF_NEED_MINIMAL
) != 0,
377 static xdchange_t
*xdl_add_change(xdchange_t
*xscr
, long i1
, long i2
, long chg1
, long chg2
) {
380 if (!(xch
= (xdchange_t
*) xdl_malloc(sizeof(xdchange_t
))))
394 static int recs_match(xrecord_t
*rec1
, xrecord_t
*rec2
)
396 return (rec1
->ha
== rec2
->ha
);
400 * If a line is indented more than this, get_indent() just returns this value.
401 * This avoids having to do absurd amounts of work for data that are not
402 * human-readable text, and also ensures that the output of get_indent fits
405 #define MAX_INDENT 200
408 * Return the amount of indentation of the specified line, treating TAB as 8
409 * columns. Return -1 if line is empty or contains only whitespace. Clamp the
410 * output value at MAX_INDENT.
412 static int get_indent(xrecord_t
*rec
)
417 for (i
= 0; i
< rec
->size
; i
++) {
418 char c
= rec
->ptr
[i
];
426 /* ignore other whitespace characters */
428 if (ret
>= MAX_INDENT
)
432 /* The line contains only whitespace. */
437 * If more than this number of consecutive blank rows are found, just return
438 * this value. This avoids requiring O(N^2) work for pathological cases, and
439 * also ensures that the output of score_split fits in an int.
441 #define MAX_BLANKS 20
443 /* Characteristics measured about a hypothetical split position. */
444 struct split_measurement
{
446 * Is the split at the end of the file (aside from any blank lines)?
451 * How much is the line immediately following the split indented (or -1
452 * if the line is blank):
457 * How many consecutive lines above the split are blank?
462 * How much is the nearest non-blank line above the split indented (or
463 * -1 if there is no such line)?
468 * How many lines after the line following the split are blank?
473 * How much is the nearest non-blank line after the line following the
474 * split indented (or -1 if there is no such line)?
480 /* The effective indent of this split (smaller is preferred). */
481 int effective_indent
;
483 /* Penalty for this split (smaller is preferred). */
488 * Fill m with information about a hypothetical split of xdf above line split.
490 static void measure_split(const xdfile_t
*xdf
, long split
,
491 struct split_measurement
*m
)
495 if (split
>= xdf
->nrec
) {
500 m
->indent
= get_indent(xdf
->recs
[split
]);
505 for (i
= split
- 1; i
>= 0; i
--) {
506 m
->pre_indent
= get_indent(xdf
->recs
[i
]);
507 if (m
->pre_indent
!= -1)
510 if (m
->pre_blank
== MAX_BLANKS
) {
518 for (i
= split
+ 1; i
< xdf
->nrec
; i
++) {
519 m
->post_indent
= get_indent(xdf
->recs
[i
]);
520 if (m
->post_indent
!= -1)
523 if (m
->post_blank
== MAX_BLANKS
) {
531 * The empirically-determined weight factors used by score_split() below.
532 * Larger values means that the position is a less favorable place to split.
534 * Note that scores are only ever compared against each other, so multiplying
535 * all of these weight/penalty values by the same factor wouldn't change the
536 * heuristic's behavior. Still, we need to set that arbitrary scale *somehow*.
537 * In practice, these numbers are chosen to be large enough that they can be
538 * adjusted relative to each other with sufficient precision despite using
542 /* Penalty if there are no non-blank lines before the split */
543 #define START_OF_FILE_PENALTY 1
545 /* Penalty if there are no non-blank lines after the split */
546 #define END_OF_FILE_PENALTY 21
548 /* Multiplier for the number of blank lines around the split */
549 #define TOTAL_BLANK_WEIGHT (-30)
551 /* Multiplier for the number of blank lines after the split */
552 #define POST_BLANK_WEIGHT 6
555 * Penalties applied if the line is indented more than its predecessor
557 #define RELATIVE_INDENT_PENALTY (-4)
558 #define RELATIVE_INDENT_WITH_BLANK_PENALTY 10
561 * Penalties applied if the line is indented less than both its predecessor and
564 #define RELATIVE_OUTDENT_PENALTY 24
565 #define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17
568 * Penalties applied if the line is indented less than its predecessor but not
569 * less than its successor
571 #define RELATIVE_DEDENT_PENALTY 23
572 #define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17
575 * We only consider whether the sum of the effective indents for splits are
576 * less than (-1), equal to (0), or greater than (+1) each other. The resulting
577 * value is multiplied by the following weight and combined with the penalty to
578 * determine the better of two scores.
580 #define INDENT_WEIGHT 60
583 * How far do we slide a hunk at most?
585 #define INDENT_HEURISTIC_MAX_SLIDING 100
588 * Compute a badness score for the hypothetical split whose measurements are
589 * stored in m. The weight factors were determined empirically using the tools
590 * and corpus described in
592 * https://github.com/mhagger/diff-slider-tools
594 * Also see that project if you want to improve the weights based on, for
595 * example, a larger or more diverse corpus.
597 static void score_add_split(const struct split_measurement
*m
, struct split_score
*s
)
600 * A place to accumulate penalty factors (positive makes this index more
603 int post_blank
, total_blank
, indent
, any_blanks
;
605 if (m
->pre_indent
== -1 && m
->pre_blank
== 0)
606 s
->penalty
+= START_OF_FILE_PENALTY
;
609 s
->penalty
+= END_OF_FILE_PENALTY
;
612 * Set post_blank to the number of blank lines following the split,
613 * including the line immediately after the split:
615 post_blank
= (m
->indent
== -1) ? 1 + m
->post_blank
: 0;
616 total_blank
= m
->pre_blank
+ post_blank
;
618 /* Penalties based on nearby blank lines: */
619 s
->penalty
+= TOTAL_BLANK_WEIGHT
* total_blank
;
620 s
->penalty
+= POST_BLANK_WEIGHT
* post_blank
;
625 indent
= m
->post_indent
;
627 any_blanks
= (total_blank
!= 0);
629 /* Note that the effective indent is -1 at the end of the file: */
630 s
->effective_indent
+= indent
;
633 /* No additional adjustments needed. */
634 } else if (m
->pre_indent
== -1) {
635 /* No additional adjustments needed. */
636 } else if (indent
> m
->pre_indent
) {
638 * The line is indented more than its predecessor.
640 s
->penalty
+= any_blanks
?
641 RELATIVE_INDENT_WITH_BLANK_PENALTY
:
642 RELATIVE_INDENT_PENALTY
;
643 } else if (indent
== m
->pre_indent
) {
645 * The line has the same indentation level as its predecessor.
646 * No additional adjustments needed.
650 * The line is indented less than its predecessor. It could be
651 * the block terminator of the previous block, but it could
652 * also be the start of a new block (e.g., an "else" block, or
653 * maybe the previous block didn't have a block terminator).
654 * Try to distinguish those cases based on what comes next:
656 if (m
->post_indent
!= -1 && m
->post_indent
> indent
) {
658 * The following line is indented more. So it is likely
659 * that this line is the start of a block.
661 s
->penalty
+= any_blanks
?
662 RELATIVE_OUTDENT_WITH_BLANK_PENALTY
:
663 RELATIVE_OUTDENT_PENALTY
;
666 * That was probably the end of a block.
668 s
->penalty
+= any_blanks
?
669 RELATIVE_DEDENT_WITH_BLANK_PENALTY
:
670 RELATIVE_DEDENT_PENALTY
;
675 static int score_cmp(struct split_score
*s1
, struct split_score
*s2
)
677 /* -1 if s1.effective_indent < s2->effective_indent, etc. */
678 int cmp_indents
= ((s1
->effective_indent
> s2
->effective_indent
) -
679 (s1
->effective_indent
< s2
->effective_indent
));
681 return INDENT_WEIGHT
* cmp_indents
+ (s1
->penalty
- s2
->penalty
);
685 * Represent a group of changed lines in an xdfile_t (i.e., a contiguous group
686 * of lines that was inserted or deleted from the corresponding version of the
687 * file). We consider there to be such a group at the beginning of the file, at
688 * the end of the file, and between any two unchanged lines, though most such
689 * groups will usually be empty.
691 * If the first line in a group is equal to the line following the group, then
692 * the group can be slid down. Similarly, if the last line in a group is equal
693 * to the line preceding the group, then the group can be slid up. See
694 * group_slide_down() and group_slide_up().
696 * Note that loops that are testing for changed lines in xdf->rchg do not need
697 * index bounding since the array is prepared with a zero at position -1 and N.
701 * The index of the first changed line in the group, or the index of
702 * the unchanged line above which the (empty) group is located.
707 * The index of the first unchanged line after the group. For an empty
708 * group, end is equal to start.
714 * Initialize g to point at the first group in xdf.
716 static void group_init(xdfile_t
*xdf
, struct xdlgroup
*g
)
718 g
->start
= g
->end
= 0;
719 while (xdf
->rchg
[g
->end
])
724 * Move g to describe the next (possibly empty) group in xdf and return 0. If g
725 * is already at the end of the file, do nothing and return -1.
727 static inline int group_next(xdfile_t
*xdf
, struct xdlgroup
*g
)
729 if (g
->end
== xdf
->nrec
)
732 g
->start
= g
->end
+ 1;
733 for (g
->end
= g
->start
; xdf
->rchg
[g
->end
]; g
->end
++)
740 * Move g to describe the previous (possibly empty) group in xdf and return 0.
741 * If g is already at the beginning of the file, do nothing and return -1.
743 static inline int group_previous(xdfile_t
*xdf
, struct xdlgroup
*g
)
748 g
->end
= g
->start
- 1;
749 for (g
->start
= g
->end
; xdf
->rchg
[g
->start
- 1]; g
->start
--)
756 * If g can be slid toward the end of the file, do so, and if it bumps into a
757 * following group, expand this group to include it. Return 0 on success or -1
758 * if g cannot be slid down.
760 static int group_slide_down(xdfile_t
*xdf
, struct xdlgroup
*g
)
762 if (g
->end
< xdf
->nrec
&&
763 recs_match(xdf
->recs
[g
->start
], xdf
->recs
[g
->end
])) {
764 xdf
->rchg
[g
->start
++] = 0;
765 xdf
->rchg
[g
->end
++] = 1;
767 while (xdf
->rchg
[g
->end
])
777 * If g can be slid toward the beginning of the file, do so, and if it bumps
778 * into a previous group, expand this group to include it. Return 0 on success
779 * or -1 if g cannot be slid up.
781 static int group_slide_up(xdfile_t
*xdf
, struct xdlgroup
*g
)
784 recs_match(xdf
->recs
[g
->start
- 1], xdf
->recs
[g
->end
- 1])) {
785 xdf
->rchg
[--g
->start
] = 1;
786 xdf
->rchg
[--g
->end
] = 0;
788 while (xdf
->rchg
[g
->start
- 1])
798 * Move back and forward change groups for a consistent and pretty diff output.
799 * This also helps in finding joinable change groups and reducing the diff
802 int xdl_change_compact(xdfile_t
*xdf
, xdfile_t
*xdfo
, long flags
) {
803 struct xdlgroup g
, go
;
804 long earliest_end
, end_matching_other
;
808 group_init(xdfo
, &go
);
812 * If the group is empty in the to-be-compacted file, skip it:
814 if (g
.end
== g
.start
)
818 * Now shift the change up and then down as far as possible in
819 * each direction. If it bumps into any other changes, merge
823 groupsize
= g
.end
- g
.start
;
826 * Keep track of the last "end" index that causes this
827 * group to align with a group of changed lines in the
828 * other file. -1 indicates that we haven't found such
831 end_matching_other
= -1;
833 /* Shift the group backward as much as possible: */
834 while (!group_slide_up(xdf
, &g
))
835 if (group_previous(xdfo
, &go
))
836 BUG("group sync broken sliding up");
839 * This is this highest that this group can be shifted.
840 * Record its end index:
842 earliest_end
= g
.end
;
844 if (go
.end
> go
.start
)
845 end_matching_other
= g
.end
;
847 /* Now shift the group forward as far as possible: */
849 if (group_slide_down(xdf
, &g
))
851 if (group_next(xdfo
, &go
))
852 BUG("group sync broken sliding down");
854 if (go
.end
> go
.start
)
855 end_matching_other
= g
.end
;
857 } while (groupsize
!= g
.end
- g
.start
);
860 * If the group can be shifted, then we can possibly use this
861 * freedom to produce a more intuitive diff.
863 * The group is currently shifted as far down as possible, so
864 * the heuristics below only have to handle upwards shifts.
867 if (g
.end
== earliest_end
) {
868 /* no shifting was possible */
869 } else if (end_matching_other
!= -1) {
871 * Move the possibly merged group of changes back to
872 * line up with the last group of changes from the
873 * other file that it can align with.
875 while (go
.end
== go
.start
) {
876 if (group_slide_up(xdf
, &g
))
877 BUG("match disappeared");
878 if (group_previous(xdfo
, &go
))
879 BUG("group sync broken sliding to match");
881 } else if (flags
& XDF_INDENT_HEURISTIC
) {
883 * Indent heuristic: a group of pure add/delete lines
884 * implies two splits, one between the end of the
885 * "before" context and the start of the group, and
886 * another between the end of the group and the
887 * beginning of the "after" context. Some splits are
888 * aesthetically better and some are worse. We compute
889 * a badness "score" for each split, and add the scores
890 * for the two splits to define a "score" for each
891 * position that the group can be shifted to. Then we
892 * pick the shift with the lowest score.
894 long shift
, best_shift
= -1;
895 struct split_score best_score
;
897 shift
= earliest_end
;
898 if (g
.end
- groupsize
- 1 > shift
)
899 shift
= g
.end
- groupsize
- 1;
900 if (g
.end
- INDENT_HEURISTIC_MAX_SLIDING
> shift
)
901 shift
= g
.end
- INDENT_HEURISTIC_MAX_SLIDING
;
902 for (; shift
<= g
.end
; shift
++) {
903 struct split_measurement m
;
904 struct split_score score
= {0, 0};
906 measure_split(xdf
, shift
, &m
);
907 score_add_split(&m
, &score
);
908 measure_split(xdf
, shift
- groupsize
, &m
);
909 score_add_split(&m
, &score
);
910 if (best_shift
== -1 ||
911 score_cmp(&score
, &best_score
) <= 0) {
912 best_score
.effective_indent
= score
.effective_indent
;
913 best_score
.penalty
= score
.penalty
;
918 while (g
.end
> best_shift
) {
919 if (group_slide_up(xdf
, &g
))
920 BUG("best shift unreached");
921 if (group_previous(xdfo
, &go
))
922 BUG("group sync broken sliding to blank line");
927 /* Move past the just-processed group: */
928 if (group_next(xdf
, &g
))
930 if (group_next(xdfo
, &go
))
931 BUG("group sync broken moving to next group");
934 if (!group_next(xdfo
, &go
))
935 BUG("group sync broken at end of file");
941 int xdl_build_script(xdfenv_t
*xe
, xdchange_t
**xscr
) {
942 xdchange_t
*cscr
= NULL
, *xch
;
943 char *rchg1
= xe
->xdf1
.rchg
, *rchg2
= xe
->xdf2
.rchg
;
947 * Trivial. Collects "groups" of changes and creates an edit script.
949 for (i1
= xe
->xdf1
.nrec
, i2
= xe
->xdf2
.nrec
; i1
>= 0 || i2
>= 0; i1
--, i2
--)
950 if (rchg1
[i1
- 1] || rchg2
[i2
- 1]) {
951 for (l1
= i1
; rchg1
[i1
- 1]; i1
--);
952 for (l2
= i2
; rchg2
[i2
- 1]; i2
--);
954 if (!(xch
= xdl_add_change(cscr
, i1
, i2
, l1
- i1
, l2
- i2
))) {
955 xdl_free_script(cscr
);
967 void xdl_free_script(xdchange_t
*xscr
) {
970 while ((xch
= xscr
) != NULL
) {
976 static int xdl_call_hunk_func(xdfenv_t
*xe
, xdchange_t
*xscr
, xdemitcb_t
*ecb
,
977 xdemitconf_t
const *xecfg
)
979 xdchange_t
*xch
, *xche
;
981 for (xch
= xscr
; xch
; xch
= xche
->next
) {
982 xche
= xdl_get_hunk(&xch
, xecfg
);
985 if (xecfg
->hunk_func(xch
->i1
, xche
->i1
+ xche
->chg1
- xch
->i1
,
986 xch
->i2
, xche
->i2
+ xche
->chg2
- xch
->i2
,
993 static void xdl_mark_ignorable_lines(xdchange_t
*xscr
, xdfenv_t
*xe
, long flags
)
997 for (xch
= xscr
; xch
; xch
= xch
->next
) {
1002 rec
= &xe
->xdf1
.recs
[xch
->i1
];
1003 for (i
= 0; i
< xch
->chg1
&& ignore
; i
++)
1004 ignore
= xdl_blankline(rec
[i
]->ptr
, rec
[i
]->size
, flags
);
1006 rec
= &xe
->xdf2
.recs
[xch
->i2
];
1007 for (i
= 0; i
< xch
->chg2
&& ignore
; i
++)
1008 ignore
= xdl_blankline(rec
[i
]->ptr
, rec
[i
]->size
, flags
);
1010 xch
->ignore
= ignore
;
1014 static int record_matches_regex(xrecord_t
*rec
, xpparam_t
const *xpp
) {
1015 regmatch_t regmatch
;
1018 for (i
= 0; i
< xpp
->ignore_regex_nr
; i
++)
1019 if (!regexec_buf(xpp
->ignore_regex
[i
], rec
->ptr
, rec
->size
, 1,
1026 static void xdl_mark_ignorable_regex(xdchange_t
*xscr
, const xdfenv_t
*xe
,
1027 xpparam_t
const *xpp
)
1031 for (xch
= xscr
; xch
; xch
= xch
->next
) {
1037 * Do not override --ignore-blank-lines.
1042 rec
= &xe
->xdf1
.recs
[xch
->i1
];
1043 for (i
= 0; i
< xch
->chg1
&& ignore
; i
++)
1044 ignore
= record_matches_regex(rec
[i
], xpp
);
1046 rec
= &xe
->xdf2
.recs
[xch
->i2
];
1047 for (i
= 0; i
< xch
->chg2
&& ignore
; i
++)
1048 ignore
= record_matches_regex(rec
[i
], xpp
);
1050 xch
->ignore
= ignore
;
1054 int xdl_diff(mmfile_t
*mf1
, mmfile_t
*mf2
, xpparam_t
const *xpp
,
1055 xdemitconf_t
const *xecfg
, xdemitcb_t
*ecb
) {
1058 emit_func_t ef
= xecfg
->hunk_func
? xdl_call_hunk_func
: xdl_emit_diff
;
1060 if (xdl_do_diff(mf1
, mf2
, xpp
, &xe
) < 0) {
1064 if (xdl_change_compact(&xe
.xdf1
, &xe
.xdf2
, xpp
->flags
) < 0 ||
1065 xdl_change_compact(&xe
.xdf2
, &xe
.xdf1
, xpp
->flags
) < 0 ||
1066 xdl_build_script(&xe
, &xscr
) < 0) {
1072 if (xpp
->flags
& XDF_IGNORE_BLANK_LINES
)
1073 xdl_mark_ignorable_lines(xscr
, &xe
, xpp
->flags
);
1075 if (xpp
->ignore_regex
)
1076 xdl_mark_ignorable_regex(xscr
, &xe
, xpp
);
1078 if (ef(&xe
, xscr
, ecb
, xecfg
) < 0) {
1080 xdl_free_script(xscr
);
1084 xdl_free_script(xscr
);