2 #include "split-index.h"
5 struct split_index
*init_split_index(struct index_state
*istate
)
7 if (!istate
->split_index
) {
8 if (istate
->sparse_index
)
9 die(_("cannot use split index with a sparse index"));
11 CALLOC_ARRAY(istate
->split_index
, 1);
12 istate
->split_index
->refcount
= 1;
14 return istate
->split_index
;
17 int read_link_extension(struct index_state
*istate
,
18 const void *data_
, unsigned long sz
)
20 const unsigned char *data
= data_
;
21 struct split_index
*si
;
24 if (sz
< the_hash_algo
->rawsz
)
25 return error("corrupt link extension (too short)");
26 si
= init_split_index(istate
);
27 oidread(&si
->base_oid
, data
);
28 data
+= the_hash_algo
->rawsz
;
29 sz
-= the_hash_algo
->rawsz
;
32 si
->delete_bitmap
= ewah_new();
33 ret
= ewah_read_mmap(si
->delete_bitmap
, data
, sz
);
35 return error("corrupt delete bitmap in link extension");
38 si
->replace_bitmap
= ewah_new();
39 ret
= ewah_read_mmap(si
->replace_bitmap
, data
, sz
);
41 return error("corrupt replace bitmap in link extension");
43 return error("garbage at the end of link extension");
47 int write_link_extension(struct strbuf
*sb
,
48 struct index_state
*istate
)
50 struct split_index
*si
= istate
->split_index
;
51 strbuf_add(sb
, si
->base_oid
.hash
, the_hash_algo
->rawsz
);
52 if (!si
->delete_bitmap
&& !si
->replace_bitmap
)
54 ewah_serialize_strbuf(si
->delete_bitmap
, sb
);
55 ewah_serialize_strbuf(si
->replace_bitmap
, sb
);
59 static void mark_base_index_entries(struct index_state
*base
)
63 * To keep track of the shared entries between
64 * istate->base->cache[] and istate->cache[], base entry
65 * position is stored in each base entry. All positions start
66 * from 1 instead of 0, which is reserved to say "this is a new
69 for (i
= 0; i
< base
->cache_nr
; i
++)
70 base
->cache
[i
]->index
= i
+ 1;
73 void move_cache_to_base_index(struct index_state
*istate
)
75 struct split_index
*si
= istate
->split_index
;
79 * If there was a previous base index, then transfer ownership of allocated
80 * entries to the parent index.
83 si
->base
->ce_mem_pool
) {
85 if (!istate
->ce_mem_pool
) {
86 istate
->ce_mem_pool
= xmalloc(sizeof(struct mem_pool
));
87 mem_pool_init(istate
->ce_mem_pool
, 0);
90 mem_pool_combine(istate
->ce_mem_pool
, istate
->split_index
->base
->ce_mem_pool
);
93 CALLOC_ARRAY(si
->base
, 1);
94 si
->base
->version
= istate
->version
;
95 /* zero timestamp disables racy test in ce_write_index() */
96 si
->base
->timestamp
= istate
->timestamp
;
97 ALLOC_GROW(si
->base
->cache
, istate
->cache_nr
, si
->base
->cache_alloc
);
98 si
->base
->cache_nr
= istate
->cache_nr
;
101 * The mem_pool needs to move with the allocated entries.
103 si
->base
->ce_mem_pool
= istate
->ce_mem_pool
;
104 istate
->ce_mem_pool
= NULL
;
106 COPY_ARRAY(si
->base
->cache
, istate
->cache
, istate
->cache_nr
);
107 mark_base_index_entries(si
->base
);
108 for (i
= 0; i
< si
->base
->cache_nr
; i
++)
109 si
->base
->cache
[i
]->ce_flags
&= ~CE_UPDATE_IN_BASE
;
112 static void mark_entry_for_delete(size_t pos
, void *data
)
114 struct index_state
*istate
= data
;
115 if (pos
>= istate
->cache_nr
)
116 die("position for delete %d exceeds base index size %d",
117 (int)pos
, istate
->cache_nr
);
118 istate
->cache
[pos
]->ce_flags
|= CE_REMOVE
;
119 istate
->split_index
->nr_deletions
++;
122 static void replace_entry(size_t pos
, void *data
)
124 struct index_state
*istate
= data
;
125 struct split_index
*si
= istate
->split_index
;
126 struct cache_entry
*dst
, *src
;
128 if (pos
>= istate
->cache_nr
)
129 die("position for replacement %d exceeds base index size %d",
130 (int)pos
, istate
->cache_nr
);
131 if (si
->nr_replacements
>= si
->saved_cache_nr
)
132 die("too many replacements (%d vs %d)",
133 si
->nr_replacements
, si
->saved_cache_nr
);
134 dst
= istate
->cache
[pos
];
135 if (dst
->ce_flags
& CE_REMOVE
)
136 die("entry %d is marked as both replaced and deleted",
138 src
= si
->saved_cache
[si
->nr_replacements
];
140 die("corrupt link extension, entry %d should have "
141 "zero length name", (int)pos
);
142 src
->index
= pos
+ 1;
143 src
->ce_flags
|= CE_UPDATE_IN_BASE
;
144 src
->ce_namelen
= dst
->ce_namelen
;
145 copy_cache_entry(dst
, src
);
146 discard_cache_entry(src
);
147 si
->nr_replacements
++;
150 void merge_base_index(struct index_state
*istate
)
152 struct split_index
*si
= istate
->split_index
;
155 mark_base_index_entries(si
->base
);
157 si
->saved_cache
= istate
->cache
;
158 si
->saved_cache_nr
= istate
->cache_nr
;
159 istate
->cache_nr
= si
->base
->cache_nr
;
160 istate
->cache
= NULL
;
161 istate
->cache_alloc
= 0;
162 ALLOC_GROW(istate
->cache
, istate
->cache_nr
, istate
->cache_alloc
);
163 COPY_ARRAY(istate
->cache
, si
->base
->cache
, istate
->cache_nr
);
165 si
->nr_deletions
= 0;
166 si
->nr_replacements
= 0;
167 ewah_each_bit(si
->replace_bitmap
, replace_entry
, istate
);
168 ewah_each_bit(si
->delete_bitmap
, mark_entry_for_delete
, istate
);
169 if (si
->nr_deletions
)
170 remove_marked_cache_entries(istate
, 0);
172 for (i
= si
->nr_replacements
; i
< si
->saved_cache_nr
; i
++) {
173 if (!ce_namelen(si
->saved_cache
[i
]))
174 die("corrupt link extension, entry %d should "
175 "have non-zero length name", i
);
176 add_index_entry(istate
, si
->saved_cache
[i
],
177 ADD_CACHE_OK_TO_ADD
|
178 ADD_CACHE_KEEP_CACHE_TREE
|
180 * we may have to replay what
181 * merge-recursive.c:update_stages()
182 * does, which has this flag on
184 ADD_CACHE_SKIP_DFCHECK
);
185 si
->saved_cache
[i
] = NULL
;
188 ewah_free(si
->delete_bitmap
);
189 ewah_free(si
->replace_bitmap
);
190 FREE_AND_NULL(si
->saved_cache
);
191 si
->delete_bitmap
= NULL
;
192 si
->replace_bitmap
= NULL
;
193 si
->saved_cache_nr
= 0;
197 * Compare most of the fields in two cache entries, i.e. all except the
198 * hashmap_entry and the name.
200 static int compare_ce_content(struct cache_entry
*a
, struct cache_entry
*b
)
202 const unsigned int ondisk_flags
= CE_STAGEMASK
| CE_VALID
|
204 unsigned int ce_flags
= a
->ce_flags
;
205 unsigned int base_flags
= b
->ce_flags
;
208 /* only on-disk flags matter */
209 a
->ce_flags
&= ondisk_flags
;
210 b
->ce_flags
&= ondisk_flags
;
211 ret
= memcmp(&a
->ce_stat_data
, &b
->ce_stat_data
,
212 offsetof(struct cache_entry
, name
) -
213 offsetof(struct cache_entry
, oid
)) ||
214 !oideq(&a
->oid
, &b
->oid
);
215 a
->ce_flags
= ce_flags
;
216 b
->ce_flags
= base_flags
;
221 void prepare_to_write_split_index(struct index_state
*istate
)
223 struct split_index
*si
= init_split_index(istate
);
224 struct cache_entry
**entries
= NULL
, *ce
;
225 int i
, nr_entries
= 0, nr_alloc
= 0;
227 si
->delete_bitmap
= ewah_new();
228 si
->replace_bitmap
= ewah_new();
231 /* Go through istate->cache[] and mark CE_MATCHED to
232 * entry with positive index. We'll go through
233 * base->cache[] later to delete all entries in base
234 * that are not marked with either CE_MATCHED or
235 * CE_UPDATE_IN_BASE. If istate->cache[i] is a
236 * duplicate, deduplicate it.
238 for (i
= 0; i
< istate
->cache_nr
; i
++) {
239 struct cache_entry
*base
;
240 ce
= istate
->cache
[i
];
243 * During simple update index operations this
244 * is a cache entry that is not present in
245 * the shared index. It will be added to the
248 * However, it might also represent a file
249 * that already has a cache entry in the
250 * shared index, but a new index has just
251 * been constructed by unpack_trees(), and
252 * this entry now refers to different content
253 * than what was recorded in the original
254 * index, e.g. during 'read-tree -m HEAD^' or
255 * 'checkout HEAD^'. In this case the
256 * original entry in the shared index will be
257 * marked as deleted, and this entry will be
258 * added to the split index.
262 if (ce
->index
> si
->base
->cache_nr
) {
263 BUG("ce refers to a shared ce at %d, which is beyond the shared index size %d",
264 ce
->index
, si
->base
->cache_nr
);
266 ce
->ce_flags
|= CE_MATCHED
; /* or "shared" */
267 base
= si
->base
->cache
[ce
->index
- 1];
269 /* The entry is present in the shared index. */
270 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
272 * Already marked for inclusion in
273 * the split index, either because
274 * the corresponding file was
275 * modified and the cached stat data
276 * was refreshed, or because there
277 * is already a replacement entry in
279 * Nothing more to do here.
281 } else if (!ce_uptodate(ce
) &&
282 is_racy_timestamp(istate
, ce
)) {
284 * A racily clean cache entry stored
285 * only in the shared index: it must
286 * be added to the split index, so
287 * the subsequent do_write_index()
288 * can smudge its stat data.
290 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
293 * The entry is only present in the
294 * shared index and it was not
296 * Just leave it there.
301 if (ce
->ce_namelen
!= base
->ce_namelen
||
302 strcmp(ce
->name
, base
->name
)) {
307 * This is the copy of a cache entry that is present
308 * in the shared index, created by unpack_trees()
309 * while it constructed a new index.
311 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
313 * Already marked for inclusion in the split
314 * index, either because the corresponding
315 * file was modified and the cached stat data
316 * was refreshed, or because the original
317 * entry already had a replacement entry in
321 } else if (!ce_uptodate(ce
) &&
322 is_racy_timestamp(istate
, ce
)) {
324 * A copy of a racily clean cache entry from
325 * the shared index. It must be added to
326 * the split index, so the subsequent
327 * do_write_index() can smudge its stat data.
329 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
332 * Thoroughly compare the cached data to see
333 * whether it should be marked for inclusion
334 * in the split index.
336 * This comparison might be unnecessary, as
337 * code paths modifying the cached data do
338 * set CE_UPDATE_IN_BASE as well.
340 if (compare_ce_content(ce
, base
))
341 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
343 discard_cache_entry(base
);
344 si
->base
->cache
[ce
->index
- 1] = ce
;
346 for (i
= 0; i
< si
->base
->cache_nr
; i
++) {
347 ce
= si
->base
->cache
[i
];
348 if ((ce
->ce_flags
& CE_REMOVE
) ||
349 !(ce
->ce_flags
& CE_MATCHED
))
350 ewah_set(si
->delete_bitmap
, i
);
351 else if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
352 ewah_set(si
->replace_bitmap
, i
);
353 ce
->ce_flags
|= CE_STRIP_NAME
;
354 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
355 entries
[nr_entries
++] = ce
;
357 if (is_null_oid(&ce
->oid
))
358 istate
->drop_cache_tree
= 1;
362 for (i
= 0; i
< istate
->cache_nr
; i
++) {
363 ce
= istate
->cache
[i
];
364 if ((!si
->base
|| !ce
->index
) && !(ce
->ce_flags
& CE_REMOVE
)) {
365 assert(!(ce
->ce_flags
& CE_STRIP_NAME
));
366 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
367 entries
[nr_entries
++] = ce
;
369 ce
->ce_flags
&= ~CE_MATCHED
;
373 * take cache[] out temporarily, put entries[] in its place
376 si
->saved_cache
= istate
->cache
;
377 si
->saved_cache_nr
= istate
->cache_nr
;
378 istate
->cache
= entries
;
379 istate
->cache_nr
= nr_entries
;
382 void finish_writing_split_index(struct index_state
*istate
)
384 struct split_index
*si
= init_split_index(istate
);
386 ewah_free(si
->delete_bitmap
);
387 ewah_free(si
->replace_bitmap
);
388 si
->delete_bitmap
= NULL
;
389 si
->replace_bitmap
= NULL
;
391 istate
->cache
= si
->saved_cache
;
392 istate
->cache_nr
= si
->saved_cache_nr
;
395 void discard_split_index(struct index_state
*istate
)
397 struct split_index
*si
= istate
->split_index
;
400 istate
->split_index
= NULL
;
405 discard_index(si
->base
);
411 void save_or_free_index_entry(struct index_state
*istate
, struct cache_entry
*ce
)
414 istate
->split_index
&&
415 istate
->split_index
->base
&&
416 ce
->index
<= istate
->split_index
->base
->cache_nr
&&
417 ce
== istate
->split_index
->base
->cache
[ce
->index
- 1])
418 ce
->ce_flags
|= CE_REMOVE
;
420 discard_cache_entry(ce
);
423 void replace_index_entry_in_base(struct index_state
*istate
,
424 struct cache_entry
*old_entry
,
425 struct cache_entry
*new_entry
)
427 if (old_entry
->index
&&
428 istate
->split_index
&&
429 istate
->split_index
->base
&&
430 old_entry
->index
<= istate
->split_index
->base
->cache_nr
) {
431 new_entry
->index
= old_entry
->index
;
432 if (old_entry
!= istate
->split_index
->base
->cache
[new_entry
->index
- 1])
433 discard_cache_entry(istate
->split_index
->base
->cache
[new_entry
->index
- 1]);
434 istate
->split_index
->base
->cache
[new_entry
->index
- 1] = new_entry
;
438 void add_split_index(struct index_state
*istate
)
440 if (!istate
->split_index
) {
441 init_split_index(istate
);
442 istate
->cache_changed
|= SPLIT_INDEX_ORDERED
;
446 void remove_split_index(struct index_state
*istate
)
448 if (istate
->split_index
) {
449 if (istate
->split_index
->base
) {
451 * When removing the split index, we need to move
452 * ownership of the mem_pool associated with the
453 * base index to the main index. There may be cache entries
454 * allocated from the base's memory pool that are shared with
457 mem_pool_combine(istate
->ce_mem_pool
,
458 istate
->split_index
->base
->ce_mem_pool
);
461 * The split index no longer owns the mem_pool backing
462 * its cache array. As we are discarding this index,
463 * mark the index as having no cache entries, so it
464 * will not attempt to clean up the cache entries or
467 istate
->split_index
->base
->cache_nr
= 0;
471 * We can discard the split index because its
472 * memory pool has been incorporated into the
473 * memory pool associated with the the_index.
475 discard_split_index(istate
);
477 istate
->cache_changed
|= SOMETHING_CHANGED
;