2 #include "split-index.h"
5 struct split_index
*init_split_index(struct index_state
*istate
)
7 if (!istate
->split_index
) {
8 CALLOC_ARRAY(istate
->split_index
, 1);
9 istate
->split_index
->refcount
= 1;
11 return istate
->split_index
;
14 int read_link_extension(struct index_state
*istate
,
15 const void *data_
, unsigned long sz
)
17 const unsigned char *data
= data_
;
18 struct split_index
*si
;
21 if (sz
< the_hash_algo
->rawsz
)
22 return error("corrupt link extension (too short)");
23 si
= init_split_index(istate
);
24 oidread(&si
->base_oid
, data
);
25 data
+= the_hash_algo
->rawsz
;
26 sz
-= the_hash_algo
->rawsz
;
29 si
->delete_bitmap
= ewah_new();
30 ret
= ewah_read_mmap(si
->delete_bitmap
, data
, sz
);
32 return error("corrupt delete bitmap in link extension");
35 si
->replace_bitmap
= ewah_new();
36 ret
= ewah_read_mmap(si
->replace_bitmap
, data
, sz
);
38 return error("corrupt replace bitmap in link extension");
40 return error("garbage at the end of link extension");
44 int write_link_extension(struct strbuf
*sb
,
45 struct index_state
*istate
)
47 struct split_index
*si
= istate
->split_index
;
48 strbuf_add(sb
, si
->base_oid
.hash
, the_hash_algo
->rawsz
);
49 if (!si
->delete_bitmap
&& !si
->replace_bitmap
)
51 ewah_serialize_strbuf(si
->delete_bitmap
, sb
);
52 ewah_serialize_strbuf(si
->replace_bitmap
, sb
);
56 static void mark_base_index_entries(struct index_state
*base
)
60 * To keep track of the shared entries between
61 * istate->base->cache[] and istate->cache[], base entry
62 * position is stored in each base entry. All positions start
63 * from 1 instead of 0, which is reserved to say "this is a new
66 for (i
= 0; i
< base
->cache_nr
; i
++)
67 base
->cache
[i
]->index
= i
+ 1;
70 void move_cache_to_base_index(struct index_state
*istate
)
72 struct split_index
*si
= istate
->split_index
;
76 * If there was a previous base index, then transfer ownership of allocated
77 * entries to the parent index.
80 si
->base
->ce_mem_pool
) {
82 if (!istate
->ce_mem_pool
) {
83 istate
->ce_mem_pool
= xmalloc(sizeof(struct mem_pool
));
84 mem_pool_init(istate
->ce_mem_pool
, 0);
87 mem_pool_combine(istate
->ce_mem_pool
, istate
->split_index
->base
->ce_mem_pool
);
90 CALLOC_ARRAY(si
->base
, 1);
91 si
->base
->version
= istate
->version
;
92 /* zero timestamp disables racy test in ce_write_index() */
93 si
->base
->timestamp
= istate
->timestamp
;
94 ALLOC_GROW(si
->base
->cache
, istate
->cache_nr
, si
->base
->cache_alloc
);
95 si
->base
->cache_nr
= istate
->cache_nr
;
98 * The mem_pool needs to move with the allocated entries.
100 si
->base
->ce_mem_pool
= istate
->ce_mem_pool
;
101 istate
->ce_mem_pool
= NULL
;
103 COPY_ARRAY(si
->base
->cache
, istate
->cache
, istate
->cache_nr
);
104 mark_base_index_entries(si
->base
);
105 for (i
= 0; i
< si
->base
->cache_nr
; i
++)
106 si
->base
->cache
[i
]->ce_flags
&= ~CE_UPDATE_IN_BASE
;
109 static void mark_entry_for_delete(size_t pos
, void *data
)
111 struct index_state
*istate
= data
;
112 if (pos
>= istate
->cache_nr
)
113 die("position for delete %d exceeds base index size %d",
114 (int)pos
, istate
->cache_nr
);
115 istate
->cache
[pos
]->ce_flags
|= CE_REMOVE
;
116 istate
->split_index
->nr_deletions
++;
119 static void replace_entry(size_t pos
, void *data
)
121 struct index_state
*istate
= data
;
122 struct split_index
*si
= istate
->split_index
;
123 struct cache_entry
*dst
, *src
;
125 if (pos
>= istate
->cache_nr
)
126 die("position for replacement %d exceeds base index size %d",
127 (int)pos
, istate
->cache_nr
);
128 if (si
->nr_replacements
>= si
->saved_cache_nr
)
129 die("too many replacements (%d vs %d)",
130 si
->nr_replacements
, si
->saved_cache_nr
);
131 dst
= istate
->cache
[pos
];
132 if (dst
->ce_flags
& CE_REMOVE
)
133 die("entry %d is marked as both replaced and deleted",
135 src
= si
->saved_cache
[si
->nr_replacements
];
137 die("corrupt link extension, entry %d should have "
138 "zero length name", (int)pos
);
139 src
->index
= pos
+ 1;
140 src
->ce_flags
|= CE_UPDATE_IN_BASE
;
141 src
->ce_namelen
= dst
->ce_namelen
;
142 copy_cache_entry(dst
, src
);
143 discard_cache_entry(src
);
144 si
->nr_replacements
++;
147 void merge_base_index(struct index_state
*istate
)
149 struct split_index
*si
= istate
->split_index
;
152 mark_base_index_entries(si
->base
);
154 si
->saved_cache
= istate
->cache
;
155 si
->saved_cache_nr
= istate
->cache_nr
;
156 istate
->cache_nr
= si
->base
->cache_nr
;
157 istate
->cache
= NULL
;
158 istate
->cache_alloc
= 0;
159 ALLOC_GROW(istate
->cache
, istate
->cache_nr
, istate
->cache_alloc
);
160 COPY_ARRAY(istate
->cache
, si
->base
->cache
, istate
->cache_nr
);
162 si
->nr_deletions
= 0;
163 si
->nr_replacements
= 0;
164 ewah_each_bit(si
->replace_bitmap
, replace_entry
, istate
);
165 ewah_each_bit(si
->delete_bitmap
, mark_entry_for_delete
, istate
);
166 if (si
->nr_deletions
)
167 remove_marked_cache_entries(istate
, 0);
169 for (i
= si
->nr_replacements
; i
< si
->saved_cache_nr
; i
++) {
170 if (!ce_namelen(si
->saved_cache
[i
]))
171 die("corrupt link extension, entry %d should "
172 "have non-zero length name", i
);
173 add_index_entry(istate
, si
->saved_cache
[i
],
174 ADD_CACHE_OK_TO_ADD
|
175 ADD_CACHE_KEEP_CACHE_TREE
|
177 * we may have to replay what
178 * merge-recursive.c:update_stages()
179 * does, which has this flag on
181 ADD_CACHE_SKIP_DFCHECK
);
182 si
->saved_cache
[i
] = NULL
;
185 ewah_free(si
->delete_bitmap
);
186 ewah_free(si
->replace_bitmap
);
187 FREE_AND_NULL(si
->saved_cache
);
188 si
->delete_bitmap
= NULL
;
189 si
->replace_bitmap
= NULL
;
190 si
->saved_cache_nr
= 0;
194 * Compare most of the fields in two cache entries, i.e. all except the
195 * hashmap_entry and the name.
197 static int compare_ce_content(struct cache_entry
*a
, struct cache_entry
*b
)
199 const unsigned int ondisk_flags
= CE_STAGEMASK
| CE_VALID
|
201 unsigned int ce_flags
= a
->ce_flags
;
202 unsigned int base_flags
= b
->ce_flags
;
205 /* only on-disk flags matter */
206 a
->ce_flags
&= ondisk_flags
;
207 b
->ce_flags
&= ondisk_flags
;
208 ret
= memcmp(&a
->ce_stat_data
, &b
->ce_stat_data
,
209 offsetof(struct cache_entry
, name
) -
210 offsetof(struct cache_entry
, oid
)) ||
211 !oideq(&a
->oid
, &b
->oid
);
212 a
->ce_flags
= ce_flags
;
213 b
->ce_flags
= base_flags
;
218 void prepare_to_write_split_index(struct index_state
*istate
)
220 struct split_index
*si
= init_split_index(istate
);
221 struct cache_entry
**entries
= NULL
, *ce
;
222 int i
, nr_entries
= 0, nr_alloc
= 0;
224 si
->delete_bitmap
= ewah_new();
225 si
->replace_bitmap
= ewah_new();
228 /* Go through istate->cache[] and mark CE_MATCHED to
229 * entry with positive index. We'll go through
230 * base->cache[] later to delete all entries in base
231 * that are not marked with either CE_MATCHED or
232 * CE_UPDATE_IN_BASE. If istate->cache[i] is a
233 * duplicate, deduplicate it.
235 for (i
= 0; i
< istate
->cache_nr
; i
++) {
236 struct cache_entry
*base
;
237 ce
= istate
->cache
[i
];
240 * During simple update index operations this
241 * is a cache entry that is not present in
242 * the shared index. It will be added to the
245 * However, it might also represent a file
246 * that already has a cache entry in the
247 * shared index, but a new index has just
248 * been constructed by unpack_trees(), and
249 * this entry now refers to different content
250 * than what was recorded in the original
251 * index, e.g. during 'read-tree -m HEAD^' or
252 * 'checkout HEAD^'. In this case the
253 * original entry in the shared index will be
254 * marked as deleted, and this entry will be
255 * added to the split index.
259 if (ce
->index
> si
->base
->cache_nr
) {
260 BUG("ce refers to a shared ce at %d, which is beyond the shared index size %d",
261 ce
->index
, si
->base
->cache_nr
);
263 ce
->ce_flags
|= CE_MATCHED
; /* or "shared" */
264 base
= si
->base
->cache
[ce
->index
- 1];
266 /* The entry is present in the shared index. */
267 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
269 * Already marked for inclusion in
270 * the split index, either because
271 * the corresponding file was
272 * modified and the cached stat data
273 * was refreshed, or because there
274 * is already a replacement entry in
276 * Nothing more to do here.
278 } else if (!ce_uptodate(ce
) &&
279 is_racy_timestamp(istate
, ce
)) {
281 * A racily clean cache entry stored
282 * only in the shared index: it must
283 * be added to the split index, so
284 * the subsequent do_write_index()
285 * can smudge its stat data.
287 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
290 * The entry is only present in the
291 * shared index and it was not
293 * Just leave it there.
298 if (ce
->ce_namelen
!= base
->ce_namelen
||
299 strcmp(ce
->name
, base
->name
)) {
304 * This is the copy of a cache entry that is present
305 * in the shared index, created by unpack_trees()
306 * while it constructed a new index.
308 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
310 * Already marked for inclusion in the split
311 * index, either because the corresponding
312 * file was modified and the cached stat data
313 * was refreshed, or because the original
314 * entry already had a replacement entry in
318 } else if (!ce_uptodate(ce
) &&
319 is_racy_timestamp(istate
, ce
)) {
321 * A copy of a racily clean cache entry from
322 * the shared index. It must be added to
323 * the split index, so the subsequent
324 * do_write_index() can smudge its stat data.
326 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
329 * Thoroughly compare the cached data to see
330 * whether it should be marked for inclusion
331 * in the split index.
333 * This comparison might be unnecessary, as
334 * code paths modifying the cached data do
335 * set CE_UPDATE_IN_BASE as well.
337 if (compare_ce_content(ce
, base
))
338 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
340 discard_cache_entry(base
);
341 si
->base
->cache
[ce
->index
- 1] = ce
;
343 for (i
= 0; i
< si
->base
->cache_nr
; i
++) {
344 ce
= si
->base
->cache
[i
];
345 if ((ce
->ce_flags
& CE_REMOVE
) ||
346 !(ce
->ce_flags
& CE_MATCHED
))
347 ewah_set(si
->delete_bitmap
, i
);
348 else if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
349 ewah_set(si
->replace_bitmap
, i
);
350 ce
->ce_flags
|= CE_STRIP_NAME
;
351 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
352 entries
[nr_entries
++] = ce
;
354 if (is_null_oid(&ce
->oid
))
355 istate
->drop_cache_tree
= 1;
359 for (i
= 0; i
< istate
->cache_nr
; i
++) {
360 ce
= istate
->cache
[i
];
361 if ((!si
->base
|| !ce
->index
) && !(ce
->ce_flags
& CE_REMOVE
)) {
362 assert(!(ce
->ce_flags
& CE_STRIP_NAME
));
363 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
364 entries
[nr_entries
++] = ce
;
366 ce
->ce_flags
&= ~CE_MATCHED
;
370 * take cache[] out temporarily, put entries[] in its place
373 si
->saved_cache
= istate
->cache
;
374 si
->saved_cache_nr
= istate
->cache_nr
;
375 istate
->cache
= entries
;
376 istate
->cache_nr
= nr_entries
;
379 void finish_writing_split_index(struct index_state
*istate
)
381 struct split_index
*si
= init_split_index(istate
);
383 ewah_free(si
->delete_bitmap
);
384 ewah_free(si
->replace_bitmap
);
385 si
->delete_bitmap
= NULL
;
386 si
->replace_bitmap
= NULL
;
388 istate
->cache
= si
->saved_cache
;
389 istate
->cache_nr
= si
->saved_cache_nr
;
392 void discard_split_index(struct index_state
*istate
)
394 struct split_index
*si
= istate
->split_index
;
397 istate
->split_index
= NULL
;
402 discard_index(si
->base
);
408 void save_or_free_index_entry(struct index_state
*istate
, struct cache_entry
*ce
)
411 istate
->split_index
&&
412 istate
->split_index
->base
&&
413 ce
->index
<= istate
->split_index
->base
->cache_nr
&&
414 ce
== istate
->split_index
->base
->cache
[ce
->index
- 1])
415 ce
->ce_flags
|= CE_REMOVE
;
417 discard_cache_entry(ce
);
420 void replace_index_entry_in_base(struct index_state
*istate
,
421 struct cache_entry
*old_entry
,
422 struct cache_entry
*new_entry
)
424 if (old_entry
->index
&&
425 istate
->split_index
&&
426 istate
->split_index
->base
&&
427 old_entry
->index
<= istate
->split_index
->base
->cache_nr
) {
428 new_entry
->index
= old_entry
->index
;
429 if (old_entry
!= istate
->split_index
->base
->cache
[new_entry
->index
- 1])
430 discard_cache_entry(istate
->split_index
->base
->cache
[new_entry
->index
- 1]);
431 istate
->split_index
->base
->cache
[new_entry
->index
- 1] = new_entry
;
435 void add_split_index(struct index_state
*istate
)
437 if (!istate
->split_index
) {
438 init_split_index(istate
);
439 istate
->cache_changed
|= SPLIT_INDEX_ORDERED
;
443 void remove_split_index(struct index_state
*istate
)
445 if (istate
->split_index
) {
446 if (istate
->split_index
->base
) {
448 * When removing the split index, we need to move
449 * ownership of the mem_pool associated with the
450 * base index to the main index. There may be cache entries
451 * allocated from the base's memory pool that are shared with
454 mem_pool_combine(istate
->ce_mem_pool
,
455 istate
->split_index
->base
->ce_mem_pool
);
458 * The split index no longer owns the mem_pool backing
459 * its cache array. As we are discarding this index,
460 * mark the index as having no cache entries, so it
461 * will not attempt to clean up the cache entries or
464 istate
->split_index
->base
->cache_nr
= 0;
468 * We can discard the split index because its
469 * memory pool has been incorporated into the
470 * memory pool associated with the the_index.
472 discard_split_index(istate
);
474 istate
->cache_changed
|= SOMETHING_CHANGED
;