t1450-fsck: exec-bit is not needed to make loose object writable
[git/debian.git] / merge-ort.c
blob0342f104836b69a7889b3fa686c7c359c27e5dd6
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
6 * git merge [-s recursive]
8 * with
10 * git merge -s ort
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
17 #include "cache.h"
18 #include "merge-ort.h"
20 #include "alloc.h"
21 #include "attr.h"
22 #include "blob.h"
23 #include "cache-tree.h"
24 #include "commit.h"
25 #include "commit-reach.h"
26 #include "diff.h"
27 #include "diffcore.h"
28 #include "dir.h"
29 #include "entry.h"
30 #include "ll-merge.h"
31 #include "object-store.h"
32 #include "promisor-remote.h"
33 #include "revision.h"
34 #include "strmap.h"
35 #include "submodule-config.h"
36 #include "submodule.h"
37 #include "tree.h"
38 #include "unpack-trees.h"
39 #include "xdiff-interface.h"
42 * We have many arrays of size 3. Whenever we have such an array, the
43 * indices refer to one of the sides of the three-way merge. This is so
44 * pervasive that the constants 0, 1, and 2 are used in many places in the
45 * code (especially in arithmetic operations to find the other side's index
46 * or to compute a relevant mask), but sometimes these enum names are used
47 * to aid code clarity.
49 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
50 * referred to there is one of these three sides.
52 enum merge_side {
53 MERGE_BASE = 0,
54 MERGE_SIDE1 = 1,
55 MERGE_SIDE2 = 2
58 static unsigned RESULT_INITIALIZED = 0x1abe11ed; /* unlikely accidental value */
60 struct traversal_callback_data {
61 unsigned long mask;
62 unsigned long dirmask;
63 struct name_entry names[3];
66 struct deferred_traversal_data {
68 * possible_trivial_merges: directories to be explored only when needed
70 * possible_trivial_merges is a map of directory names to
71 * dir_rename_mask. When we detect that a directory is unchanged on
72 * one side, we can sometimes resolve the directory without recursing
73 * into it. Renames are the only things that can prevent such an
74 * optimization. However, for rename sources:
75 * - If no parent directory needed directory rename detection, then
76 * no path under such a directory can be a relevant_source.
77 * and for rename destinations:
78 * - If no cached rename has a target path under the directory AND
79 * - If there are no unpaired relevant_sources elsewhere in the
80 * repository
81 * then we don't need any path under this directory for a rename
82 * destination. The only way to know the last item above is to defer
83 * handling such directories until the end of collect_merge_info(),
84 * in handle_deferred_entries().
86 * For each we store dir_rename_mask, since that's the only bit of
87 * information we need, other than the path, to resume the recursive
88 * traversal.
90 struct strintmap possible_trivial_merges;
93 * trivial_merges_okay: if trivial directory merges are okay
95 * See possible_trivial_merges above. The "no unpaired
96 * relevant_sources elsewhere in the repository" is a single boolean
97 * per merge side, which we store here. Note that while 0 means no,
98 * 1 only means "maybe" rather than "yes"; we optimistically set it
99 * to 1 initially and only clear when we determine it is unsafe to
100 * do trivial directory merges.
102 unsigned trivial_merges_okay;
105 * target_dirs: ancestor directories of rename targets
107 * target_dirs contains all directory names that are an ancestor of
108 * any rename destination.
110 struct strset target_dirs;
113 struct rename_info {
115 * All variables that are arrays of size 3 correspond to data tracked
116 * for the sides in enum merge_side. Index 0 is almost always unused
117 * because we often only need to track information for MERGE_SIDE1 and
118 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
119 * are determined relative to what changed since the MERGE_BASE).
123 * pairs: pairing of filenames from diffcore_rename()
125 struct diff_queue_struct pairs[3];
128 * dirs_removed: directories removed on a given side of history.
130 * The keys of dirs_removed[side] are the directories that were removed
131 * on the given side of history. The value of the strintmap for each
132 * directory is a value from enum dir_rename_relevance.
134 struct strintmap dirs_removed[3];
137 * dir_rename_count: tracking where parts of a directory were renamed to
139 * When files in a directory are renamed, they may not all go to the
140 * same location. Each strmap here tracks:
141 * old_dir => {new_dir => int}
142 * That is, dir_rename_count[side] is a strmap to a strintmap.
144 struct strmap dir_rename_count[3];
147 * dir_renames: computed directory renames
149 * This is a map of old_dir => new_dir and is derived in part from
150 * dir_rename_count.
152 struct strmap dir_renames[3];
155 * relevant_sources: deleted paths wanted in rename detection, and why
157 * relevant_sources is a set of deleted paths on each side of
158 * history for which we need rename detection. If a path is deleted
159 * on one side of history, we need to detect if it is part of a
160 * rename if either
161 * * the file is modified/deleted on the other side of history
162 * * we need to detect renames for an ancestor directory
163 * If neither of those are true, we can skip rename detection for
164 * that path. The reason is stored as a value from enum
165 * file_rename_relevance, as the reason can inform the algorithm in
166 * diffcore_rename_extended().
168 struct strintmap relevant_sources[3];
170 struct deferred_traversal_data deferred[3];
173 * dir_rename_mask:
174 * 0: optimization removing unmodified potential rename source okay
175 * 2 or 4: optimization okay, but must check for files added to dir
176 * 7: optimization forbidden; need rename source in case of dir rename
178 unsigned dir_rename_mask:3;
181 * callback_data_*: supporting data structures for alternate traversal
183 * We sometimes need to be able to traverse through all the files
184 * in a given tree before all immediate subdirectories within that
185 * tree. Since traverse_trees() doesn't do that naturally, we have
186 * a traverse_trees_wrapper() that stores any immediate
187 * subdirectories while traversing files, then traverses the
188 * immediate subdirectories later. These callback_data* variables
189 * store the information for the subdirectories so that we can do
190 * that traversal order.
192 struct traversal_callback_data *callback_data;
193 int callback_data_nr, callback_data_alloc;
194 char *callback_data_traverse_path;
197 * merge_trees: trees passed to the merge algorithm for the merge
199 * merge_trees records the trees passed to the merge algorithm. But,
200 * this data also is stored in merge_result->priv. If a sequence of
201 * merges are being done (such as when cherry-picking or rebasing),
202 * the next merge can look at this and re-use information from
203 * previous merges under certain circumstances.
205 * See also all the cached_* variables.
207 struct tree *merge_trees[3];
210 * cached_pairs_valid_side: which side's cached info can be reused
212 * See the description for merge_trees. For repeated merges, at most
213 * only one side's cached information can be used. Valid values:
214 * MERGE_SIDE2: cached data from side2 can be reused
215 * MERGE_SIDE1: cached data from side1 can be reused
216 * 0: no cached data can be reused
217 * -1: See redo_after_renames; both sides can be reused.
219 int cached_pairs_valid_side;
222 * cached_pairs: Caching of renames and deletions.
224 * These are mappings recording renames and deletions of individual
225 * files (not directories). They are thus a map from an old
226 * filename to either NULL (for deletions) or a new filename (for
227 * renames).
229 struct strmap cached_pairs[3];
232 * cached_target_names: just the destinations from cached_pairs
234 * We sometimes want a fast lookup to determine if a given filename
235 * is one of the destinations in cached_pairs. cached_target_names
236 * is thus duplicative information, but it provides a fast lookup.
238 struct strset cached_target_names[3];
241 * cached_irrelevant: Caching of rename_sources that aren't relevant.
243 * If we try to detect a rename for a source path and succeed, it's
244 * part of a rename. If we try to detect a rename for a source path
245 * and fail, then it's a delete. If we do not try to detect a rename
246 * for a path, then we don't know if it's a rename or a delete. If
247 * merge-ort doesn't think the path is relevant, then we just won't
248 * cache anything for that path. But there's a slight problem in
249 * that merge-ort can think a path is RELEVANT_LOCATION, but due to
250 * commit 9bd342137e ("diffcore-rename: determine which
251 * relevant_sources are no longer relevant", 2021-03-13),
252 * diffcore-rename can downgrade the path to RELEVANT_NO_MORE. To
253 * avoid excessive calls to diffcore_rename_extended() we still need
254 * to cache such paths, though we cannot record them as either
255 * renames or deletes. So we cache them here as a "turned out to be
256 * irrelevant *for this commit*" as they are often also irrelevant
257 * for subsequent commits, though we will have to do some extra
258 * checking to see whether such paths become relevant for rename
259 * detection when cherry-picking/rebasing subsequent commits.
261 struct strset cached_irrelevant[3];
264 * redo_after_renames: optimization flag for "restarting" the merge
266 * Sometimes it pays to detect renames, cache them, and then
267 * restart the merge operation from the beginning. The reason for
268 * this is that when we know where all the renames are, we know
269 * whether a certain directory has any paths under it affected --
270 * and if a directory is not affected then it permits us to do
271 * trivial tree merging in more cases. Doing trivial tree merging
272 * prevents the need to run process_entry() on every path
273 * underneath trees that can be trivially merged, and
274 * process_entry() is more expensive than collect_merge_info() --
275 * plus, the second collect_merge_info() will be much faster since
276 * it doesn't have to recurse into the relevant trees.
278 * Values for this flag:
279 * 0 = don't bother, not worth it (or conditions not yet checked)
280 * 1 = conditions for optimization met, optimization worthwhile
281 * 2 = we already did it (don't restart merge yet again)
283 unsigned redo_after_renames;
286 * needed_limit: value needed for inexact rename detection to run
288 * If the current rename limit wasn't high enough for inexact
289 * rename detection to run, this records the limit needed. Otherwise,
290 * this value remains 0.
292 int needed_limit;
295 struct merge_options_internal {
297 * paths: primary data structure in all of merge ort.
299 * The keys of paths:
300 * * are full relative paths from the toplevel of the repository
301 * (e.g. "drivers/firmware/raspberrypi.c").
302 * * store all relevant paths in the repo, both directories and
303 * files (e.g. drivers, drivers/firmware would also be included)
304 * * these keys serve to intern all the path strings, which allows
305 * us to do pointer comparison on directory names instead of
306 * strcmp; we just have to be careful to use the interned strings.
308 * The values of paths:
309 * * either a pointer to a merged_info, or a conflict_info struct
310 * * merged_info contains all relevant information for a
311 * non-conflicted entry.
312 * * conflict_info contains a merged_info, plus any additional
313 * information about a conflict such as the higher orders stages
314 * involved and the names of the paths those came from (handy
315 * once renames get involved).
316 * * a path may start "conflicted" (i.e. point to a conflict_info)
317 * and then a later step (e.g. three-way content merge) determines
318 * it can be cleanly merged, at which point it'll be marked clean
319 * and the algorithm will ignore any data outside the contained
320 * merged_info for that entry
321 * * If an entry remains conflicted, the merged_info portion of a
322 * conflict_info will later be filled with whatever version of
323 * the file should be placed in the working directory (e.g. an
324 * as-merged-as-possible variation that contains conflict markers).
326 struct strmap paths;
329 * conflicted: a subset of keys->values from "paths"
331 * conflicted is basically an optimization between process_entries()
332 * and record_conflicted_index_entries(); the latter could loop over
333 * ALL the entries in paths AGAIN and look for the ones that are
334 * still conflicted, but since process_entries() has to loop over
335 * all of them, it saves the ones it couldn't resolve in this strmap
336 * so that record_conflicted_index_entries() can iterate just the
337 * relevant entries.
339 struct strmap conflicted;
342 * pool: memory pool for fast allocation/deallocation
344 * We allocate room for lots of filenames and auxiliary data
345 * structures in merge_options_internal, and it tends to all be
346 * freed together too. Using a memory pool for these provides a
347 * nice speedup.
349 struct mem_pool pool;
352 * output: special messages and conflict notices for various paths
354 * This is a map of pathnames (a subset of the keys in "paths" above)
355 * to strbufs. It gathers various warning/conflict/notice messages
356 * for later processing.
358 struct strmap output;
361 * renames: various data relating to rename detection
363 struct rename_info renames;
366 * attr_index: hacky minimal index used for renormalization
368 * renormalization code _requires_ an index, though it only needs to
369 * find a .gitattributes file within the index. So, when
370 * renormalization is important, we create a special index with just
371 * that one file.
373 struct index_state attr_index;
376 * current_dir_name, toplevel_dir: temporary vars
378 * These are used in collect_merge_info_callback(), and will set the
379 * various merged_info.directory_name for the various paths we get;
380 * see documentation for that variable and the requirements placed on
381 * that field.
383 const char *current_dir_name;
384 const char *toplevel_dir;
386 /* call_depth: recursion level counter for merging merge bases */
387 int call_depth;
390 struct version_info {
391 struct object_id oid;
392 unsigned short mode;
395 struct merged_info {
396 /* if is_null, ignore result. otherwise result has oid & mode */
397 struct version_info result;
398 unsigned is_null:1;
401 * clean: whether the path in question is cleanly merged.
403 * see conflict_info.merged for more details.
405 unsigned clean:1;
408 * basename_offset: offset of basename of path.
410 * perf optimization to avoid recomputing offset of final '/'
411 * character in pathname (0 if no '/' in pathname).
413 size_t basename_offset;
416 * directory_name: containing directory name.
418 * Note that we assume directory_name is constructed such that
419 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
420 * i.e. string equality is equivalent to pointer equality. For this
421 * to hold, we have to be careful setting directory_name.
423 const char *directory_name;
426 struct conflict_info {
428 * merged: the version of the path that will be written to working tree
430 * WARNING: It is critical to check merged.clean and ensure it is 0
431 * before reading any conflict_info fields outside of merged.
432 * Allocated merge_info structs will always have clean set to 1.
433 * Allocated conflict_info structs will have merged.clean set to 0
434 * initially. The merged.clean field is how we know if it is safe
435 * to access other parts of conflict_info besides merged; if a
436 * conflict_info's merged.clean is changed to 1, the rest of the
437 * algorithm is not allowed to look at anything outside of the
438 * merged member anymore.
440 struct merged_info merged;
442 /* oids & modes from each of the three trees for this path */
443 struct version_info stages[3];
445 /* pathnames for each stage; may differ due to rename detection */
446 const char *pathnames[3];
448 /* Whether this path is/was involved in a directory/file conflict */
449 unsigned df_conflict:1;
452 * Whether this path is/was involved in a non-content conflict other
453 * than a directory/file conflict (e.g. rename/rename, rename/delete,
454 * file location based on possible directory rename).
456 unsigned path_conflict:1;
459 * For filemask and dirmask, the ith bit corresponds to whether the
460 * ith entry is a file (filemask) or a directory (dirmask). Thus,
461 * filemask & dirmask is always zero, and filemask | dirmask is at
462 * most 7 but can be less when a path does not appear as either a
463 * file or a directory on at least one side of history.
465 * Note that these masks are related to enum merge_side, as the ith
466 * entry corresponds to side i.
468 * These values come from a traverse_trees() call; more info may be
469 * found looking at tree-walk.h's struct traverse_info,
470 * particularly the documentation above the "fn" member (note that
471 * filemask = mask & ~dirmask from that documentation).
473 unsigned filemask:3;
474 unsigned dirmask:3;
477 * Optimization to track which stages match, to avoid the need to
478 * recompute it in multiple steps. Either 0 or at least 2 bits are
479 * set; if at least 2 bits are set, their corresponding stages match.
481 unsigned match_mask:3;
484 /*** Function Grouping: various utility functions ***/
487 * For the next three macros, see warning for conflict_info.merged.
489 * In each of the below, mi is a struct merged_info*, and ci was defined
490 * as a struct conflict_info* (but we need to verify ci isn't actually
491 * pointed at a struct merged_info*).
493 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
494 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
495 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
497 #define INITIALIZE_CI(ci, mi) do { \
498 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
499 } while (0)
500 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
501 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
502 (ci) = (struct conflict_info *)(mi); \
503 assert((ci) && !(mi)->clean); \
504 } while (0)
506 static void free_strmap_strings(struct strmap *map)
508 struct hashmap_iter iter;
509 struct strmap_entry *entry;
511 strmap_for_each_entry(map, &iter, entry) {
512 free((char*)entry->key);
516 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
517 int reinitialize)
519 struct rename_info *renames = &opti->renames;
520 int i;
521 void (*strmap_clear_func)(struct strmap *, int) =
522 reinitialize ? strmap_partial_clear : strmap_clear;
523 void (*strintmap_clear_func)(struct strintmap *) =
524 reinitialize ? strintmap_partial_clear : strintmap_clear;
525 void (*strset_clear_func)(struct strset *) =
526 reinitialize ? strset_partial_clear : strset_clear;
528 strmap_clear_func(&opti->paths, 0);
531 * All keys and values in opti->conflicted are a subset of those in
532 * opti->paths. We don't want to deallocate anything twice, so we
533 * don't free the keys and we pass 0 for free_values.
535 strmap_clear_func(&opti->conflicted, 0);
537 if (opti->attr_index.cache_nr) /* true iff opt->renormalize */
538 discard_index(&opti->attr_index);
540 /* Free memory used by various renames maps */
541 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
542 strintmap_clear_func(&renames->dirs_removed[i]);
543 strmap_clear_func(&renames->dir_renames[i], 0);
544 strintmap_clear_func(&renames->relevant_sources[i]);
545 if (!reinitialize)
546 assert(renames->cached_pairs_valid_side == 0);
547 if (i != renames->cached_pairs_valid_side &&
548 -1 != renames->cached_pairs_valid_side) {
549 strset_clear_func(&renames->cached_target_names[i]);
550 strmap_clear_func(&renames->cached_pairs[i], 1);
551 strset_clear_func(&renames->cached_irrelevant[i]);
552 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
553 if (!reinitialize)
554 strmap_clear(&renames->dir_rename_count[i], 1);
557 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
558 strintmap_clear_func(&renames->deferred[i].possible_trivial_merges);
559 strset_clear_func(&renames->deferred[i].target_dirs);
560 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
562 renames->cached_pairs_valid_side = 0;
563 renames->dir_rename_mask = 0;
565 if (!reinitialize) {
566 struct hashmap_iter iter;
567 struct strmap_entry *e;
569 /* Release and free each strbuf found in output */
570 strmap_for_each_entry(&opti->output, &iter, e) {
571 struct strbuf *sb = e->value;
572 strbuf_release(sb);
574 * While strictly speaking we don't need to free(sb)
575 * here because we could pass free_values=1 when
576 * calling strmap_clear() on opti->output, that would
577 * require strmap_clear to do another
578 * strmap_for_each_entry() loop, so we just free it
579 * while we're iterating anyway.
581 free(sb);
583 strmap_clear(&opti->output, 0);
586 mem_pool_discard(&opti->pool, 0);
588 /* Clean out callback_data as well. */
589 FREE_AND_NULL(renames->callback_data);
590 renames->callback_data_nr = renames->callback_data_alloc = 0;
593 __attribute__((format (printf, 2, 3)))
594 static int err(struct merge_options *opt, const char *err, ...)
596 va_list params;
597 struct strbuf sb = STRBUF_INIT;
599 strbuf_addstr(&sb, "error: ");
600 va_start(params, err);
601 strbuf_vaddf(&sb, err, params);
602 va_end(params);
604 error("%s", sb.buf);
605 strbuf_release(&sb);
607 return -1;
610 static void format_commit(struct strbuf *sb,
611 int indent,
612 struct repository *repo,
613 struct commit *commit)
615 struct merge_remote_desc *desc;
616 struct pretty_print_context ctx = {0};
617 ctx.abbrev = DEFAULT_ABBREV;
619 strbuf_addchars(sb, ' ', indent);
620 desc = merge_remote_util(commit);
621 if (desc) {
622 strbuf_addf(sb, "virtual %s\n", desc->name);
623 return;
626 repo_format_commit_message(repo, commit, "%h %s", sb, &ctx);
627 strbuf_addch(sb, '\n');
630 __attribute__((format (printf, 4, 5)))
631 static void path_msg(struct merge_options *opt,
632 const char *path,
633 int omittable_hint, /* skippable under --remerge-diff */
634 const char *fmt, ...)
636 va_list ap;
637 struct strbuf *sb = strmap_get(&opt->priv->output, path);
638 if (!sb) {
639 sb = xmalloc(sizeof(*sb));
640 strbuf_init(sb, 0);
641 strmap_put(&opt->priv->output, path, sb);
644 va_start(ap, fmt);
645 strbuf_vaddf(sb, fmt, ap);
646 va_end(ap);
648 strbuf_addch(sb, '\n');
651 static struct diff_filespec *pool_alloc_filespec(struct mem_pool *pool,
652 const char *path)
654 /* Similar to alloc_filespec(), but allocate from pool and reuse path */
655 struct diff_filespec *spec;
657 spec = mem_pool_calloc(pool, 1, sizeof(*spec));
658 spec->path = (char*)path; /* spec won't modify it */
660 spec->count = 1;
661 spec->is_binary = -1;
662 return spec;
665 static struct diff_filepair *pool_diff_queue(struct mem_pool *pool,
666 struct diff_queue_struct *queue,
667 struct diff_filespec *one,
668 struct diff_filespec *two)
670 /* Same code as diff_queue(), except allocate from pool */
671 struct diff_filepair *dp;
673 dp = mem_pool_calloc(pool, 1, sizeof(*dp));
674 dp->one = one;
675 dp->two = two;
676 if (queue)
677 diff_q(queue, dp);
678 return dp;
681 /* add a string to a strbuf, but converting "/" to "_" */
682 static void add_flattened_path(struct strbuf *out, const char *s)
684 size_t i = out->len;
685 strbuf_addstr(out, s);
686 for (; i < out->len; i++)
687 if (out->buf[i] == '/')
688 out->buf[i] = '_';
691 static char *unique_path(struct strmap *existing_paths,
692 const char *path,
693 const char *branch)
695 struct strbuf newpath = STRBUF_INIT;
696 int suffix = 0;
697 size_t base_len;
699 strbuf_addf(&newpath, "%s~", path);
700 add_flattened_path(&newpath, branch);
702 base_len = newpath.len;
703 while (strmap_contains(existing_paths, newpath.buf)) {
704 strbuf_setlen(&newpath, base_len);
705 strbuf_addf(&newpath, "_%d", suffix++);
708 return strbuf_detach(&newpath, NULL);
711 /*** Function Grouping: functions related to collect_merge_info() ***/
713 static int traverse_trees_wrapper_callback(int n,
714 unsigned long mask,
715 unsigned long dirmask,
716 struct name_entry *names,
717 struct traverse_info *info)
719 struct merge_options *opt = info->data;
720 struct rename_info *renames = &opt->priv->renames;
721 unsigned filemask = mask & ~dirmask;
723 assert(n==3);
725 if (!renames->callback_data_traverse_path)
726 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
728 if (filemask && filemask == renames->dir_rename_mask)
729 renames->dir_rename_mask = 0x07;
731 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
732 renames->callback_data_alloc);
733 renames->callback_data[renames->callback_data_nr].mask = mask;
734 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
735 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
736 names, 3);
737 renames->callback_data_nr++;
739 return mask;
743 * Much like traverse_trees(), BUT:
744 * - read all the tree entries FIRST, saving them
745 * - note that the above step provides an opportunity to compute necessary
746 * additional details before the "real" traversal
747 * - loop through the saved entries and call the original callback on them
749 static int traverse_trees_wrapper(struct index_state *istate,
750 int n,
751 struct tree_desc *t,
752 struct traverse_info *info)
754 int ret, i, old_offset;
755 traverse_callback_t old_fn;
756 char *old_callback_data_traverse_path;
757 struct merge_options *opt = info->data;
758 struct rename_info *renames = &opt->priv->renames;
760 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
762 old_callback_data_traverse_path = renames->callback_data_traverse_path;
763 old_fn = info->fn;
764 old_offset = renames->callback_data_nr;
766 renames->callback_data_traverse_path = NULL;
767 info->fn = traverse_trees_wrapper_callback;
768 ret = traverse_trees(istate, n, t, info);
769 if (ret < 0)
770 return ret;
772 info->traverse_path = renames->callback_data_traverse_path;
773 info->fn = old_fn;
774 for (i = old_offset; i < renames->callback_data_nr; ++i) {
775 info->fn(n,
776 renames->callback_data[i].mask,
777 renames->callback_data[i].dirmask,
778 renames->callback_data[i].names,
779 info);
782 renames->callback_data_nr = old_offset;
783 free(renames->callback_data_traverse_path);
784 renames->callback_data_traverse_path = old_callback_data_traverse_path;
785 info->traverse_path = NULL;
786 return 0;
789 static void setup_path_info(struct merge_options *opt,
790 struct string_list_item *result,
791 const char *current_dir_name,
792 int current_dir_name_len,
793 char *fullpath, /* we'll take over ownership */
794 struct name_entry *names,
795 struct name_entry *merged_version,
796 unsigned is_null, /* boolean */
797 unsigned df_conflict, /* boolean */
798 unsigned filemask,
799 unsigned dirmask,
800 int resolved /* boolean */)
802 /* result->util is void*, so mi is a convenience typed variable */
803 struct merged_info *mi;
805 assert(!is_null || resolved);
806 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
807 assert(resolved == (merged_version != NULL));
809 mi = mem_pool_calloc(&opt->priv->pool, 1,
810 resolved ? sizeof(struct merged_info) :
811 sizeof(struct conflict_info));
812 mi->directory_name = current_dir_name;
813 mi->basename_offset = current_dir_name_len;
814 mi->clean = !!resolved;
815 if (resolved) {
816 mi->result.mode = merged_version->mode;
817 oidcpy(&mi->result.oid, &merged_version->oid);
818 mi->is_null = !!is_null;
819 } else {
820 int i;
821 struct conflict_info *ci;
823 ASSIGN_AND_VERIFY_CI(ci, mi);
824 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
825 ci->pathnames[i] = fullpath;
826 ci->stages[i].mode = names[i].mode;
827 oidcpy(&ci->stages[i].oid, &names[i].oid);
829 ci->filemask = filemask;
830 ci->dirmask = dirmask;
831 ci->df_conflict = !!df_conflict;
832 if (dirmask)
834 * Assume is_null for now, but if we have entries
835 * under the directory then when it is complete in
836 * write_completed_directory() it'll update this.
837 * Also, for D/F conflicts, we have to handle the
838 * directory first, then clear this bit and process
839 * the file to see how it is handled -- that occurs
840 * near the top of process_entry().
842 mi->is_null = 1;
844 strmap_put(&opt->priv->paths, fullpath, mi);
845 result->string = fullpath;
846 result->util = mi;
849 static void add_pair(struct merge_options *opt,
850 struct name_entry *names,
851 const char *pathname,
852 unsigned side,
853 unsigned is_add /* if false, is_delete */,
854 unsigned match_mask,
855 unsigned dir_rename_mask)
857 struct diff_filespec *one, *two;
858 struct rename_info *renames = &opt->priv->renames;
859 int names_idx = is_add ? side : 0;
861 if (is_add) {
862 assert(match_mask == 0 || match_mask == 6);
863 if (strset_contains(&renames->cached_target_names[side],
864 pathname))
865 return;
866 } else {
867 unsigned content_relevant = (match_mask == 0);
868 unsigned location_relevant = (dir_rename_mask == 0x07);
870 assert(match_mask == 0 || match_mask == 3 || match_mask == 5);
873 * If pathname is found in cached_irrelevant[side] due to
874 * previous pick but for this commit content is relevant,
875 * then we need to remove it from cached_irrelevant.
877 if (content_relevant)
878 /* strset_remove is no-op if strset doesn't have key */
879 strset_remove(&renames->cached_irrelevant[side],
880 pathname);
883 * We do not need to re-detect renames for paths that we already
884 * know the pairing, i.e. for cached_pairs (or
885 * cached_irrelevant). However, handle_deferred_entries() needs
886 * to loop over the union of keys from relevant_sources[side] and
887 * cached_pairs[side], so for simplicity we set relevant_sources
888 * for all the cached_pairs too and then strip them back out in
889 * prune_cached_from_relevant() at the beginning of
890 * detect_regular_renames().
892 if (content_relevant || location_relevant) {
893 /* content_relevant trumps location_relevant */
894 strintmap_set(&renames->relevant_sources[side], pathname,
895 content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION);
899 * Avoid creating pair if we've already cached rename results.
900 * Note that we do this after setting relevant_sources[side]
901 * as noted in the comment above.
903 if (strmap_contains(&renames->cached_pairs[side], pathname) ||
904 strset_contains(&renames->cached_irrelevant[side], pathname))
905 return;
908 one = pool_alloc_filespec(&opt->priv->pool, pathname);
909 two = pool_alloc_filespec(&opt->priv->pool, pathname);
910 fill_filespec(is_add ? two : one,
911 &names[names_idx].oid, 1, names[names_idx].mode);
912 pool_diff_queue(&opt->priv->pool, &renames->pairs[side], one, two);
915 static void collect_rename_info(struct merge_options *opt,
916 struct name_entry *names,
917 const char *dirname,
918 const char *fullname,
919 unsigned filemask,
920 unsigned dirmask,
921 unsigned match_mask)
923 struct rename_info *renames = &opt->priv->renames;
924 unsigned side;
927 * Update dir_rename_mask (determines ignore-rename-source validity)
929 * dir_rename_mask helps us keep track of when directory rename
930 * detection may be relevant. Basically, whenver a directory is
931 * removed on one side of history, and a file is added to that
932 * directory on the other side of history, directory rename
933 * detection is relevant (meaning we have to detect renames for all
934 * files within that directory to deduce where the directory
935 * moved). Also, whenever a directory needs directory rename
936 * detection, due to the "majority rules" choice for where to move
937 * it (see t6423 testcase 1f), we also need to detect renames for
938 * all files within subdirectories of that directory as well.
940 * Here we haven't looked at files within the directory yet, we are
941 * just looking at the directory itself. So, if we aren't yet in
942 * a case where a parent directory needed directory rename detection
943 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
944 * on one side of history, record the mask of the other side of
945 * history in dir_rename_mask.
947 if (renames->dir_rename_mask != 0x07 &&
948 (dirmask == 3 || dirmask == 5)) {
949 /* simple sanity check */
950 assert(renames->dir_rename_mask == 0 ||
951 renames->dir_rename_mask == (dirmask & ~1));
952 /* update dir_rename_mask; have it record mask of new side */
953 renames->dir_rename_mask = (dirmask & ~1);
956 /* Update dirs_removed, as needed */
957 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
958 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
959 unsigned sides = (0x07 - dirmask)/2;
960 unsigned relevance = (renames->dir_rename_mask == 0x07) ?
961 RELEVANT_FOR_ANCESTOR : NOT_RELEVANT;
963 * Record relevance of this directory. However, note that
964 * when collect_merge_info_callback() recurses into this
965 * directory and calls collect_rename_info() on paths
966 * within that directory, if we find a path that was added
967 * to this directory on the other side of history, we will
968 * upgrade this value to RELEVANT_FOR_SELF; see below.
970 if (sides & 1)
971 strintmap_set(&renames->dirs_removed[1], fullname,
972 relevance);
973 if (sides & 2)
974 strintmap_set(&renames->dirs_removed[2], fullname,
975 relevance);
979 * Here's the block that potentially upgrades to RELEVANT_FOR_SELF.
980 * When we run across a file added to a directory. In such a case,
981 * find the directory of the file and upgrade its relevance.
983 if (renames->dir_rename_mask == 0x07 &&
984 (filemask == 2 || filemask == 4)) {
986 * Need directory rename for parent directory on other side
987 * of history from added file. Thus
988 * side = (~filemask & 0x06) >> 1
989 * or
990 * side = 3 - (filemask/2).
992 unsigned side = 3 - (filemask >> 1);
993 strintmap_set(&renames->dirs_removed[side], dirname,
994 RELEVANT_FOR_SELF);
997 if (filemask == 0 || filemask == 7)
998 return;
1000 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
1001 unsigned side_mask = (1 << side);
1003 /* Check for deletion on side */
1004 if ((filemask & 1) && !(filemask & side_mask))
1005 add_pair(opt, names, fullname, side, 0 /* delete */,
1006 match_mask & filemask,
1007 renames->dir_rename_mask);
1009 /* Check for addition on side */
1010 if (!(filemask & 1) && (filemask & side_mask))
1011 add_pair(opt, names, fullname, side, 1 /* add */,
1012 match_mask & filemask,
1013 renames->dir_rename_mask);
1017 static int collect_merge_info_callback(int n,
1018 unsigned long mask,
1019 unsigned long dirmask,
1020 struct name_entry *names,
1021 struct traverse_info *info)
1024 * n is 3. Always.
1025 * common ancestor (mbase) has mask 1, and stored in index 0 of names
1026 * head of side 1 (side1) has mask 2, and stored in index 1 of names
1027 * head of side 2 (side2) has mask 4, and stored in index 2 of names
1029 struct merge_options *opt = info->data;
1030 struct merge_options_internal *opti = opt->priv;
1031 struct rename_info *renames = &opt->priv->renames;
1032 struct string_list_item pi; /* Path Info */
1033 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
1034 struct name_entry *p;
1035 size_t len;
1036 char *fullpath;
1037 const char *dirname = opti->current_dir_name;
1038 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
1039 unsigned filemask = mask & ~dirmask;
1040 unsigned match_mask = 0; /* will be updated below */
1041 unsigned mbase_null = !(mask & 1);
1042 unsigned side1_null = !(mask & 2);
1043 unsigned side2_null = !(mask & 4);
1044 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
1045 names[0].mode == names[1].mode &&
1046 oideq(&names[0].oid, &names[1].oid));
1047 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
1048 names[0].mode == names[2].mode &&
1049 oideq(&names[0].oid, &names[2].oid));
1050 unsigned sides_match = (!side1_null && !side2_null &&
1051 names[1].mode == names[2].mode &&
1052 oideq(&names[1].oid, &names[2].oid));
1055 * Note: When a path is a file on one side of history and a directory
1056 * in another, we have a directory/file conflict. In such cases, if
1057 * the conflict doesn't resolve from renames and deletions, then we
1058 * always leave directories where they are and move files out of the
1059 * way. Thus, while struct conflict_info has a df_conflict field to
1060 * track such conflicts, we ignore that field for any directories at
1061 * a path and only pay attention to it for files at the given path.
1062 * The fact that we leave directories were they are also means that
1063 * we do not need to worry about getting additional df_conflict
1064 * information propagated from parent directories down to children
1065 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
1066 * sets a newinfo.df_conflicts field specifically to propagate it).
1068 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
1070 /* n = 3 is a fundamental assumption. */
1071 if (n != 3)
1072 BUG("Called collect_merge_info_callback wrong");
1075 * A bunch of sanity checks verifying that traverse_trees() calls
1076 * us the way I expect. Could just remove these at some point,
1077 * though maybe they are helpful to future code readers.
1079 assert(mbase_null == is_null_oid(&names[0].oid));
1080 assert(side1_null == is_null_oid(&names[1].oid));
1081 assert(side2_null == is_null_oid(&names[2].oid));
1082 assert(!mbase_null || !side1_null || !side2_null);
1083 assert(mask > 0 && mask < 8);
1085 /* Determine match_mask */
1086 if (side1_matches_mbase)
1087 match_mask = (side2_matches_mbase ? 7 : 3);
1088 else if (side2_matches_mbase)
1089 match_mask = 5;
1090 else if (sides_match)
1091 match_mask = 6;
1094 * Get the name of the relevant filepath, which we'll pass to
1095 * setup_path_info() for tracking.
1097 p = names;
1098 while (!p->mode)
1099 p++;
1100 len = traverse_path_len(info, p->pathlen);
1102 /* +1 in both of the following lines to include the NUL byte */
1103 fullpath = mem_pool_alloc(&opt->priv->pool, len + 1);
1104 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
1107 * If mbase, side1, and side2 all match, we can resolve early. Even
1108 * if these are trees, there will be no renames or anything
1109 * underneath.
1111 if (side1_matches_mbase && side2_matches_mbase) {
1112 /* mbase, side1, & side2 all match; use mbase as resolution */
1113 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1114 names, names+0, mbase_null, 0 /* df_conflict */,
1115 filemask, dirmask, 1 /* resolved */);
1116 return mask;
1120 * If the sides match, and all three paths are present and are
1121 * files, then we can take either as the resolution. We can't do
1122 * this with trees, because there may be rename sources from the
1123 * merge_base.
1125 if (sides_match && filemask == 0x07) {
1126 /* use side1 (== side2) version as resolution */
1127 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1128 names, names+1, side1_null, 0,
1129 filemask, dirmask, 1);
1130 return mask;
1134 * If side1 matches mbase and all three paths are present and are
1135 * files, then we can use side2 as the resolution. We cannot
1136 * necessarily do so this for trees, because there may be rename
1137 * destinations within side2.
1139 if (side1_matches_mbase && filemask == 0x07) {
1140 /* use side2 version as resolution */
1141 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1142 names, names+2, side2_null, 0,
1143 filemask, dirmask, 1);
1144 return mask;
1147 /* Similar to above but swapping sides 1 and 2 */
1148 if (side2_matches_mbase && filemask == 0x07) {
1149 /* use side1 version as resolution */
1150 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1151 names, names+1, side1_null, 0,
1152 filemask, dirmask, 1);
1153 return mask;
1157 * Sometimes we can tell that a source path need not be included in
1158 * rename detection -- namely, whenever either
1159 * side1_matches_mbase && side2_null
1160 * or
1161 * side2_matches_mbase && side1_null
1162 * However, we call collect_rename_info() even in those cases,
1163 * because exact renames are cheap and would let us remove both a
1164 * source and destination path. We'll cull the unneeded sources
1165 * later.
1167 collect_rename_info(opt, names, dirname, fullpath,
1168 filemask, dirmask, match_mask);
1171 * None of the special cases above matched, so we have a
1172 * provisional conflict. (Rename detection might allow us to
1173 * unconflict some more cases, but that comes later so all we can
1174 * do now is record the different non-null file hashes.)
1176 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1177 names, NULL, 0, df_conflict, filemask, dirmask, 0);
1179 ci = pi.util;
1180 VERIFY_CI(ci);
1181 ci->match_mask = match_mask;
1183 /* If dirmask, recurse into subdirectories */
1184 if (dirmask) {
1185 struct traverse_info newinfo;
1186 struct tree_desc t[3];
1187 void *buf[3] = {NULL, NULL, NULL};
1188 const char *original_dir_name;
1189 int i, ret, side;
1192 * Check for whether we can avoid recursing due to one side
1193 * matching the merge base. The side that does NOT match is
1194 * the one that might have a rename destination we need.
1196 assert(!side1_matches_mbase || !side2_matches_mbase);
1197 side = side1_matches_mbase ? MERGE_SIDE2 :
1198 side2_matches_mbase ? MERGE_SIDE1 : MERGE_BASE;
1199 if (filemask == 0 && (dirmask == 2 || dirmask == 4)) {
1201 * Also defer recursing into new directories; set up a
1202 * few variables to let us do so.
1204 ci->match_mask = (7 - dirmask);
1205 side = dirmask / 2;
1207 if (renames->dir_rename_mask != 0x07 &&
1208 side != MERGE_BASE &&
1209 renames->deferred[side].trivial_merges_okay &&
1210 !strset_contains(&renames->deferred[side].target_dirs,
1211 pi.string)) {
1212 strintmap_set(&renames->deferred[side].possible_trivial_merges,
1213 pi.string, renames->dir_rename_mask);
1214 renames->dir_rename_mask = prev_dir_rename_mask;
1215 return mask;
1218 /* We need to recurse */
1219 ci->match_mask &= filemask;
1220 newinfo = *info;
1221 newinfo.prev = info;
1222 newinfo.name = p->path;
1223 newinfo.namelen = p->pathlen;
1224 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
1226 * If this directory we are about to recurse into cared about
1227 * its parent directory (the current directory) having a D/F
1228 * conflict, then we'd propagate the masks in this way:
1229 * newinfo.df_conflicts |= (mask & ~dirmask);
1230 * But we don't worry about propagating D/F conflicts. (See
1231 * comment near setting of local df_conflict variable near
1232 * the beginning of this function).
1235 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1236 if (i == 1 && side1_matches_mbase)
1237 t[1] = t[0];
1238 else if (i == 2 && side2_matches_mbase)
1239 t[2] = t[0];
1240 else if (i == 2 && sides_match)
1241 t[2] = t[1];
1242 else {
1243 const struct object_id *oid = NULL;
1244 if (dirmask & 1)
1245 oid = &names[i].oid;
1246 buf[i] = fill_tree_descriptor(opt->repo,
1247 t + i, oid);
1249 dirmask >>= 1;
1252 original_dir_name = opti->current_dir_name;
1253 opti->current_dir_name = pi.string;
1254 if (renames->dir_rename_mask == 0 ||
1255 renames->dir_rename_mask == 0x07)
1256 ret = traverse_trees(NULL, 3, t, &newinfo);
1257 else
1258 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
1259 opti->current_dir_name = original_dir_name;
1260 renames->dir_rename_mask = prev_dir_rename_mask;
1262 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1263 free(buf[i]);
1265 if (ret < 0)
1266 return -1;
1269 return mask;
1272 static void resolve_trivial_directory_merge(struct conflict_info *ci, int side)
1274 VERIFY_CI(ci);
1275 assert((side == 1 && ci->match_mask == 5) ||
1276 (side == 2 && ci->match_mask == 3));
1277 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
1278 ci->merged.result.mode = ci->stages[side].mode;
1279 ci->merged.is_null = is_null_oid(&ci->stages[side].oid);
1280 ci->match_mask = 0;
1281 ci->merged.clean = 1; /* (ci->filemask == 0); */
1284 static int handle_deferred_entries(struct merge_options *opt,
1285 struct traverse_info *info)
1287 struct rename_info *renames = &opt->priv->renames;
1288 struct hashmap_iter iter;
1289 struct strmap_entry *entry;
1290 int side, ret = 0;
1291 int path_count_before, path_count_after = 0;
1293 path_count_before = strmap_get_size(&opt->priv->paths);
1294 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
1295 unsigned optimization_okay = 1;
1296 struct strintmap copy;
1298 /* Loop over the set of paths we need to know rename info for */
1299 strset_for_each_entry(&renames->relevant_sources[side],
1300 &iter, entry) {
1301 char *rename_target, *dir, *dir_marker;
1302 struct strmap_entry *e;
1305 * If we don't know delete/rename info for this path,
1306 * then we need to recurse into all trees to get all
1307 * adds to make sure we have it.
1309 if (strset_contains(&renames->cached_irrelevant[side],
1310 entry->key))
1311 continue;
1312 e = strmap_get_entry(&renames->cached_pairs[side],
1313 entry->key);
1314 if (!e) {
1315 optimization_okay = 0;
1316 break;
1319 /* If this is a delete, we have enough info already */
1320 rename_target = e->value;
1321 if (!rename_target)
1322 continue;
1324 /* If we already walked the rename target, we're good */
1325 if (strmap_contains(&opt->priv->paths, rename_target))
1326 continue;
1329 * Otherwise, we need to get a list of directories that
1330 * will need to be recursed into to get this
1331 * rename_target.
1333 dir = xstrdup(rename_target);
1334 while ((dir_marker = strrchr(dir, '/'))) {
1335 *dir_marker = '\0';
1336 if (strset_contains(&renames->deferred[side].target_dirs,
1337 dir))
1338 break;
1339 strset_add(&renames->deferred[side].target_dirs,
1340 dir);
1342 free(dir);
1344 renames->deferred[side].trivial_merges_okay = optimization_okay;
1346 * We need to recurse into any directories in
1347 * possible_trivial_merges[side] found in target_dirs[side].
1348 * But when we recurse, we may need to queue up some of the
1349 * subdirectories for possible_trivial_merges[side]. Since
1350 * we can't safely iterate through a hashmap while also adding
1351 * entries, move the entries into 'copy', iterate over 'copy',
1352 * and then we'll also iterate anything added into
1353 * possible_trivial_merges[side] once this loop is done.
1355 copy = renames->deferred[side].possible_trivial_merges;
1356 strintmap_init_with_options(&renames->deferred[side].possible_trivial_merges,
1358 &opt->priv->pool,
1360 strintmap_for_each_entry(&copy, &iter, entry) {
1361 const char *path = entry->key;
1362 unsigned dir_rename_mask = (intptr_t)entry->value;
1363 struct conflict_info *ci;
1364 unsigned dirmask;
1365 struct tree_desc t[3];
1366 void *buf[3] = {NULL,};
1367 int i;
1369 ci = strmap_get(&opt->priv->paths, path);
1370 VERIFY_CI(ci);
1371 dirmask = ci->dirmask;
1373 if (optimization_okay &&
1374 !strset_contains(&renames->deferred[side].target_dirs,
1375 path)) {
1376 resolve_trivial_directory_merge(ci, side);
1377 continue;
1380 info->name = path;
1381 info->namelen = strlen(path);
1382 info->pathlen = info->namelen + 1;
1384 for (i = 0; i < 3; i++, dirmask >>= 1) {
1385 if (i == 1 && ci->match_mask == 3)
1386 t[1] = t[0];
1387 else if (i == 2 && ci->match_mask == 5)
1388 t[2] = t[0];
1389 else if (i == 2 && ci->match_mask == 6)
1390 t[2] = t[1];
1391 else {
1392 const struct object_id *oid = NULL;
1393 if (dirmask & 1)
1394 oid = &ci->stages[i].oid;
1395 buf[i] = fill_tree_descriptor(opt->repo,
1396 t+i, oid);
1400 ci->match_mask &= ci->filemask;
1401 opt->priv->current_dir_name = path;
1402 renames->dir_rename_mask = dir_rename_mask;
1403 if (renames->dir_rename_mask == 0 ||
1404 renames->dir_rename_mask == 0x07)
1405 ret = traverse_trees(NULL, 3, t, info);
1406 else
1407 ret = traverse_trees_wrapper(NULL, 3, t, info);
1409 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1410 free(buf[i]);
1412 if (ret < 0)
1413 return ret;
1415 strintmap_clear(&copy);
1416 strintmap_for_each_entry(&renames->deferred[side].possible_trivial_merges,
1417 &iter, entry) {
1418 const char *path = entry->key;
1419 struct conflict_info *ci;
1421 ci = strmap_get(&opt->priv->paths, path);
1422 VERIFY_CI(ci);
1424 assert(renames->deferred[side].trivial_merges_okay &&
1425 !strset_contains(&renames->deferred[side].target_dirs,
1426 path));
1427 resolve_trivial_directory_merge(ci, side);
1429 if (!optimization_okay || path_count_after)
1430 path_count_after = strmap_get_size(&opt->priv->paths);
1432 if (path_count_after) {
1434 * The choice of wanted_factor here does not affect
1435 * correctness, only performance. When the
1436 * path_count_after / path_count_before
1437 * ratio is high, redoing after renames is a big
1438 * performance boost. I suspect that redoing is a wash
1439 * somewhere near a value of 2, and below that redoing will
1440 * slow things down. I applied a fudge factor and picked
1441 * 3; see the commit message when this was introduced for
1442 * back of the envelope calculations for this ratio.
1444 const int wanted_factor = 3;
1446 /* We should only redo collect_merge_info one time */
1447 assert(renames->redo_after_renames == 0);
1449 if (path_count_after / path_count_before >= wanted_factor) {
1450 renames->redo_after_renames = 1;
1451 renames->cached_pairs_valid_side = -1;
1453 } else if (renames->redo_after_renames == 2)
1454 renames->redo_after_renames = 0;
1455 return ret;
1458 static int collect_merge_info(struct merge_options *opt,
1459 struct tree *merge_base,
1460 struct tree *side1,
1461 struct tree *side2)
1463 int ret;
1464 struct tree_desc t[3];
1465 struct traverse_info info;
1467 opt->priv->toplevel_dir = "";
1468 opt->priv->current_dir_name = opt->priv->toplevel_dir;
1469 setup_traverse_info(&info, opt->priv->toplevel_dir);
1470 info.fn = collect_merge_info_callback;
1471 info.data = opt;
1472 info.show_all_errors = 1;
1474 parse_tree(merge_base);
1475 parse_tree(side1);
1476 parse_tree(side2);
1477 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
1478 init_tree_desc(t + 1, side1->buffer, side1->size);
1479 init_tree_desc(t + 2, side2->buffer, side2->size);
1481 trace2_region_enter("merge", "traverse_trees", opt->repo);
1482 ret = traverse_trees(NULL, 3, t, &info);
1483 if (ret == 0)
1484 ret = handle_deferred_entries(opt, &info);
1485 trace2_region_leave("merge", "traverse_trees", opt->repo);
1487 return ret;
1490 /*** Function Grouping: functions related to threeway content merges ***/
1492 static int find_first_merges(struct repository *repo,
1493 const char *path,
1494 struct commit *a,
1495 struct commit *b,
1496 struct object_array *result)
1498 int i, j;
1499 struct object_array merges = OBJECT_ARRAY_INIT;
1500 struct commit *commit;
1501 int contains_another;
1503 char merged_revision[GIT_MAX_HEXSZ + 2];
1504 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
1505 "--all", merged_revision, NULL };
1506 struct rev_info revs;
1507 struct setup_revision_opt rev_opts;
1509 memset(result, 0, sizeof(struct object_array));
1510 memset(&rev_opts, 0, sizeof(rev_opts));
1512 /* get all revisions that merge commit a */
1513 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
1514 oid_to_hex(&a->object.oid));
1515 repo_init_revisions(repo, &revs, NULL);
1516 /* FIXME: can't handle linked worktrees in submodules yet */
1517 revs.single_worktree = path != NULL;
1518 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
1520 /* save all revisions from the above list that contain b */
1521 if (prepare_revision_walk(&revs))
1522 die("revision walk setup failed");
1523 while ((commit = get_revision(&revs)) != NULL) {
1524 struct object *o = &(commit->object);
1525 if (repo_in_merge_bases(repo, b, commit))
1526 add_object_array(o, NULL, &merges);
1528 reset_revision_walk();
1530 /* Now we've got all merges that contain a and b. Prune all
1531 * merges that contain another found merge and save them in
1532 * result.
1534 for (i = 0; i < merges.nr; i++) {
1535 struct commit *m1 = (struct commit *) merges.objects[i].item;
1537 contains_another = 0;
1538 for (j = 0; j < merges.nr; j++) {
1539 struct commit *m2 = (struct commit *) merges.objects[j].item;
1540 if (i != j && repo_in_merge_bases(repo, m2, m1)) {
1541 contains_another = 1;
1542 break;
1546 if (!contains_another)
1547 add_object_array(merges.objects[i].item, NULL, result);
1550 object_array_clear(&merges);
1551 return result->nr;
1554 static int merge_submodule(struct merge_options *opt,
1555 const char *path,
1556 const struct object_id *o,
1557 const struct object_id *a,
1558 const struct object_id *b,
1559 struct object_id *result)
1561 struct repository subrepo;
1562 struct strbuf sb = STRBUF_INIT;
1563 int ret = 0;
1564 struct commit *commit_o, *commit_a, *commit_b;
1565 int parent_count;
1566 struct object_array merges;
1568 int i;
1569 int search = !opt->priv->call_depth;
1571 /* store fallback answer in result in case we fail */
1572 oidcpy(result, opt->priv->call_depth ? o : a);
1574 /* we can not handle deletion conflicts */
1575 if (is_null_oid(o))
1576 return 0;
1577 if (is_null_oid(a))
1578 return 0;
1579 if (is_null_oid(b))
1580 return 0;
1582 if (repo_submodule_init(&subrepo, opt->repo, path, null_oid())) {
1583 path_msg(opt, path, 0,
1584 _("Failed to merge submodule %s (not checked out)"),
1585 path);
1586 return 0;
1589 if (!(commit_o = lookup_commit_reference(&subrepo, o)) ||
1590 !(commit_a = lookup_commit_reference(&subrepo, a)) ||
1591 !(commit_b = lookup_commit_reference(&subrepo, b))) {
1592 path_msg(opt, path, 0,
1593 _("Failed to merge submodule %s (commits not present)"),
1594 path);
1595 goto cleanup;
1598 /* check whether both changes are forward */
1599 if (!repo_in_merge_bases(&subrepo, commit_o, commit_a) ||
1600 !repo_in_merge_bases(&subrepo, commit_o, commit_b)) {
1601 path_msg(opt, path, 0,
1602 _("Failed to merge submodule %s "
1603 "(commits don't follow merge-base)"),
1604 path);
1605 goto cleanup;
1608 /* Case #1: a is contained in b or vice versa */
1609 if (repo_in_merge_bases(&subrepo, commit_a, commit_b)) {
1610 oidcpy(result, b);
1611 path_msg(opt, path, 1,
1612 _("Note: Fast-forwarding submodule %s to %s"),
1613 path, oid_to_hex(b));
1614 ret = 1;
1615 goto cleanup;
1617 if (repo_in_merge_bases(&subrepo, commit_b, commit_a)) {
1618 oidcpy(result, a);
1619 path_msg(opt, path, 1,
1620 _("Note: Fast-forwarding submodule %s to %s"),
1621 path, oid_to_hex(a));
1622 ret = 1;
1623 goto cleanup;
1627 * Case #2: There are one or more merges that contain a and b in
1628 * the submodule. If there is only one, then present it as a
1629 * suggestion to the user, but leave it marked unmerged so the
1630 * user needs to confirm the resolution.
1633 /* Skip the search if makes no sense to the calling context. */
1634 if (!search)
1635 goto cleanup;
1637 /* find commit which merges them */
1638 parent_count = find_first_merges(&subrepo, path, commit_a, commit_b,
1639 &merges);
1640 switch (parent_count) {
1641 case 0:
1642 path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
1643 break;
1645 case 1:
1646 format_commit(&sb, 4, &subrepo,
1647 (struct commit *)merges.objects[0].item);
1648 path_msg(opt, path, 0,
1649 _("Failed to merge submodule %s, but a possible merge "
1650 "resolution exists:\n%s\n"),
1651 path, sb.buf);
1652 path_msg(opt, path, 1,
1653 _("If this is correct simply add it to the index "
1654 "for example\n"
1655 "by using:\n\n"
1656 " git update-index --cacheinfo 160000 %s \"%s\"\n\n"
1657 "which will accept this suggestion.\n"),
1658 oid_to_hex(&merges.objects[0].item->oid), path);
1659 strbuf_release(&sb);
1660 break;
1661 default:
1662 for (i = 0; i < merges.nr; i++)
1663 format_commit(&sb, 4, &subrepo,
1664 (struct commit *)merges.objects[i].item);
1665 path_msg(opt, path, 0,
1666 _("Failed to merge submodule %s, but multiple "
1667 "possible merges exist:\n%s"), path, sb.buf);
1668 strbuf_release(&sb);
1671 object_array_clear(&merges);
1672 cleanup:
1673 repo_clear(&subrepo);
1674 return ret;
1677 static void initialize_attr_index(struct merge_options *opt)
1680 * The renormalize_buffer() functions require attributes, and
1681 * annoyingly those can only be read from the working tree or from
1682 * an index_state. merge-ort doesn't have an index_state, so we
1683 * generate a fake one containing only attribute information.
1685 struct merged_info *mi;
1686 struct index_state *attr_index = &opt->priv->attr_index;
1687 struct cache_entry *ce;
1689 attr_index->initialized = 1;
1691 if (!opt->renormalize)
1692 return;
1694 mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE);
1695 if (!mi)
1696 return;
1698 if (mi->clean) {
1699 int len = strlen(GITATTRIBUTES_FILE);
1700 ce = make_empty_cache_entry(attr_index, len);
1701 ce->ce_mode = create_ce_mode(mi->result.mode);
1702 ce->ce_flags = create_ce_flags(0);
1703 ce->ce_namelen = len;
1704 oidcpy(&ce->oid, &mi->result.oid);
1705 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1706 add_index_entry(attr_index, ce,
1707 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1708 get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid);
1709 } else {
1710 int stage, len;
1711 struct conflict_info *ci;
1713 ASSIGN_AND_VERIFY_CI(ci, mi);
1714 for (stage = 0; stage < 3; stage++) {
1715 unsigned stage_mask = (1 << stage);
1717 if (!(ci->filemask & stage_mask))
1718 continue;
1719 len = strlen(GITATTRIBUTES_FILE);
1720 ce = make_empty_cache_entry(attr_index, len);
1721 ce->ce_mode = create_ce_mode(ci->stages[stage].mode);
1722 ce->ce_flags = create_ce_flags(stage);
1723 ce->ce_namelen = len;
1724 oidcpy(&ce->oid, &ci->stages[stage].oid);
1725 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1726 add_index_entry(attr_index, ce,
1727 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1728 get_stream_filter(attr_index, GITATTRIBUTES_FILE,
1729 &ce->oid);
1734 static int merge_3way(struct merge_options *opt,
1735 const char *path,
1736 const struct object_id *o,
1737 const struct object_id *a,
1738 const struct object_id *b,
1739 const char *pathnames[3],
1740 const int extra_marker_size,
1741 mmbuffer_t *result_buf)
1743 mmfile_t orig, src1, src2;
1744 struct ll_merge_options ll_opts = {0};
1745 char *base, *name1, *name2;
1746 int merge_status;
1748 if (!opt->priv->attr_index.initialized)
1749 initialize_attr_index(opt);
1751 ll_opts.renormalize = opt->renormalize;
1752 ll_opts.extra_marker_size = extra_marker_size;
1753 ll_opts.xdl_opts = opt->xdl_opts;
1755 if (opt->priv->call_depth) {
1756 ll_opts.virtual_ancestor = 1;
1757 ll_opts.variant = 0;
1758 } else {
1759 switch (opt->recursive_variant) {
1760 case MERGE_VARIANT_OURS:
1761 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
1762 break;
1763 case MERGE_VARIANT_THEIRS:
1764 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
1765 break;
1766 default:
1767 ll_opts.variant = 0;
1768 break;
1772 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
1773 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
1774 base = mkpathdup("%s", opt->ancestor);
1775 name1 = mkpathdup("%s", opt->branch1);
1776 name2 = mkpathdup("%s", opt->branch2);
1777 } else {
1778 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
1779 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
1780 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
1783 read_mmblob(&orig, o);
1784 read_mmblob(&src1, a);
1785 read_mmblob(&src2, b);
1787 merge_status = ll_merge(result_buf, path, &orig, base,
1788 &src1, name1, &src2, name2,
1789 &opt->priv->attr_index, &ll_opts);
1791 free(base);
1792 free(name1);
1793 free(name2);
1794 free(orig.ptr);
1795 free(src1.ptr);
1796 free(src2.ptr);
1797 return merge_status;
1800 static int handle_content_merge(struct merge_options *opt,
1801 const char *path,
1802 const struct version_info *o,
1803 const struct version_info *a,
1804 const struct version_info *b,
1805 const char *pathnames[3],
1806 const int extra_marker_size,
1807 struct version_info *result)
1810 * path is the target location where we want to put the file, and
1811 * is used to determine any normalization rules in ll_merge.
1813 * The normal case is that path and all entries in pathnames are
1814 * identical, though renames can affect which path we got one of
1815 * the three blobs to merge on various sides of history.
1817 * extra_marker_size is the amount to extend conflict markers in
1818 * ll_merge; this is neeed if we have content merges of content
1819 * merges, which happens for example with rename/rename(2to1) and
1820 * rename/add conflicts.
1822 unsigned clean = 1;
1825 * handle_content_merge() needs both files to be of the same type, i.e.
1826 * both files OR both submodules OR both symlinks. Conflicting types
1827 * needs to be handled elsewhere.
1829 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
1831 /* Merge modes */
1832 if (a->mode == b->mode || a->mode == o->mode)
1833 result->mode = b->mode;
1834 else {
1835 /* must be the 100644/100755 case */
1836 assert(S_ISREG(a->mode));
1837 result->mode = a->mode;
1838 clean = (b->mode == o->mode);
1840 * FIXME: If opt->priv->call_depth && !clean, then we really
1841 * should not make result->mode match either a->mode or
1842 * b->mode; that causes t6036 "check conflicting mode for
1843 * regular file" to fail. It would be best to use some other
1844 * mode, but we'll confuse all kinds of stuff if we use one
1845 * where S_ISREG(result->mode) isn't true, and if we use
1846 * something like 0100666, then tree-walk.c's calls to
1847 * canon_mode() will just normalize that to 100644 for us and
1848 * thus not solve anything.
1850 * Figure out if there's some kind of way we can work around
1851 * this...
1856 * Trivial oid merge.
1858 * Note: While one might assume that the next four lines would
1859 * be unnecessary due to the fact that match_mask is often
1860 * setup and already handled, renames don't always take care
1861 * of that.
1863 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
1864 oidcpy(&result->oid, &b->oid);
1865 else if (oideq(&b->oid, &o->oid))
1866 oidcpy(&result->oid, &a->oid);
1868 /* Remaining rules depend on file vs. submodule vs. symlink. */
1869 else if (S_ISREG(a->mode)) {
1870 mmbuffer_t result_buf;
1871 int ret = 0, merge_status;
1872 int two_way;
1875 * If 'o' is different type, treat it as null so we do a
1876 * two-way merge.
1878 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1880 merge_status = merge_3way(opt, path,
1881 two_way ? null_oid() : &o->oid,
1882 &a->oid, &b->oid,
1883 pathnames, extra_marker_size,
1884 &result_buf);
1886 if ((merge_status < 0) || !result_buf.ptr)
1887 ret = err(opt, _("Failed to execute internal merge"));
1889 if (!ret &&
1890 write_object_file(result_buf.ptr, result_buf.size,
1891 blob_type, &result->oid))
1892 ret = err(opt, _("Unable to add %s to database"),
1893 path);
1895 free(result_buf.ptr);
1896 if (ret)
1897 return -1;
1898 clean &= (merge_status == 0);
1899 path_msg(opt, path, 1, _("Auto-merging %s"), path);
1900 } else if (S_ISGITLINK(a->mode)) {
1901 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1902 clean = merge_submodule(opt, pathnames[0],
1903 two_way ? null_oid() : &o->oid,
1904 &a->oid, &b->oid, &result->oid);
1905 if (opt->priv->call_depth && two_way && !clean) {
1906 result->mode = o->mode;
1907 oidcpy(&result->oid, &o->oid);
1909 } else if (S_ISLNK(a->mode)) {
1910 if (opt->priv->call_depth) {
1911 clean = 0;
1912 result->mode = o->mode;
1913 oidcpy(&result->oid, &o->oid);
1914 } else {
1915 switch (opt->recursive_variant) {
1916 case MERGE_VARIANT_NORMAL:
1917 clean = 0;
1918 oidcpy(&result->oid, &a->oid);
1919 break;
1920 case MERGE_VARIANT_OURS:
1921 oidcpy(&result->oid, &a->oid);
1922 break;
1923 case MERGE_VARIANT_THEIRS:
1924 oidcpy(&result->oid, &b->oid);
1925 break;
1928 } else
1929 BUG("unsupported object type in the tree: %06o for %s",
1930 a->mode, path);
1932 return clean;
1935 /*** Function Grouping: functions related to detect_and_process_renames(), ***
1936 *** which are split into directory and regular rename detection sections. ***/
1938 /*** Function Grouping: functions related to directory rename detection ***/
1940 struct collision_info {
1941 struct string_list source_files;
1942 unsigned reported_already:1;
1946 * Return a new string that replaces the beginning portion (which matches
1947 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
1948 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
1949 * NOTE:
1950 * Caller must ensure that old_path starts with rename_info->key + '/'.
1952 static char *apply_dir_rename(struct strmap_entry *rename_info,
1953 const char *old_path)
1955 struct strbuf new_path = STRBUF_INIT;
1956 const char *old_dir = rename_info->key;
1957 const char *new_dir = rename_info->value;
1958 int oldlen, newlen, new_dir_len;
1960 oldlen = strlen(old_dir);
1961 if (*new_dir == '\0')
1963 * If someone renamed/merged a subdirectory into the root
1964 * directory (e.g. 'some/subdir' -> ''), then we want to
1965 * avoid returning
1966 * '' + '/filename'
1967 * as the rename; we need to make old_path + oldlen advance
1968 * past the '/' character.
1970 oldlen++;
1971 new_dir_len = strlen(new_dir);
1972 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
1973 strbuf_grow(&new_path, newlen);
1974 strbuf_add(&new_path, new_dir, new_dir_len);
1975 strbuf_addstr(&new_path, &old_path[oldlen]);
1977 return strbuf_detach(&new_path, NULL);
1980 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
1982 struct merged_info *mi = strmap_get(paths, path);
1983 struct conflict_info *ci;
1984 if (!mi)
1985 return 0;
1986 INITIALIZE_CI(ci, mi);
1987 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
1991 * See if there is a directory rename for path, and if there are any file
1992 * level conflicts on the given side for the renamed location. If there is
1993 * a rename and there are no conflicts, return the new name. Otherwise,
1994 * return NULL.
1996 static char *handle_path_level_conflicts(struct merge_options *opt,
1997 const char *path,
1998 unsigned side_index,
1999 struct strmap_entry *rename_info,
2000 struct strmap *collisions)
2002 char *new_path = NULL;
2003 struct collision_info *c_info;
2004 int clean = 1;
2005 struct strbuf collision_paths = STRBUF_INIT;
2008 * entry has the mapping of old directory name to new directory name
2009 * that we want to apply to path.
2011 new_path = apply_dir_rename(rename_info, path);
2012 if (!new_path)
2013 BUG("Failed to apply directory rename!");
2016 * The caller needs to have ensured that it has pre-populated
2017 * collisions with all paths that map to new_path. Do a quick check
2018 * to ensure that's the case.
2020 c_info = strmap_get(collisions, new_path);
2021 if (c_info == NULL)
2022 BUG("c_info is NULL");
2025 * Check for one-sided add/add/.../add conflicts, i.e.
2026 * where implicit renames from the other side doing
2027 * directory rename(s) can affect this side of history
2028 * to put multiple paths into the same location. Warn
2029 * and bail on directory renames for such paths.
2031 if (c_info->reported_already) {
2032 clean = 0;
2033 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
2034 c_info->reported_already = 1;
2035 strbuf_add_separated_string_list(&collision_paths, ", ",
2036 &c_info->source_files);
2037 path_msg(opt, new_path, 0,
2038 _("CONFLICT (implicit dir rename): Existing file/dir "
2039 "at %s in the way of implicit directory rename(s) "
2040 "putting the following path(s) there: %s."),
2041 new_path, collision_paths.buf);
2042 clean = 0;
2043 } else if (c_info->source_files.nr > 1) {
2044 c_info->reported_already = 1;
2045 strbuf_add_separated_string_list(&collision_paths, ", ",
2046 &c_info->source_files);
2047 path_msg(opt, new_path, 0,
2048 _("CONFLICT (implicit dir rename): Cannot map more "
2049 "than one path to %s; implicit directory renames "
2050 "tried to put these paths there: %s"),
2051 new_path, collision_paths.buf);
2052 clean = 0;
2055 /* Free memory we no longer need */
2056 strbuf_release(&collision_paths);
2057 if (!clean && new_path) {
2058 free(new_path);
2059 return NULL;
2062 return new_path;
2065 static void get_provisional_directory_renames(struct merge_options *opt,
2066 unsigned side,
2067 int *clean)
2069 struct hashmap_iter iter;
2070 struct strmap_entry *entry;
2071 struct rename_info *renames = &opt->priv->renames;
2074 * Collapse
2075 * dir_rename_count: old_directory -> {new_directory -> count}
2076 * down to
2077 * dir_renames: old_directory -> best_new_directory
2078 * where best_new_directory is the one with the unique highest count.
2080 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
2081 const char *source_dir = entry->key;
2082 struct strintmap *counts = entry->value;
2083 struct hashmap_iter count_iter;
2084 struct strmap_entry *count_entry;
2085 int max = 0;
2086 int bad_max = 0;
2087 const char *best = NULL;
2089 strintmap_for_each_entry(counts, &count_iter, count_entry) {
2090 const char *target_dir = count_entry->key;
2091 intptr_t count = (intptr_t)count_entry->value;
2093 if (count == max)
2094 bad_max = max;
2095 else if (count > max) {
2096 max = count;
2097 best = target_dir;
2101 if (max == 0)
2102 continue;
2104 if (bad_max == max) {
2105 path_msg(opt, source_dir, 0,
2106 _("CONFLICT (directory rename split): "
2107 "Unclear where to rename %s to; it was "
2108 "renamed to multiple other directories, with "
2109 "no destination getting a majority of the "
2110 "files."),
2111 source_dir);
2112 *clean = 0;
2113 } else {
2114 strmap_put(&renames->dir_renames[side],
2115 source_dir, (void*)best);
2120 static void handle_directory_level_conflicts(struct merge_options *opt)
2122 struct hashmap_iter iter;
2123 struct strmap_entry *entry;
2124 struct string_list duplicated = STRING_LIST_INIT_NODUP;
2125 struct rename_info *renames = &opt->priv->renames;
2126 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
2127 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
2128 int i;
2130 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
2131 if (strmap_contains(side2_dir_renames, entry->key))
2132 string_list_append(&duplicated, entry->key);
2135 for (i = 0; i < duplicated.nr; i++) {
2136 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
2137 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
2139 string_list_clear(&duplicated, 0);
2142 static struct strmap_entry *check_dir_renamed(const char *path,
2143 struct strmap *dir_renames)
2145 char *temp = xstrdup(path);
2146 char *end;
2147 struct strmap_entry *e = NULL;
2149 while ((end = strrchr(temp, '/'))) {
2150 *end = '\0';
2151 e = strmap_get_entry(dir_renames, temp);
2152 if (e)
2153 break;
2155 free(temp);
2156 return e;
2159 static void compute_collisions(struct strmap *collisions,
2160 struct strmap *dir_renames,
2161 struct diff_queue_struct *pairs)
2163 int i;
2165 strmap_init_with_options(collisions, NULL, 0);
2166 if (strmap_empty(dir_renames))
2167 return;
2170 * Multiple files can be mapped to the same path due to directory
2171 * renames done by the other side of history. Since that other
2172 * side of history could have merged multiple directories into one,
2173 * if our side of history added the same file basename to each of
2174 * those directories, then all N of them would get implicitly
2175 * renamed by the directory rename detection into the same path,
2176 * and we'd get an add/add/.../add conflict, and all those adds
2177 * from *this* side of history. This is not representable in the
2178 * index, and users aren't going to easily be able to make sense of
2179 * it. So we need to provide a good warning about what's
2180 * happening, and fall back to no-directory-rename detection
2181 * behavior for those paths.
2183 * See testcases 9e and all of section 5 from t6043 for examples.
2185 for (i = 0; i < pairs->nr; ++i) {
2186 struct strmap_entry *rename_info;
2187 struct collision_info *collision_info;
2188 char *new_path;
2189 struct diff_filepair *pair = pairs->queue[i];
2191 if (pair->status != 'A' && pair->status != 'R')
2192 continue;
2193 rename_info = check_dir_renamed(pair->two->path, dir_renames);
2194 if (!rename_info)
2195 continue;
2197 new_path = apply_dir_rename(rename_info, pair->two->path);
2198 assert(new_path);
2199 collision_info = strmap_get(collisions, new_path);
2200 if (collision_info) {
2201 free(new_path);
2202 } else {
2203 CALLOC_ARRAY(collision_info, 1);
2204 string_list_init_nodup(&collision_info->source_files);
2205 strmap_put(collisions, new_path, collision_info);
2207 string_list_insert(&collision_info->source_files,
2208 pair->two->path);
2212 static char *check_for_directory_rename(struct merge_options *opt,
2213 const char *path,
2214 unsigned side_index,
2215 struct strmap *dir_renames,
2216 struct strmap *dir_rename_exclusions,
2217 struct strmap *collisions,
2218 int *clean_merge)
2220 char *new_path = NULL;
2221 struct strmap_entry *rename_info;
2222 struct strmap_entry *otherinfo = NULL;
2223 const char *new_dir;
2225 if (strmap_empty(dir_renames))
2226 return new_path;
2227 rename_info = check_dir_renamed(path, dir_renames);
2228 if (!rename_info)
2229 return new_path;
2230 /* old_dir = rename_info->key; */
2231 new_dir = rename_info->value;
2234 * This next part is a little weird. We do not want to do an
2235 * implicit rename into a directory we renamed on our side, because
2236 * that will result in a spurious rename/rename(1to2) conflict. An
2237 * example:
2238 * Base commit: dumbdir/afile, otherdir/bfile
2239 * Side 1: smrtdir/afile, otherdir/bfile
2240 * Side 2: dumbdir/afile, dumbdir/bfile
2241 * Here, while working on Side 1, we could notice that otherdir was
2242 * renamed/merged to dumbdir, and change the diff_filepair for
2243 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
2244 * 2 will notice the rename from dumbdir to smrtdir, and do the
2245 * transitive rename to move it from dumbdir/bfile to
2246 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
2247 * smrtdir, a rename/rename(1to2) conflict. We really just want
2248 * the file to end up in smrtdir. And the way to achieve that is
2249 * to not let Side1 do the rename to dumbdir, since we know that is
2250 * the source of one of our directory renames.
2252 * That's why otherinfo and dir_rename_exclusions is here.
2254 * As it turns out, this also prevents N-way transient rename
2255 * confusion; See testcases 9c and 9d of t6043.
2257 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
2258 if (otherinfo) {
2259 path_msg(opt, rename_info->key, 1,
2260 _("WARNING: Avoiding applying %s -> %s rename "
2261 "to %s, because %s itself was renamed."),
2262 rename_info->key, new_dir, path, new_dir);
2263 return NULL;
2266 new_path = handle_path_level_conflicts(opt, path, side_index,
2267 rename_info, collisions);
2268 *clean_merge &= (new_path != NULL);
2270 return new_path;
2273 static void apply_directory_rename_modifications(struct merge_options *opt,
2274 struct diff_filepair *pair,
2275 char *new_path)
2278 * The basic idea is to get the conflict_info from opt->priv->paths
2279 * at old path, and insert it into new_path; basically just this:
2280 * ci = strmap_get(&opt->priv->paths, old_path);
2281 * strmap_remove(&opt->priv->paths, old_path, 0);
2282 * strmap_put(&opt->priv->paths, new_path, ci);
2283 * However, there are some factors complicating this:
2284 * - opt->priv->paths may already have an entry at new_path
2285 * - Each ci tracks its containing directory, so we need to
2286 * update that
2287 * - If another ci has the same containing directory, then
2288 * the two char*'s MUST point to the same location. See the
2289 * comment in struct merged_info. strcmp equality is not
2290 * enough; we need pointer equality.
2291 * - opt->priv->paths must hold the parent directories of any
2292 * entries that are added. So, if this directory rename
2293 * causes entirely new directories, we must recursively add
2294 * parent directories.
2295 * - For each parent directory added to opt->priv->paths, we
2296 * also need to get its parent directory stored in its
2297 * conflict_info->merged.directory_name with all the same
2298 * requirements about pointer equality.
2300 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
2301 struct conflict_info *ci, *new_ci;
2302 struct strmap_entry *entry;
2303 const char *branch_with_new_path, *branch_with_dir_rename;
2304 const char *old_path = pair->two->path;
2305 const char *parent_name;
2306 const char *cur_path;
2307 int i, len;
2309 entry = strmap_get_entry(&opt->priv->paths, old_path);
2310 old_path = entry->key;
2311 ci = entry->value;
2312 VERIFY_CI(ci);
2314 /* Find parent directories missing from opt->priv->paths */
2315 cur_path = mem_pool_strdup(&opt->priv->pool, new_path);
2316 free((char*)new_path);
2317 new_path = (char *)cur_path;
2319 while (1) {
2320 /* Find the parent directory of cur_path */
2321 char *last_slash = strrchr(cur_path, '/');
2322 if (last_slash) {
2323 parent_name = mem_pool_strndup(&opt->priv->pool,
2324 cur_path,
2325 last_slash - cur_path);
2326 } else {
2327 parent_name = opt->priv->toplevel_dir;
2328 break;
2331 /* Look it up in opt->priv->paths */
2332 entry = strmap_get_entry(&opt->priv->paths, parent_name);
2333 if (entry) {
2334 parent_name = entry->key; /* reuse known pointer */
2335 break;
2338 /* Record this is one of the directories we need to insert */
2339 string_list_append(&dirs_to_insert, parent_name);
2340 cur_path = parent_name;
2343 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
2344 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
2345 struct conflict_info *dir_ci;
2346 char *cur_dir = dirs_to_insert.items[i].string;
2348 CALLOC_ARRAY(dir_ci, 1);
2350 dir_ci->merged.directory_name = parent_name;
2351 len = strlen(parent_name);
2352 /* len+1 because of trailing '/' character */
2353 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
2354 dir_ci->dirmask = ci->filemask;
2355 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
2357 parent_name = cur_dir;
2360 assert(ci->filemask == 2 || ci->filemask == 4);
2361 assert(ci->dirmask == 0);
2362 strmap_remove(&opt->priv->paths, old_path, 0);
2364 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
2365 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
2367 /* Now, finally update ci and stick it into opt->priv->paths */
2368 ci->merged.directory_name = parent_name;
2369 len = strlen(parent_name);
2370 ci->merged.basename_offset = (len > 0 ? len+1 : len);
2371 new_ci = strmap_get(&opt->priv->paths, new_path);
2372 if (!new_ci) {
2373 /* Place ci back into opt->priv->paths, but at new_path */
2374 strmap_put(&opt->priv->paths, new_path, ci);
2375 } else {
2376 int index;
2378 /* A few sanity checks */
2379 VERIFY_CI(new_ci);
2380 assert(ci->filemask == 2 || ci->filemask == 4);
2381 assert((new_ci->filemask & ci->filemask) == 0);
2382 assert(!new_ci->merged.clean);
2384 /* Copy stuff from ci into new_ci */
2385 new_ci->filemask |= ci->filemask;
2386 if (new_ci->dirmask)
2387 new_ci->df_conflict = 1;
2388 index = (ci->filemask >> 1);
2389 new_ci->pathnames[index] = ci->pathnames[index];
2390 new_ci->stages[index].mode = ci->stages[index].mode;
2391 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
2393 ci = new_ci;
2396 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
2397 /* Notify user of updated path */
2398 if (pair->status == 'A')
2399 path_msg(opt, new_path, 1,
2400 _("Path updated: %s added in %s inside a "
2401 "directory that was renamed in %s; moving "
2402 "it to %s."),
2403 old_path, branch_with_new_path,
2404 branch_with_dir_rename, new_path);
2405 else
2406 path_msg(opt, new_path, 1,
2407 _("Path updated: %s renamed to %s in %s, "
2408 "inside a directory that was renamed in %s; "
2409 "moving it to %s."),
2410 pair->one->path, old_path, branch_with_new_path,
2411 branch_with_dir_rename, new_path);
2412 } else {
2414 * opt->detect_directory_renames has the value
2415 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
2417 ci->path_conflict = 1;
2418 if (pair->status == 'A')
2419 path_msg(opt, new_path, 0,
2420 _("CONFLICT (file location): %s added in %s "
2421 "inside a directory that was renamed in %s, "
2422 "suggesting it should perhaps be moved to "
2423 "%s."),
2424 old_path, branch_with_new_path,
2425 branch_with_dir_rename, new_path);
2426 else
2427 path_msg(opt, new_path, 0,
2428 _("CONFLICT (file location): %s renamed to %s "
2429 "in %s, inside a directory that was renamed "
2430 "in %s, suggesting it should perhaps be "
2431 "moved to %s."),
2432 pair->one->path, old_path, branch_with_new_path,
2433 branch_with_dir_rename, new_path);
2437 * Finally, record the new location.
2439 pair->two->path = new_path;
2442 /*** Function Grouping: functions related to regular rename detection ***/
2444 static int process_renames(struct merge_options *opt,
2445 struct diff_queue_struct *renames)
2447 int clean_merge = 1, i;
2449 for (i = 0; i < renames->nr; ++i) {
2450 const char *oldpath = NULL, *newpath;
2451 struct diff_filepair *pair = renames->queue[i];
2452 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
2453 struct strmap_entry *old_ent, *new_ent;
2454 unsigned int old_sidemask;
2455 int target_index, other_source_index;
2456 int source_deleted, collision, type_changed;
2457 const char *rename_branch = NULL, *delete_branch = NULL;
2459 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
2460 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
2461 if (old_ent) {
2462 oldpath = old_ent->key;
2463 oldinfo = old_ent->value;
2465 newpath = pair->two->path;
2466 if (new_ent) {
2467 newpath = new_ent->key;
2468 newinfo = new_ent->value;
2472 * If pair->one->path isn't in opt->priv->paths, that means
2473 * that either directory rename detection removed that
2474 * path, or a parent directory of oldpath was resolved and
2475 * we don't even need the rename; in either case, we can
2476 * skip it. If oldinfo->merged.clean, then the other side
2477 * of history had no changes to oldpath and we don't need
2478 * the rename and can skip it.
2480 if (!oldinfo || oldinfo->merged.clean)
2481 continue;
2484 * diff_filepairs have copies of pathnames, thus we have to
2485 * use standard 'strcmp()' (negated) instead of '=='.
2487 if (i + 1 < renames->nr &&
2488 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
2489 /* Handle rename/rename(1to2) or rename/rename(1to1) */
2490 const char *pathnames[3];
2491 struct version_info merged;
2492 struct conflict_info *base, *side1, *side2;
2493 unsigned was_binary_blob = 0;
2495 pathnames[0] = oldpath;
2496 pathnames[1] = newpath;
2497 pathnames[2] = renames->queue[i+1]->two->path;
2499 base = strmap_get(&opt->priv->paths, pathnames[0]);
2500 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2501 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2503 VERIFY_CI(base);
2504 VERIFY_CI(side1);
2505 VERIFY_CI(side2);
2507 if (!strcmp(pathnames[1], pathnames[2])) {
2508 struct rename_info *ri = &opt->priv->renames;
2509 int j;
2511 /* Both sides renamed the same way */
2512 assert(side1 == side2);
2513 memcpy(&side1->stages[0], &base->stages[0],
2514 sizeof(merged));
2515 side1->filemask |= (1 << MERGE_BASE);
2516 /* Mark base as resolved by removal */
2517 base->merged.is_null = 1;
2518 base->merged.clean = 1;
2521 * Disable remembering renames optimization;
2522 * rename/rename(1to1) is incredibly rare, and
2523 * just disabling the optimization is easier
2524 * than purging cached_pairs,
2525 * cached_target_names, and dir_rename_counts.
2527 for (j = 0; j < 3; j++)
2528 ri->merge_trees[j] = NULL;
2530 /* We handled both renames, i.e. i+1 handled */
2531 i++;
2532 /* Move to next rename */
2533 continue;
2536 /* This is a rename/rename(1to2) */
2537 clean_merge = handle_content_merge(opt,
2538 pair->one->path,
2539 &base->stages[0],
2540 &side1->stages[1],
2541 &side2->stages[2],
2542 pathnames,
2543 1 + 2 * opt->priv->call_depth,
2544 &merged);
2545 if (!clean_merge &&
2546 merged.mode == side1->stages[1].mode &&
2547 oideq(&merged.oid, &side1->stages[1].oid))
2548 was_binary_blob = 1;
2549 memcpy(&side1->stages[1], &merged, sizeof(merged));
2550 if (was_binary_blob) {
2552 * Getting here means we were attempting to
2553 * merge a binary blob.
2555 * Since we can't merge binaries,
2556 * handle_content_merge() just takes one
2557 * side. But we don't want to copy the
2558 * contents of one side to both paths. We
2559 * used the contents of side1 above for
2560 * side1->stages, let's use the contents of
2561 * side2 for side2->stages below.
2563 oidcpy(&merged.oid, &side2->stages[2].oid);
2564 merged.mode = side2->stages[2].mode;
2566 memcpy(&side2->stages[2], &merged, sizeof(merged));
2568 side1->path_conflict = 1;
2569 side2->path_conflict = 1;
2571 * TODO: For renames we normally remove the path at the
2572 * old name. It would thus seem consistent to do the
2573 * same for rename/rename(1to2) cases, but we haven't
2574 * done so traditionally and a number of the regression
2575 * tests now encode an expectation that the file is
2576 * left there at stage 1. If we ever decide to change
2577 * this, add the following two lines here:
2578 * base->merged.is_null = 1;
2579 * base->merged.clean = 1;
2580 * and remove the setting of base->path_conflict to 1.
2582 base->path_conflict = 1;
2583 path_msg(opt, oldpath, 0,
2584 _("CONFLICT (rename/rename): %s renamed to "
2585 "%s in %s and to %s in %s."),
2586 pathnames[0],
2587 pathnames[1], opt->branch1,
2588 pathnames[2], opt->branch2);
2590 i++; /* We handled both renames, i.e. i+1 handled */
2591 continue;
2594 VERIFY_CI(oldinfo);
2595 VERIFY_CI(newinfo);
2596 target_index = pair->score; /* from collect_renames() */
2597 assert(target_index == 1 || target_index == 2);
2598 other_source_index = 3 - target_index;
2599 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2600 source_deleted = (oldinfo->filemask == 1);
2601 collision = ((newinfo->filemask & old_sidemask) != 0);
2602 type_changed = !source_deleted &&
2603 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2604 S_ISREG(newinfo->stages[target_index].mode));
2605 if (type_changed && collision) {
2607 * special handling so later blocks can handle this...
2609 * if type_changed && collision are both true, then this
2610 * was really a double rename, but one side wasn't
2611 * detected due to lack of break detection. I.e.
2612 * something like
2613 * orig: has normal file 'foo'
2614 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2615 * side2: renames 'foo' to 'bar'
2616 * In this case, the foo->bar rename on side1 won't be
2617 * detected because the new symlink named 'foo' is
2618 * there and we don't do break detection. But we detect
2619 * this here because we don't want to merge the content
2620 * of the foo symlink with the foo->bar file, so we
2621 * have some logic to handle this special case. The
2622 * easiest way to do that is make 'bar' on side1 not
2623 * be considered a colliding file but the other part
2624 * of a normal rename. If the file is very different,
2625 * well we're going to get content merge conflicts
2626 * anyway so it doesn't hurt. And if the colliding
2627 * file also has a different type, that'll be handled
2628 * by the content merge logic in process_entry() too.
2630 * See also t6430, 'rename vs. rename/symlink'
2632 collision = 0;
2634 if (source_deleted) {
2635 if (target_index == 1) {
2636 rename_branch = opt->branch1;
2637 delete_branch = opt->branch2;
2638 } else {
2639 rename_branch = opt->branch2;
2640 delete_branch = opt->branch1;
2644 assert(source_deleted || oldinfo->filemask & old_sidemask);
2646 /* Need to check for special types of rename conflicts... */
2647 if (collision && !source_deleted) {
2648 /* collision: rename/add or rename/rename(2to1) */
2649 const char *pathnames[3];
2650 struct version_info merged;
2652 struct conflict_info *base, *side1, *side2;
2653 unsigned clean;
2655 pathnames[0] = oldpath;
2656 pathnames[other_source_index] = oldpath;
2657 pathnames[target_index] = newpath;
2659 base = strmap_get(&opt->priv->paths, pathnames[0]);
2660 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2661 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2663 VERIFY_CI(base);
2664 VERIFY_CI(side1);
2665 VERIFY_CI(side2);
2667 clean = handle_content_merge(opt, pair->one->path,
2668 &base->stages[0],
2669 &side1->stages[1],
2670 &side2->stages[2],
2671 pathnames,
2672 1 + 2 * opt->priv->call_depth,
2673 &merged);
2675 memcpy(&newinfo->stages[target_index], &merged,
2676 sizeof(merged));
2677 if (!clean) {
2678 path_msg(opt, newpath, 0,
2679 _("CONFLICT (rename involved in "
2680 "collision): rename of %s -> %s has "
2681 "content conflicts AND collides "
2682 "with another path; this may result "
2683 "in nested conflict markers."),
2684 oldpath, newpath);
2686 } else if (collision && source_deleted) {
2688 * rename/add/delete or rename/rename(2to1)/delete:
2689 * since oldpath was deleted on the side that didn't
2690 * do the rename, there's not much of a content merge
2691 * we can do for the rename. oldinfo->merged.is_null
2692 * was already set, so we just leave things as-is so
2693 * they look like an add/add conflict.
2696 newinfo->path_conflict = 1;
2697 path_msg(opt, newpath, 0,
2698 _("CONFLICT (rename/delete): %s renamed "
2699 "to %s in %s, but deleted in %s."),
2700 oldpath, newpath, rename_branch, delete_branch);
2701 } else {
2703 * a few different cases...start by copying the
2704 * existing stage(s) from oldinfo over the newinfo
2705 * and update the pathname(s).
2707 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
2708 sizeof(newinfo->stages[0]));
2709 newinfo->filemask |= (1 << MERGE_BASE);
2710 newinfo->pathnames[0] = oldpath;
2711 if (type_changed) {
2712 /* rename vs. typechange */
2713 /* Mark the original as resolved by removal */
2714 memcpy(&oldinfo->stages[0].oid, null_oid(),
2715 sizeof(oldinfo->stages[0].oid));
2716 oldinfo->stages[0].mode = 0;
2717 oldinfo->filemask &= 0x06;
2718 } else if (source_deleted) {
2719 /* rename/delete */
2720 newinfo->path_conflict = 1;
2721 path_msg(opt, newpath, 0,
2722 _("CONFLICT (rename/delete): %s renamed"
2723 " to %s in %s, but deleted in %s."),
2724 oldpath, newpath,
2725 rename_branch, delete_branch);
2726 } else {
2727 /* normal rename */
2728 memcpy(&newinfo->stages[other_source_index],
2729 &oldinfo->stages[other_source_index],
2730 sizeof(newinfo->stages[0]));
2731 newinfo->filemask |= (1 << other_source_index);
2732 newinfo->pathnames[other_source_index] = oldpath;
2736 if (!type_changed) {
2737 /* Mark the original as resolved by removal */
2738 oldinfo->merged.is_null = 1;
2739 oldinfo->merged.clean = 1;
2744 return clean_merge;
2747 static inline int possible_side_renames(struct rename_info *renames,
2748 unsigned side_index)
2750 return renames->pairs[side_index].nr > 0 &&
2751 !strintmap_empty(&renames->relevant_sources[side_index]);
2754 static inline int possible_renames(struct rename_info *renames)
2756 return possible_side_renames(renames, 1) ||
2757 possible_side_renames(renames, 2) ||
2758 !strmap_empty(&renames->cached_pairs[1]) ||
2759 !strmap_empty(&renames->cached_pairs[2]);
2762 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
2765 * A simplified version of diff_resolve_rename_copy(); would probably
2766 * just use that function but it's static...
2768 int i;
2769 struct diff_filepair *p;
2771 for (i = 0; i < q->nr; ++i) {
2772 p = q->queue[i];
2773 p->status = 0; /* undecided */
2774 if (!DIFF_FILE_VALID(p->one))
2775 p->status = DIFF_STATUS_ADDED;
2776 else if (!DIFF_FILE_VALID(p->two))
2777 p->status = DIFF_STATUS_DELETED;
2778 else if (DIFF_PAIR_RENAME(p))
2779 p->status = DIFF_STATUS_RENAMED;
2783 static void prune_cached_from_relevant(struct rename_info *renames,
2784 unsigned side)
2786 /* Reason for this function described in add_pair() */
2787 struct hashmap_iter iter;
2788 struct strmap_entry *entry;
2790 /* Remove from relevant_sources all entries in cached_pairs[side] */
2791 strmap_for_each_entry(&renames->cached_pairs[side], &iter, entry) {
2792 strintmap_remove(&renames->relevant_sources[side],
2793 entry->key);
2795 /* Remove from relevant_sources all entries in cached_irrelevant[side] */
2796 strset_for_each_entry(&renames->cached_irrelevant[side], &iter, entry) {
2797 strintmap_remove(&renames->relevant_sources[side],
2798 entry->key);
2802 static void use_cached_pairs(struct merge_options *opt,
2803 struct strmap *cached_pairs,
2804 struct diff_queue_struct *pairs)
2806 struct hashmap_iter iter;
2807 struct strmap_entry *entry;
2810 * Add to side_pairs all entries from renames->cached_pairs[side_index].
2811 * (Info in cached_irrelevant[side_index] is not relevant here.)
2813 strmap_for_each_entry(cached_pairs, &iter, entry) {
2814 struct diff_filespec *one, *two;
2815 const char *old_name = entry->key;
2816 const char *new_name = entry->value;
2817 if (!new_name)
2818 new_name = old_name;
2821 * cached_pairs has *copies* of old_name and new_name,
2822 * because it has to persist across merges. Since
2823 * pool_alloc_filespec() will just re-use the existing
2824 * filenames, which will also get re-used by
2825 * opt->priv->paths if they become renames, and then
2826 * get freed at the end of the merge, that would leave
2827 * the copy in cached_pairs dangling. Avoid this by
2828 * making a copy here.
2830 old_name = mem_pool_strdup(&opt->priv->pool, old_name);
2831 new_name = mem_pool_strdup(&opt->priv->pool, new_name);
2833 /* We don't care about oid/mode, only filenames and status */
2834 one = pool_alloc_filespec(&opt->priv->pool, old_name);
2835 two = pool_alloc_filespec(&opt->priv->pool, new_name);
2836 pool_diff_queue(&opt->priv->pool, pairs, one, two);
2837 pairs->queue[pairs->nr-1]->status = entry->value ? 'R' : 'D';
2841 static void cache_new_pair(struct rename_info *renames,
2842 int side,
2843 char *old_path,
2844 char *new_path,
2845 int free_old_value)
2847 char *old_value;
2848 new_path = xstrdup(new_path);
2849 old_value = strmap_put(&renames->cached_pairs[side],
2850 old_path, new_path);
2851 strset_add(&renames->cached_target_names[side], new_path);
2852 if (free_old_value)
2853 free(old_value);
2854 else
2855 assert(!old_value);
2858 static void possibly_cache_new_pair(struct rename_info *renames,
2859 struct diff_filepair *p,
2860 unsigned side,
2861 char *new_path)
2863 int dir_renamed_side = 0;
2865 if (new_path) {
2867 * Directory renames happen on the other side of history from
2868 * the side that adds new files to the old directory.
2870 dir_renamed_side = 3 - side;
2871 } else {
2872 int val = strintmap_get(&renames->relevant_sources[side],
2873 p->one->path);
2874 if (val == RELEVANT_NO_MORE) {
2875 assert(p->status == 'D');
2876 strset_add(&renames->cached_irrelevant[side],
2877 p->one->path);
2879 if (val <= 0)
2880 return;
2883 if (p->status == 'D') {
2885 * If we already had this delete, we'll just set it's value
2886 * to NULL again, so no harm.
2888 strmap_put(&renames->cached_pairs[side], p->one->path, NULL);
2889 } else if (p->status == 'R') {
2890 if (!new_path)
2891 new_path = p->two->path;
2892 else
2893 cache_new_pair(renames, dir_renamed_side,
2894 p->two->path, new_path, 0);
2895 cache_new_pair(renames, side, p->one->path, new_path, 1);
2896 } else if (p->status == 'A' && new_path) {
2897 cache_new_pair(renames, dir_renamed_side,
2898 p->two->path, new_path, 0);
2902 static int compare_pairs(const void *a_, const void *b_)
2904 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
2905 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
2907 return strcmp(a->one->path, b->one->path);
2910 /* Call diffcore_rename() to update deleted/added pairs into rename pairs */
2911 static int detect_regular_renames(struct merge_options *opt,
2912 unsigned side_index)
2914 struct diff_options diff_opts;
2915 struct rename_info *renames = &opt->priv->renames;
2917 prune_cached_from_relevant(renames, side_index);
2918 if (!possible_side_renames(renames, side_index)) {
2920 * No rename detection needed for this side, but we still need
2921 * to make sure 'adds' are marked correctly in case the other
2922 * side had directory renames.
2924 resolve_diffpair_statuses(&renames->pairs[side_index]);
2925 return 0;
2928 partial_clear_dir_rename_count(&renames->dir_rename_count[side_index]);
2929 repo_diff_setup(opt->repo, &diff_opts);
2930 diff_opts.flags.recursive = 1;
2931 diff_opts.flags.rename_empty = 0;
2932 diff_opts.detect_rename = DIFF_DETECT_RENAME;
2933 diff_opts.rename_limit = opt->rename_limit;
2934 if (opt->rename_limit <= 0)
2935 diff_opts.rename_limit = 7000;
2936 diff_opts.rename_score = opt->rename_score;
2937 diff_opts.show_rename_progress = opt->show_rename_progress;
2938 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2939 diff_setup_done(&diff_opts);
2941 diff_queued_diff = renames->pairs[side_index];
2942 trace2_region_enter("diff", "diffcore_rename", opt->repo);
2943 diffcore_rename_extended(&diff_opts,
2944 &opt->priv->pool,
2945 &renames->relevant_sources[side_index],
2946 &renames->dirs_removed[side_index],
2947 &renames->dir_rename_count[side_index],
2948 &renames->cached_pairs[side_index]);
2949 trace2_region_leave("diff", "diffcore_rename", opt->repo);
2950 resolve_diffpair_statuses(&diff_queued_diff);
2952 if (diff_opts.needed_rename_limit > 0)
2953 renames->redo_after_renames = 0;
2954 if (diff_opts.needed_rename_limit > renames->needed_limit)
2955 renames->needed_limit = diff_opts.needed_rename_limit;
2957 renames->pairs[side_index] = diff_queued_diff;
2959 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2960 diff_queued_diff.nr = 0;
2961 diff_queued_diff.queue = NULL;
2962 diff_flush(&diff_opts);
2964 return 1;
2968 * Get information of all renames which occurred in 'side_pairs', making use
2969 * of any implicit directory renames in side_dir_renames (also making use of
2970 * implicit directory renames rename_exclusions as needed by
2971 * check_for_directory_rename()). Add all (updated) renames into result.
2973 static int collect_renames(struct merge_options *opt,
2974 struct diff_queue_struct *result,
2975 unsigned side_index,
2976 struct strmap *dir_renames_for_side,
2977 struct strmap *rename_exclusions)
2979 int i, clean = 1;
2980 struct strmap collisions;
2981 struct diff_queue_struct *side_pairs;
2982 struct hashmap_iter iter;
2983 struct strmap_entry *entry;
2984 struct rename_info *renames = &opt->priv->renames;
2986 side_pairs = &renames->pairs[side_index];
2987 compute_collisions(&collisions, dir_renames_for_side, side_pairs);
2989 for (i = 0; i < side_pairs->nr; ++i) {
2990 struct diff_filepair *p = side_pairs->queue[i];
2991 char *new_path; /* non-NULL only with directory renames */
2993 if (p->status != 'A' && p->status != 'R') {
2994 possibly_cache_new_pair(renames, p, side_index, NULL);
2995 pool_diff_free_filepair(&opt->priv->pool, p);
2996 continue;
2999 new_path = check_for_directory_rename(opt, p->two->path,
3000 side_index,
3001 dir_renames_for_side,
3002 rename_exclusions,
3003 &collisions,
3004 &clean);
3006 possibly_cache_new_pair(renames, p, side_index, new_path);
3007 if (p->status != 'R' && !new_path) {
3008 pool_diff_free_filepair(&opt->priv->pool, p);
3009 continue;
3012 if (new_path)
3013 apply_directory_rename_modifications(opt, p, new_path);
3016 * p->score comes back from diffcore_rename_extended() with
3017 * the similarity of the renamed file. The similarity is
3018 * was used to determine that the two files were related
3019 * and are a rename, which we have already used, but beyond
3020 * that we have no use for the similarity. So p->score is
3021 * now irrelevant. However, process_renames() will need to
3022 * know which side of the merge this rename was associated
3023 * with, so overwrite p->score with that value.
3025 p->score = side_index;
3026 result->queue[result->nr++] = p;
3029 /* Free each value in the collisions map */
3030 strmap_for_each_entry(&collisions, &iter, entry) {
3031 struct collision_info *info = entry->value;
3032 string_list_clear(&info->source_files, 0);
3035 * In compute_collisions(), we set collisions.strdup_strings to 0
3036 * so that we wouldn't have to make another copy of the new_path
3037 * allocated by apply_dir_rename(). But now that we've used them
3038 * and have no other references to these strings, it is time to
3039 * deallocate them.
3041 free_strmap_strings(&collisions);
3042 strmap_clear(&collisions, 1);
3043 return clean;
3046 static int detect_and_process_renames(struct merge_options *opt,
3047 struct tree *merge_base,
3048 struct tree *side1,
3049 struct tree *side2)
3051 struct diff_queue_struct combined;
3052 struct rename_info *renames = &opt->priv->renames;
3053 int need_dir_renames, s, clean = 1;
3054 unsigned detection_run = 0;
3056 memset(&combined, 0, sizeof(combined));
3057 if (!possible_renames(renames))
3058 goto cleanup;
3060 trace2_region_enter("merge", "regular renames", opt->repo);
3061 detection_run |= detect_regular_renames(opt, MERGE_SIDE1);
3062 detection_run |= detect_regular_renames(opt, MERGE_SIDE2);
3063 if (renames->redo_after_renames && detection_run) {
3064 int i, side;
3065 struct diff_filepair *p;
3067 /* Cache the renames, we found */
3068 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
3069 for (i = 0; i < renames->pairs[side].nr; ++i) {
3070 p = renames->pairs[side].queue[i];
3071 possibly_cache_new_pair(renames, p, side, NULL);
3075 /* Restart the merge with the cached renames */
3076 renames->redo_after_renames = 2;
3077 trace2_region_leave("merge", "regular renames", opt->repo);
3078 goto cleanup;
3080 use_cached_pairs(opt, &renames->cached_pairs[1], &renames->pairs[1]);
3081 use_cached_pairs(opt, &renames->cached_pairs[2], &renames->pairs[2]);
3082 trace2_region_leave("merge", "regular renames", opt->repo);
3084 trace2_region_enter("merge", "directory renames", opt->repo);
3085 need_dir_renames =
3086 !opt->priv->call_depth &&
3087 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
3088 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
3090 if (need_dir_renames) {
3091 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
3092 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
3093 handle_directory_level_conflicts(opt);
3096 ALLOC_GROW(combined.queue,
3097 renames->pairs[1].nr + renames->pairs[2].nr,
3098 combined.alloc);
3099 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
3100 &renames->dir_renames[2],
3101 &renames->dir_renames[1]);
3102 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
3103 &renames->dir_renames[1],
3104 &renames->dir_renames[2]);
3105 STABLE_QSORT(combined.queue, combined.nr, compare_pairs);
3106 trace2_region_leave("merge", "directory renames", opt->repo);
3108 trace2_region_enter("merge", "process renames", opt->repo);
3109 clean &= process_renames(opt, &combined);
3110 trace2_region_leave("merge", "process renames", opt->repo);
3112 goto simple_cleanup; /* collect_renames() handles some of cleanup */
3114 cleanup:
3116 * Free now unneeded filepairs, which would have been handled
3117 * in collect_renames() normally but we skipped that code.
3119 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3120 struct diff_queue_struct *side_pairs;
3121 int i;
3123 side_pairs = &renames->pairs[s];
3124 for (i = 0; i < side_pairs->nr; ++i) {
3125 struct diff_filepair *p = side_pairs->queue[i];
3126 pool_diff_free_filepair(&opt->priv->pool, p);
3130 simple_cleanup:
3131 /* Free memory for renames->pairs[] and combined */
3132 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3133 free(renames->pairs[s].queue);
3134 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
3136 if (combined.nr) {
3137 int i;
3138 for (i = 0; i < combined.nr; i++)
3139 pool_diff_free_filepair(&opt->priv->pool,
3140 combined.queue[i]);
3141 free(combined.queue);
3144 return clean;
3147 /*** Function Grouping: functions related to process_entries() ***/
3149 static int sort_dirs_next_to_their_children(const char *one, const char *two)
3151 unsigned char c1, c2;
3154 * Here we only care that entries for directories appear adjacent
3155 * to and before files underneath the directory. We can achieve
3156 * that by pretending to add a trailing slash to every file and
3157 * then sorting. In other words, we do not want the natural
3158 * sorting of
3159 * foo
3160 * foo.txt
3161 * foo/bar
3162 * Instead, we want "foo" to sort as though it were "foo/", so that
3163 * we instead get
3164 * foo.txt
3165 * foo
3166 * foo/bar
3167 * To achieve this, we basically implement our own strcmp, except that
3168 * if we get to the end of either string instead of comparing NUL to
3169 * another character, we compare '/' to it.
3171 * If this unusual "sort as though '/' were appended" perplexes
3172 * you, perhaps it will help to note that this is not the final
3173 * sort. write_tree() will sort again without the trailing slash
3174 * magic, but just on paths immediately under a given tree.
3176 * The reason to not use df_name_compare directly was that it was
3177 * just too expensive (we don't have the string lengths handy), so
3178 * it was reimplemented.
3182 * NOTE: This function will never be called with two equal strings,
3183 * because it is used to sort the keys of a strmap, and strmaps have
3184 * unique keys by construction. That simplifies our c1==c2 handling
3185 * below.
3188 while (*one && (*one == *two)) {
3189 one++;
3190 two++;
3193 c1 = *one ? *one : '/';
3194 c2 = *two ? *two : '/';
3196 if (c1 == c2) {
3197 /* Getting here means one is a leading directory of the other */
3198 return (*one) ? 1 : -1;
3199 } else
3200 return c1 - c2;
3203 static int read_oid_strbuf(struct merge_options *opt,
3204 const struct object_id *oid,
3205 struct strbuf *dst)
3207 void *buf;
3208 enum object_type type;
3209 unsigned long size;
3210 buf = read_object_file(oid, &type, &size);
3211 if (!buf)
3212 return err(opt, _("cannot read object %s"), oid_to_hex(oid));
3213 if (type != OBJ_BLOB) {
3214 free(buf);
3215 return err(opt, _("object %s is not a blob"), oid_to_hex(oid));
3217 strbuf_attach(dst, buf, size, size + 1);
3218 return 0;
3221 static int blob_unchanged(struct merge_options *opt,
3222 const struct version_info *base,
3223 const struct version_info *side,
3224 const char *path)
3226 struct strbuf basebuf = STRBUF_INIT;
3227 struct strbuf sidebuf = STRBUF_INIT;
3228 int ret = 0; /* assume changed for safety */
3229 struct index_state *idx = &opt->priv->attr_index;
3231 if (!idx->initialized)
3232 initialize_attr_index(opt);
3234 if (base->mode != side->mode)
3235 return 0;
3236 if (oideq(&base->oid, &side->oid))
3237 return 1;
3239 if (read_oid_strbuf(opt, &base->oid, &basebuf) ||
3240 read_oid_strbuf(opt, &side->oid, &sidebuf))
3241 goto error_return;
3243 * Note: binary | is used so that both renormalizations are
3244 * performed. Comparison can be skipped if both files are
3245 * unchanged since their sha1s have already been compared.
3247 if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) |
3248 renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf))
3249 ret = (basebuf.len == sidebuf.len &&
3250 !memcmp(basebuf.buf, sidebuf.buf, basebuf.len));
3252 error_return:
3253 strbuf_release(&basebuf);
3254 strbuf_release(&sidebuf);
3255 return ret;
3258 struct directory_versions {
3260 * versions: list of (basename -> version_info)
3262 * The basenames are in reverse lexicographic order of full pathnames,
3263 * as processed in process_entries(). This puts all entries within
3264 * a directory together, and covers the directory itself after
3265 * everything within it, allowing us to write subtrees before needing
3266 * to record information for the tree itself.
3268 struct string_list versions;
3271 * offsets: list of (full relative path directories -> integer offsets)
3273 * Since versions contains basenames from files in multiple different
3274 * directories, we need to know which entries in versions correspond
3275 * to which directories. Values of e.g.
3276 * "" 0
3277 * src 2
3278 * src/moduleA 5
3279 * Would mean that entries 0-1 of versions are files in the toplevel
3280 * directory, entries 2-4 are files under src/, and the remaining
3281 * entries starting at index 5 are files under src/moduleA/.
3283 struct string_list offsets;
3286 * last_directory: directory that previously processed file found in
3288 * last_directory starts NULL, but records the directory in which the
3289 * previous file was found within. As soon as
3290 * directory(current_file) != last_directory
3291 * then we need to start updating accounting in versions & offsets.
3292 * Note that last_directory is always the last path in "offsets" (or
3293 * NULL if "offsets" is empty) so this exists just for quick access.
3295 const char *last_directory;
3297 /* last_directory_len: cached computation of strlen(last_directory) */
3298 unsigned last_directory_len;
3301 static int tree_entry_order(const void *a_, const void *b_)
3303 const struct string_list_item *a = a_;
3304 const struct string_list_item *b = b_;
3306 const struct merged_info *ami = a->util;
3307 const struct merged_info *bmi = b->util;
3308 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
3309 b->string, strlen(b->string), bmi->result.mode);
3312 static void write_tree(struct object_id *result_oid,
3313 struct string_list *versions,
3314 unsigned int offset,
3315 size_t hash_size)
3317 size_t maxlen = 0, extra;
3318 unsigned int nr;
3319 struct strbuf buf = STRBUF_INIT;
3320 int i;
3322 assert(offset <= versions->nr);
3323 nr = versions->nr - offset;
3324 if (versions->nr)
3325 /* No need for STABLE_QSORT -- filenames must be unique */
3326 QSORT(versions->items + offset, nr, tree_entry_order);
3328 /* Pre-allocate some space in buf */
3329 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
3330 for (i = 0; i < nr; i++) {
3331 maxlen += strlen(versions->items[offset+i].string) + extra;
3333 strbuf_grow(&buf, maxlen);
3335 /* Write each entry out to buf */
3336 for (i = 0; i < nr; i++) {
3337 struct merged_info *mi = versions->items[offset+i].util;
3338 struct version_info *ri = &mi->result;
3339 strbuf_addf(&buf, "%o %s%c",
3340 ri->mode,
3341 versions->items[offset+i].string, '\0');
3342 strbuf_add(&buf, ri->oid.hash, hash_size);
3345 /* Write this object file out, and record in result_oid */
3346 write_object_file(buf.buf, buf.len, tree_type, result_oid);
3347 strbuf_release(&buf);
3350 static void record_entry_for_tree(struct directory_versions *dir_metadata,
3351 const char *path,
3352 struct merged_info *mi)
3354 const char *basename;
3356 if (mi->is_null)
3357 /* nothing to record */
3358 return;
3360 basename = path + mi->basename_offset;
3361 assert(strchr(basename, '/') == NULL);
3362 string_list_append(&dir_metadata->versions,
3363 basename)->util = &mi->result;
3366 static void write_completed_directory(struct merge_options *opt,
3367 const char *new_directory_name,
3368 struct directory_versions *info)
3370 const char *prev_dir;
3371 struct merged_info *dir_info = NULL;
3372 unsigned int offset;
3375 * Some explanation of info->versions and info->offsets...
3377 * process_entries() iterates over all relevant files AND
3378 * directories in reverse lexicographic order, and calls this
3379 * function. Thus, an example of the paths that process_entries()
3380 * could operate on (along with the directories for those paths
3381 * being shown) is:
3383 * xtract.c ""
3384 * tokens.txt ""
3385 * src/moduleB/umm.c src/moduleB
3386 * src/moduleB/stuff.h src/moduleB
3387 * src/moduleB/baz.c src/moduleB
3388 * src/moduleB src
3389 * src/moduleA/foo.c src/moduleA
3390 * src/moduleA/bar.c src/moduleA
3391 * src/moduleA src
3392 * src ""
3393 * Makefile ""
3395 * info->versions:
3397 * always contains the unprocessed entries and their
3398 * version_info information. For example, after the first five
3399 * entries above, info->versions would be:
3401 * xtract.c <xtract.c's version_info>
3402 * token.txt <token.txt's version_info>
3403 * umm.c <src/moduleB/umm.c's version_info>
3404 * stuff.h <src/moduleB/stuff.h's version_info>
3405 * baz.c <src/moduleB/baz.c's version_info>
3407 * Once a subdirectory is completed we remove the entries in
3408 * that subdirectory from info->versions, writing it as a tree
3409 * (write_tree()). Thus, as soon as we get to src/moduleB,
3410 * info->versions would be updated to
3412 * xtract.c <xtract.c's version_info>
3413 * token.txt <token.txt's version_info>
3414 * moduleB <src/moduleB's version_info>
3416 * info->offsets:
3418 * helps us track which entries in info->versions correspond to
3419 * which directories. When we are N directories deep (e.g. 4
3420 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
3421 * directories (+1 because of toplevel dir). Corresponding to
3422 * the info->versions example above, after processing five entries
3423 * info->offsets will be:
3425 * "" 0
3426 * src/moduleB 2
3428 * which is used to know that xtract.c & token.txt are from the
3429 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
3430 * src/moduleB directory. Again, following the example above,
3431 * once we need to process src/moduleB, then info->offsets is
3432 * updated to
3434 * "" 0
3435 * src 2
3437 * which says that moduleB (and only moduleB so far) is in the
3438 * src directory.
3440 * One unique thing to note about info->offsets here is that
3441 * "src" was not added to info->offsets until there was a path
3442 * (a file OR directory) immediately below src/ that got
3443 * processed.
3445 * Since process_entry() just appends new entries to info->versions,
3446 * write_completed_directory() only needs to do work if the next path
3447 * is in a directory that is different than the last directory found
3448 * in info->offsets.
3452 * If we are working with the same directory as the last entry, there
3453 * is no work to do. (See comments above the directory_name member of
3454 * struct merged_info for why we can use pointer comparison instead of
3455 * strcmp here.)
3457 if (new_directory_name == info->last_directory)
3458 return;
3461 * If we are just starting (last_directory is NULL), or last_directory
3462 * is a prefix of the current directory, then we can just update
3463 * info->offsets to record the offset where we started this directory
3464 * and update last_directory to have quick access to it.
3466 if (info->last_directory == NULL ||
3467 !strncmp(new_directory_name, info->last_directory,
3468 info->last_directory_len)) {
3469 uintptr_t offset = info->versions.nr;
3471 info->last_directory = new_directory_name;
3472 info->last_directory_len = strlen(info->last_directory);
3474 * Record the offset into info->versions where we will
3475 * start recording basenames of paths found within
3476 * new_directory_name.
3478 string_list_append(&info->offsets,
3479 info->last_directory)->util = (void*)offset;
3480 return;
3484 * The next entry that will be processed will be within
3485 * new_directory_name. Since at this point we know that
3486 * new_directory_name is within a different directory than
3487 * info->last_directory, we have all entries for info->last_directory
3488 * in info->versions and we need to create a tree object for them.
3490 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
3491 assert(dir_info);
3492 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
3493 if (offset == info->versions.nr) {
3495 * Actually, we don't need to create a tree object in this
3496 * case. Whenever all files within a directory disappear
3497 * during the merge (e.g. unmodified on one side and
3498 * deleted on the other, or files were renamed elsewhere),
3499 * then we get here and the directory itself needs to be
3500 * omitted from its parent tree as well.
3502 dir_info->is_null = 1;
3503 } else {
3505 * Write out the tree to the git object directory, and also
3506 * record the mode and oid in dir_info->result.
3508 dir_info->is_null = 0;
3509 dir_info->result.mode = S_IFDIR;
3510 write_tree(&dir_info->result.oid, &info->versions, offset,
3511 opt->repo->hash_algo->rawsz);
3515 * We've now used several entries from info->versions and one entry
3516 * from info->offsets, so we get rid of those values.
3518 info->offsets.nr--;
3519 info->versions.nr = offset;
3522 * Now we've taken care of the completed directory, but we need to
3523 * prepare things since future entries will be in
3524 * new_directory_name. (In particular, process_entry() will be
3525 * appending new entries to info->versions.) So, we need to make
3526 * sure new_directory_name is the last entry in info->offsets.
3528 prev_dir = info->offsets.nr == 0 ? NULL :
3529 info->offsets.items[info->offsets.nr-1].string;
3530 if (new_directory_name != prev_dir) {
3531 uintptr_t c = info->versions.nr;
3532 string_list_append(&info->offsets,
3533 new_directory_name)->util = (void*)c;
3536 /* And, of course, we need to update last_directory to match. */
3537 info->last_directory = new_directory_name;
3538 info->last_directory_len = strlen(info->last_directory);
3541 /* Per entry merge function */
3542 static void process_entry(struct merge_options *opt,
3543 const char *path,
3544 struct conflict_info *ci,
3545 struct directory_versions *dir_metadata)
3547 int df_file_index = 0;
3549 VERIFY_CI(ci);
3550 assert(ci->filemask >= 0 && ci->filemask <= 7);
3551 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
3552 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
3553 ci->match_mask == 5 || ci->match_mask == 6);
3555 if (ci->dirmask) {
3556 record_entry_for_tree(dir_metadata, path, &ci->merged);
3557 if (ci->filemask == 0)
3558 /* nothing else to handle */
3559 return;
3560 assert(ci->df_conflict);
3563 if (ci->df_conflict && ci->merged.result.mode == 0) {
3564 int i;
3567 * directory no longer in the way, but we do have a file we
3568 * need to place here so we need to clean away the "directory
3569 * merges to nothing" result.
3571 ci->df_conflict = 0;
3572 assert(ci->filemask != 0);
3573 ci->merged.clean = 0;
3574 ci->merged.is_null = 0;
3575 /* and we want to zero out any directory-related entries */
3576 ci->match_mask = (ci->match_mask & ~ci->dirmask);
3577 ci->dirmask = 0;
3578 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3579 if (ci->filemask & (1 << i))
3580 continue;
3581 ci->stages[i].mode = 0;
3582 oidcpy(&ci->stages[i].oid, null_oid());
3584 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
3586 * This started out as a D/F conflict, and the entries in
3587 * the competing directory were not removed by the merge as
3588 * evidenced by write_completed_directory() writing a value
3589 * to ci->merged.result.mode.
3591 struct conflict_info *new_ci;
3592 const char *branch;
3593 const char *old_path = path;
3594 int i;
3596 assert(ci->merged.result.mode == S_IFDIR);
3599 * If filemask is 1, we can just ignore the file as having
3600 * been deleted on both sides. We do not want to overwrite
3601 * ci->merged.result, since it stores the tree for all the
3602 * files under it.
3604 if (ci->filemask == 1) {
3605 ci->filemask = 0;
3606 return;
3610 * This file still exists on at least one side, and we want
3611 * the directory to remain here, so we need to move this
3612 * path to some new location.
3614 new_ci = mem_pool_calloc(&opt->priv->pool, 1, sizeof(*new_ci));
3616 /* We don't really want new_ci->merged.result copied, but it'll
3617 * be overwritten below so it doesn't matter. We also don't
3618 * want any directory mode/oid values copied, but we'll zero
3619 * those out immediately. We do want the rest of ci copied.
3621 memcpy(new_ci, ci, sizeof(*ci));
3622 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
3623 new_ci->dirmask = 0;
3624 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3625 if (new_ci->filemask & (1 << i))
3626 continue;
3627 /* zero out any entries related to directories */
3628 new_ci->stages[i].mode = 0;
3629 oidcpy(&new_ci->stages[i].oid, null_oid());
3633 * Find out which side this file came from; note that we
3634 * cannot just use ci->filemask, because renames could cause
3635 * the filemask to go back to 7. So we use dirmask, then
3636 * pick the opposite side's index.
3638 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
3639 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
3640 path = unique_path(&opt->priv->paths, path, branch);
3641 strmap_put(&opt->priv->paths, path, new_ci);
3643 path_msg(opt, path, 0,
3644 _("CONFLICT (file/directory): directory in the way "
3645 "of %s from %s; moving it to %s instead."),
3646 old_path, branch, path);
3649 * Zero out the filemask for the old ci. At this point, ci
3650 * was just an entry for a directory, so we don't need to
3651 * do anything more with it.
3653 ci->filemask = 0;
3656 * Now note that we're working on the new entry (path was
3657 * updated above.
3659 ci = new_ci;
3663 * NOTE: Below there is a long switch-like if-elseif-elseif... block
3664 * which the code goes through even for the df_conflict cases
3665 * above.
3667 if (ci->match_mask) {
3668 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3669 if (ci->match_mask == 6) {
3670 /* stages[1] == stages[2] */
3671 ci->merged.result.mode = ci->stages[1].mode;
3672 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3673 } else {
3674 /* determine the mask of the side that didn't match */
3675 unsigned int othermask = 7 & ~ci->match_mask;
3676 int side = (othermask == 4) ? 2 : 1;
3678 ci->merged.result.mode = ci->stages[side].mode;
3679 ci->merged.is_null = !ci->merged.result.mode;
3680 if (ci->merged.is_null)
3681 ci->merged.clean = 1;
3682 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3684 assert(othermask == 2 || othermask == 4);
3685 assert(ci->merged.is_null ==
3686 (ci->filemask == ci->match_mask));
3688 } else if (ci->filemask >= 6 &&
3689 (S_IFMT & ci->stages[1].mode) !=
3690 (S_IFMT & ci->stages[2].mode)) {
3691 /* Two different items from (file/submodule/symlink) */
3692 if (opt->priv->call_depth) {
3693 /* Just use the version from the merge base */
3694 ci->merged.clean = 0;
3695 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
3696 ci->merged.result.mode = ci->stages[0].mode;
3697 ci->merged.is_null = (ci->merged.result.mode == 0);
3698 } else {
3699 /* Handle by renaming one or both to separate paths. */
3700 unsigned o_mode = ci->stages[0].mode;
3701 unsigned a_mode = ci->stages[1].mode;
3702 unsigned b_mode = ci->stages[2].mode;
3703 struct conflict_info *new_ci;
3704 const char *a_path = NULL, *b_path = NULL;
3705 int rename_a = 0, rename_b = 0;
3707 new_ci = mem_pool_alloc(&opt->priv->pool,
3708 sizeof(*new_ci));
3710 if (S_ISREG(a_mode))
3711 rename_a = 1;
3712 else if (S_ISREG(b_mode))
3713 rename_b = 1;
3714 else {
3715 rename_a = 1;
3716 rename_b = 1;
3719 if (rename_a && rename_b) {
3720 path_msg(opt, path, 0,
3721 _("CONFLICT (distinct types): %s had "
3722 "different types on each side; "
3723 "renamed both of them so each can "
3724 "be recorded somewhere."),
3725 path);
3726 } else {
3727 path_msg(opt, path, 0,
3728 _("CONFLICT (distinct types): %s had "
3729 "different types on each side; "
3730 "renamed one of them so each can be "
3731 "recorded somewhere."),
3732 path);
3735 ci->merged.clean = 0;
3736 memcpy(new_ci, ci, sizeof(*new_ci));
3738 /* Put b into new_ci, removing a from stages */
3739 new_ci->merged.result.mode = ci->stages[2].mode;
3740 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
3741 new_ci->stages[1].mode = 0;
3742 oidcpy(&new_ci->stages[1].oid, null_oid());
3743 new_ci->filemask = 5;
3744 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
3745 new_ci->stages[0].mode = 0;
3746 oidcpy(&new_ci->stages[0].oid, null_oid());
3747 new_ci->filemask = 4;
3750 /* Leave only a in ci, fixing stages. */
3751 ci->merged.result.mode = ci->stages[1].mode;
3752 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3753 ci->stages[2].mode = 0;
3754 oidcpy(&ci->stages[2].oid, null_oid());
3755 ci->filemask = 3;
3756 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
3757 ci->stages[0].mode = 0;
3758 oidcpy(&ci->stages[0].oid, null_oid());
3759 ci->filemask = 2;
3762 /* Insert entries into opt->priv_paths */
3763 assert(rename_a || rename_b);
3764 if (rename_a) {
3765 a_path = unique_path(&opt->priv->paths,
3766 path, opt->branch1);
3767 strmap_put(&opt->priv->paths, a_path, ci);
3770 if (rename_b)
3771 b_path = unique_path(&opt->priv->paths,
3772 path, opt->branch2);
3773 else
3774 b_path = path;
3775 strmap_put(&opt->priv->paths, b_path, new_ci);
3777 if (rename_a && rename_b)
3778 strmap_remove(&opt->priv->paths, path, 0);
3781 * Do special handling for b_path since process_entry()
3782 * won't be called on it specially.
3784 strmap_put(&opt->priv->conflicted, b_path, new_ci);
3785 record_entry_for_tree(dir_metadata, b_path,
3786 &new_ci->merged);
3789 * Remaining code for processing this entry should
3790 * think in terms of processing a_path.
3792 if (a_path)
3793 path = a_path;
3795 } else if (ci->filemask >= 6) {
3796 /* Need a two-way or three-way content merge */
3797 struct version_info merged_file;
3798 unsigned clean_merge;
3799 struct version_info *o = &ci->stages[0];
3800 struct version_info *a = &ci->stages[1];
3801 struct version_info *b = &ci->stages[2];
3803 clean_merge = handle_content_merge(opt, path, o, a, b,
3804 ci->pathnames,
3805 opt->priv->call_depth * 2,
3806 &merged_file);
3807 ci->merged.clean = clean_merge &&
3808 !ci->df_conflict && !ci->path_conflict;
3809 ci->merged.result.mode = merged_file.mode;
3810 ci->merged.is_null = (merged_file.mode == 0);
3811 oidcpy(&ci->merged.result.oid, &merged_file.oid);
3812 if (clean_merge && ci->df_conflict) {
3813 assert(df_file_index == 1 || df_file_index == 2);
3814 ci->filemask = 1 << df_file_index;
3815 ci->stages[df_file_index].mode = merged_file.mode;
3816 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
3818 if (!clean_merge) {
3819 const char *reason = _("content");
3820 if (ci->filemask == 6)
3821 reason = _("add/add");
3822 if (S_ISGITLINK(merged_file.mode))
3823 reason = _("submodule");
3824 path_msg(opt, path, 0,
3825 _("CONFLICT (%s): Merge conflict in %s"),
3826 reason, path);
3828 } else if (ci->filemask == 3 || ci->filemask == 5) {
3829 /* Modify/delete */
3830 const char *modify_branch, *delete_branch;
3831 int side = (ci->filemask == 5) ? 2 : 1;
3832 int index = opt->priv->call_depth ? 0 : side;
3834 ci->merged.result.mode = ci->stages[index].mode;
3835 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
3836 ci->merged.clean = 0;
3838 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
3839 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
3841 if (opt->renormalize &&
3842 blob_unchanged(opt, &ci->stages[0], &ci->stages[side],
3843 path)) {
3844 ci->merged.is_null = 1;
3845 ci->merged.clean = 1;
3846 assert(!ci->df_conflict && !ci->path_conflict);
3847 } else if (ci->path_conflict &&
3848 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
3850 * This came from a rename/delete; no action to take,
3851 * but avoid printing "modify/delete" conflict notice
3852 * since the contents were not modified.
3854 } else {
3855 path_msg(opt, path, 0,
3856 _("CONFLICT (modify/delete): %s deleted in %s "
3857 "and modified in %s. Version %s of %s left "
3858 "in tree."),
3859 path, delete_branch, modify_branch,
3860 modify_branch, path);
3862 } else if (ci->filemask == 2 || ci->filemask == 4) {
3863 /* Added on one side */
3864 int side = (ci->filemask == 4) ? 2 : 1;
3865 ci->merged.result.mode = ci->stages[side].mode;
3866 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3867 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3868 } else if (ci->filemask == 1) {
3869 /* Deleted on both sides */
3870 ci->merged.is_null = 1;
3871 ci->merged.result.mode = 0;
3872 oidcpy(&ci->merged.result.oid, null_oid());
3873 assert(!ci->df_conflict);
3874 ci->merged.clean = !ci->path_conflict;
3878 * If still conflicted, record it separately. This allows us to later
3879 * iterate over just conflicted entries when updating the index instead
3880 * of iterating over all entries.
3882 if (!ci->merged.clean)
3883 strmap_put(&opt->priv->conflicted, path, ci);
3885 /* Record metadata for ci->merged in dir_metadata */
3886 record_entry_for_tree(dir_metadata, path, &ci->merged);
3889 static void prefetch_for_content_merges(struct merge_options *opt,
3890 struct string_list *plist)
3892 struct string_list_item *e;
3893 struct oid_array to_fetch = OID_ARRAY_INIT;
3895 if (opt->repo != the_repository || !has_promisor_remote())
3896 return;
3898 for (e = &plist->items[plist->nr-1]; e >= plist->items; --e) {
3899 /* char *path = e->string; */
3900 struct conflict_info *ci = e->util;
3901 int i;
3903 /* Ignore clean entries */
3904 if (ci->merged.clean)
3905 continue;
3907 /* Ignore entries that don't need a content merge */
3908 if (ci->match_mask || ci->filemask < 6 ||
3909 !S_ISREG(ci->stages[1].mode) ||
3910 !S_ISREG(ci->stages[2].mode) ||
3911 oideq(&ci->stages[1].oid, &ci->stages[2].oid))
3912 continue;
3914 /* Also don't need content merge if base matches either side */
3915 if (ci->filemask == 7 &&
3916 S_ISREG(ci->stages[0].mode) &&
3917 (oideq(&ci->stages[0].oid, &ci->stages[1].oid) ||
3918 oideq(&ci->stages[0].oid, &ci->stages[2].oid)))
3919 continue;
3921 for (i = 0; i < 3; i++) {
3922 unsigned side_mask = (1 << i);
3923 struct version_info *vi = &ci->stages[i];
3925 if ((ci->filemask & side_mask) &&
3926 S_ISREG(vi->mode) &&
3927 oid_object_info_extended(opt->repo, &vi->oid, NULL,
3928 OBJECT_INFO_FOR_PREFETCH))
3929 oid_array_append(&to_fetch, &vi->oid);
3933 promisor_remote_get_direct(opt->repo, to_fetch.oid, to_fetch.nr);
3934 oid_array_clear(&to_fetch);
3937 static void process_entries(struct merge_options *opt,
3938 struct object_id *result_oid)
3940 struct hashmap_iter iter;
3941 struct strmap_entry *e;
3942 struct string_list plist = STRING_LIST_INIT_NODUP;
3943 struct string_list_item *entry;
3944 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
3945 STRING_LIST_INIT_NODUP,
3946 NULL, 0 };
3948 trace2_region_enter("merge", "process_entries setup", opt->repo);
3949 if (strmap_empty(&opt->priv->paths)) {
3950 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
3951 return;
3954 /* Hack to pre-allocate plist to the desired size */
3955 trace2_region_enter("merge", "plist grow", opt->repo);
3956 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
3957 trace2_region_leave("merge", "plist grow", opt->repo);
3959 /* Put every entry from paths into plist, then sort */
3960 trace2_region_enter("merge", "plist copy", opt->repo);
3961 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
3962 string_list_append(&plist, e->key)->util = e->value;
3964 trace2_region_leave("merge", "plist copy", opt->repo);
3966 trace2_region_enter("merge", "plist special sort", opt->repo);
3967 plist.cmp = sort_dirs_next_to_their_children;
3968 string_list_sort(&plist);
3969 trace2_region_leave("merge", "plist special sort", opt->repo);
3971 trace2_region_leave("merge", "process_entries setup", opt->repo);
3974 * Iterate over the items in reverse order, so we can handle paths
3975 * below a directory before needing to handle the directory itself.
3977 * This allows us to write subtrees before we need to write trees,
3978 * and it also enables sane handling of directory/file conflicts
3979 * (because it allows us to know whether the directory is still in
3980 * the way when it is time to process the file at the same path).
3982 trace2_region_enter("merge", "processing", opt->repo);
3983 prefetch_for_content_merges(opt, &plist);
3984 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
3985 char *path = entry->string;
3987 * NOTE: mi may actually be a pointer to a conflict_info, but
3988 * we have to check mi->clean first to see if it's safe to
3989 * reassign to such a pointer type.
3991 struct merged_info *mi = entry->util;
3993 write_completed_directory(opt, mi->directory_name,
3994 &dir_metadata);
3995 if (mi->clean)
3996 record_entry_for_tree(&dir_metadata, path, mi);
3997 else {
3998 struct conflict_info *ci = (struct conflict_info *)mi;
3999 process_entry(opt, path, ci, &dir_metadata);
4002 trace2_region_leave("merge", "processing", opt->repo);
4004 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
4005 if (dir_metadata.offsets.nr != 1 ||
4006 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
4007 printf("dir_metadata.offsets.nr = %d (should be 1)\n",
4008 dir_metadata.offsets.nr);
4009 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
4010 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
4011 fflush(stdout);
4012 BUG("dir_metadata accounting completely off; shouldn't happen");
4014 write_tree(result_oid, &dir_metadata.versions, 0,
4015 opt->repo->hash_algo->rawsz);
4016 string_list_clear(&plist, 0);
4017 string_list_clear(&dir_metadata.versions, 0);
4018 string_list_clear(&dir_metadata.offsets, 0);
4019 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
4022 /*** Function Grouping: functions related to merge_switch_to_result() ***/
4024 static int checkout(struct merge_options *opt,
4025 struct tree *prev,
4026 struct tree *next)
4028 /* Switch the index/working copy from old to new */
4029 int ret;
4030 struct tree_desc trees[2];
4031 struct unpack_trees_options unpack_opts;
4033 memset(&unpack_opts, 0, sizeof(unpack_opts));
4034 unpack_opts.head_idx = -1;
4035 unpack_opts.src_index = opt->repo->index;
4036 unpack_opts.dst_index = opt->repo->index;
4038 setup_unpack_trees_porcelain(&unpack_opts, "merge");
4041 * NOTE: if this were just "git checkout" code, we would probably
4042 * read or refresh the cache and check for a conflicted index, but
4043 * builtin/merge.c or sequencer.c really needs to read the index
4044 * and check for conflicted entries before starting merging for a
4045 * good user experience (no sense waiting for merges/rebases before
4046 * erroring out), so there's no reason to duplicate that work here.
4049 /* 2-way merge to the new branch */
4050 unpack_opts.update = 1;
4051 unpack_opts.merge = 1;
4052 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
4053 unpack_opts.verbose_update = (opt->verbosity > 2);
4054 unpack_opts.fn = twoway_merge;
4055 unpack_opts.preserve_ignored = 0; /* FIXME: !opts->overwrite_ignore */
4056 parse_tree(prev);
4057 init_tree_desc(&trees[0], prev->buffer, prev->size);
4058 parse_tree(next);
4059 init_tree_desc(&trees[1], next->buffer, next->size);
4061 ret = unpack_trees(2, trees, &unpack_opts);
4062 clear_unpack_trees_porcelain(&unpack_opts);
4063 return ret;
4066 static int record_conflicted_index_entries(struct merge_options *opt)
4068 struct hashmap_iter iter;
4069 struct strmap_entry *e;
4070 struct index_state *index = opt->repo->index;
4071 struct checkout state = CHECKOUT_INIT;
4072 int errs = 0;
4073 int original_cache_nr;
4075 if (strmap_empty(&opt->priv->conflicted))
4076 return 0;
4079 * We are in a conflicted state. These conflicts might be inside
4080 * sparse-directory entries, so check if any entries are outside
4081 * of the sparse-checkout cone preemptively.
4083 * We set original_cache_nr below, but that might change if
4084 * index_name_pos() calls ask for paths within sparse directories.
4086 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4087 if (!path_in_sparse_checkout(e->key, index)) {
4088 ensure_full_index(index);
4089 break;
4093 /* If any entries have skip_worktree set, we'll have to check 'em out */
4094 state.force = 1;
4095 state.quiet = 1;
4096 state.refresh_cache = 1;
4097 state.istate = index;
4098 original_cache_nr = index->cache_nr;
4100 /* Append every entry from conflicted into index, then sort */
4101 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4102 const char *path = e->key;
4103 struct conflict_info *ci = e->value;
4104 int pos;
4105 struct cache_entry *ce;
4106 int i;
4108 VERIFY_CI(ci);
4111 * The index will already have a stage=0 entry for this path,
4112 * because we created an as-merged-as-possible version of the
4113 * file and checkout() moved the working copy and index over
4114 * to that version.
4116 * However, previous iterations through this loop will have
4117 * added unstaged entries to the end of the cache which
4118 * ignore the standard alphabetical ordering of cache
4119 * entries and break invariants needed for index_name_pos()
4120 * to work. However, we know the entry we want is before
4121 * those appended cache entries, so do a temporary swap on
4122 * cache_nr to only look through entries of interest.
4124 SWAP(index->cache_nr, original_cache_nr);
4125 pos = index_name_pos(index, path, strlen(path));
4126 SWAP(index->cache_nr, original_cache_nr);
4127 if (pos < 0) {
4128 if (ci->filemask != 1)
4129 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
4130 cache_tree_invalidate_path(index, path);
4131 } else {
4132 ce = index->cache[pos];
4135 * Clean paths with CE_SKIP_WORKTREE set will not be
4136 * written to the working tree by the unpack_trees()
4137 * call in checkout(). Our conflicted entries would
4138 * have appeared clean to that code since we ignored
4139 * the higher order stages. Thus, we need override
4140 * the CE_SKIP_WORKTREE bit and manually write those
4141 * files to the working disk here.
4143 if (ce_skip_worktree(ce)) {
4144 struct stat st;
4146 if (!lstat(path, &st)) {
4147 char *new_name = unique_path(&opt->priv->paths,
4148 path,
4149 "cruft");
4151 path_msg(opt, path, 1,
4152 _("Note: %s not up to date and in way of checking out conflicted version; old copy renamed to %s"),
4153 path, new_name);
4154 errs |= rename(path, new_name);
4155 free(new_name);
4157 errs |= checkout_entry(ce, &state, NULL, NULL);
4161 * Mark this cache entry for removal and instead add
4162 * new stage>0 entries corresponding to the
4163 * conflicts. If there are many conflicted entries, we
4164 * want to avoid memmove'ing O(NM) entries by
4165 * inserting the new entries one at a time. So,
4166 * instead, we just add the new cache entries to the
4167 * end (ignoring normal index requirements on sort
4168 * order) and sort the index once we're all done.
4170 ce->ce_flags |= CE_REMOVE;
4173 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4174 struct version_info *vi;
4175 if (!(ci->filemask & (1ul << i)))
4176 continue;
4177 vi = &ci->stages[i];
4178 ce = make_cache_entry(index, vi->mode, &vi->oid,
4179 path, i+1, 0);
4180 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
4185 * Remove the unused cache entries (and invalidate the relevant
4186 * cache-trees), then sort the index entries to get the conflicted
4187 * entries we added to the end into their right locations.
4189 remove_marked_cache_entries(index, 1);
4191 * No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily
4192 * on filename and secondarily on stage, and (name, stage #) are a
4193 * unique tuple.
4195 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
4197 return errs;
4200 void merge_switch_to_result(struct merge_options *opt,
4201 struct tree *head,
4202 struct merge_result *result,
4203 int update_worktree_and_index,
4204 int display_update_msgs)
4206 assert(opt->priv == NULL);
4207 if (result->clean >= 0 && update_worktree_and_index) {
4208 const char *filename;
4209 FILE *fp;
4211 trace2_region_enter("merge", "checkout", opt->repo);
4212 if (checkout(opt, head, result->tree)) {
4213 /* failure to function */
4214 result->clean = -1;
4215 return;
4217 trace2_region_leave("merge", "checkout", opt->repo);
4219 trace2_region_enter("merge", "record_conflicted", opt->repo);
4220 opt->priv = result->priv;
4221 if (record_conflicted_index_entries(opt)) {
4222 /* failure to function */
4223 opt->priv = NULL;
4224 result->clean = -1;
4225 return;
4227 opt->priv = NULL;
4228 trace2_region_leave("merge", "record_conflicted", opt->repo);
4230 trace2_region_enter("merge", "write_auto_merge", opt->repo);
4231 filename = git_path_auto_merge(opt->repo);
4232 fp = xfopen(filename, "w");
4233 fprintf(fp, "%s\n", oid_to_hex(&result->tree->object.oid));
4234 fclose(fp);
4235 trace2_region_leave("merge", "write_auto_merge", opt->repo);
4238 if (display_update_msgs) {
4239 struct merge_options_internal *opti = result->priv;
4240 struct hashmap_iter iter;
4241 struct strmap_entry *e;
4242 struct string_list olist = STRING_LIST_INIT_NODUP;
4243 int i;
4245 trace2_region_enter("merge", "display messages", opt->repo);
4247 /* Hack to pre-allocate olist to the desired size */
4248 ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
4249 olist.alloc);
4251 /* Put every entry from output into olist, then sort */
4252 strmap_for_each_entry(&opti->output, &iter, e) {
4253 string_list_append(&olist, e->key)->util = e->value;
4255 string_list_sort(&olist);
4257 /* Iterate over the items, printing them */
4258 for (i = 0; i < olist.nr; ++i) {
4259 struct strbuf *sb = olist.items[i].util;
4261 printf("%s", sb->buf);
4263 string_list_clear(&olist, 0);
4265 /* Also include needed rename limit adjustment now */
4266 diff_warn_rename_limit("merge.renamelimit",
4267 opti->renames.needed_limit, 0);
4269 trace2_region_leave("merge", "display messages", opt->repo);
4272 merge_finalize(opt, result);
4275 void merge_finalize(struct merge_options *opt,
4276 struct merge_result *result)
4278 struct merge_options_internal *opti = result->priv;
4280 if (opt->renormalize)
4281 git_attr_set_direction(GIT_ATTR_CHECKIN);
4282 assert(opt->priv == NULL);
4284 clear_or_reinit_internal_opts(opti, 0);
4285 FREE_AND_NULL(opti);
4288 /*** Function Grouping: helper functions for merge_incore_*() ***/
4290 static struct tree *shift_tree_object(struct repository *repo,
4291 struct tree *one, struct tree *two,
4292 const char *subtree_shift)
4294 struct object_id shifted;
4296 if (!*subtree_shift) {
4297 shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0);
4298 } else {
4299 shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted,
4300 subtree_shift);
4302 if (oideq(&two->object.oid, &shifted))
4303 return two;
4304 return lookup_tree(repo, &shifted);
4307 static inline void set_commit_tree(struct commit *c, struct tree *t)
4309 c->maybe_tree = t;
4312 static struct commit *make_virtual_commit(struct repository *repo,
4313 struct tree *tree,
4314 const char *comment)
4316 struct commit *commit = alloc_commit_node(repo);
4318 set_merge_remote_desc(commit, comment, (struct object *)commit);
4319 set_commit_tree(commit, tree);
4320 commit->object.parsed = 1;
4321 return commit;
4324 static void merge_start(struct merge_options *opt, struct merge_result *result)
4326 struct rename_info *renames;
4327 int i;
4328 struct mem_pool *pool = NULL;
4330 /* Sanity checks on opt */
4331 trace2_region_enter("merge", "sanity checks", opt->repo);
4332 assert(opt->repo);
4334 assert(opt->branch1 && opt->branch2);
4336 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
4337 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
4338 assert(opt->rename_limit >= -1);
4339 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
4340 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
4342 assert(opt->xdl_opts >= 0);
4343 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
4344 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
4347 * detect_renames, verbosity, buffer_output, and obuf are ignored
4348 * fields that were used by "recursive" rather than "ort" -- but
4349 * sanity check them anyway.
4351 assert(opt->detect_renames >= -1 &&
4352 opt->detect_renames <= DIFF_DETECT_COPY);
4353 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
4354 assert(opt->buffer_output <= 2);
4355 assert(opt->obuf.len == 0);
4357 assert(opt->priv == NULL);
4358 if (result->_properly_initialized != 0 &&
4359 result->_properly_initialized != RESULT_INITIALIZED)
4360 BUG("struct merge_result passed to merge_incore_*recursive() must be zeroed or filled with values from a previous run");
4361 assert(!!result->priv == !!result->_properly_initialized);
4362 if (result->priv) {
4363 opt->priv = result->priv;
4364 result->priv = NULL;
4366 * opt->priv non-NULL means we had results from a previous
4367 * run; do a few sanity checks that user didn't mess with
4368 * it in an obvious fashion.
4370 assert(opt->priv->call_depth == 0);
4371 assert(!opt->priv->toplevel_dir ||
4372 0 == strlen(opt->priv->toplevel_dir));
4374 trace2_region_leave("merge", "sanity checks", opt->repo);
4376 /* Default to histogram diff. Actually, just hardcode it...for now. */
4377 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
4379 /* Handle attr direction stuff for renormalization */
4380 if (opt->renormalize)
4381 git_attr_set_direction(GIT_ATTR_CHECKOUT);
4383 /* Initialization of opt->priv, our internal merge data */
4384 trace2_region_enter("merge", "allocate/init", opt->repo);
4385 if (opt->priv) {
4386 clear_or_reinit_internal_opts(opt->priv, 1);
4387 trace2_region_leave("merge", "allocate/init", opt->repo);
4388 return;
4390 opt->priv = xcalloc(1, sizeof(*opt->priv));
4392 /* Initialization of various renames fields */
4393 renames = &opt->priv->renames;
4394 mem_pool_init(&opt->priv->pool, 0);
4395 pool = &opt->priv->pool;
4396 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4397 strintmap_init_with_options(&renames->dirs_removed[i],
4398 NOT_RELEVANT, pool, 0);
4399 strmap_init_with_options(&renames->dir_rename_count[i],
4400 NULL, 1);
4401 strmap_init_with_options(&renames->dir_renames[i],
4402 NULL, 0);
4404 * relevant_sources uses -1 for the default, because we need
4405 * to be able to distinguish not-in-strintmap from valid
4406 * relevant_source values from enum file_rename_relevance.
4407 * In particular, possibly_cache_new_pair() expects a negative
4408 * value for not-found entries.
4410 strintmap_init_with_options(&renames->relevant_sources[i],
4411 -1 /* explicitly invalid */,
4412 pool, 0);
4413 strmap_init_with_options(&renames->cached_pairs[i],
4414 NULL, 1);
4415 strset_init_with_options(&renames->cached_irrelevant[i],
4416 NULL, 1);
4417 strset_init_with_options(&renames->cached_target_names[i],
4418 NULL, 0);
4420 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4421 strintmap_init_with_options(&renames->deferred[i].possible_trivial_merges,
4422 0, pool, 0);
4423 strset_init_with_options(&renames->deferred[i].target_dirs,
4424 pool, 1);
4425 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
4429 * Although we initialize opt->priv->paths with strdup_strings=0,
4430 * that's just to avoid making yet another copy of an allocated
4431 * string. Putting the entry into paths means we are taking
4432 * ownership, so we will later free it.
4434 * In contrast, conflicted just has a subset of keys from paths, so
4435 * we don't want to free those (it'd be a duplicate free).
4437 strmap_init_with_options(&opt->priv->paths, pool, 0);
4438 strmap_init_with_options(&opt->priv->conflicted, pool, 0);
4441 * keys & strbufs in output will sometimes need to outlive "paths",
4442 * so it will have a copy of relevant keys. It's probably a small
4443 * subset of the overall paths that have special output.
4445 strmap_init(&opt->priv->output);
4447 trace2_region_leave("merge", "allocate/init", opt->repo);
4450 static void merge_check_renames_reusable(struct merge_options *opt,
4451 struct merge_result *result,
4452 struct tree *merge_base,
4453 struct tree *side1,
4454 struct tree *side2)
4456 struct rename_info *renames;
4457 struct tree **merge_trees;
4458 struct merge_options_internal *opti = result->priv;
4460 if (!opti)
4461 return;
4463 renames = &opti->renames;
4464 merge_trees = renames->merge_trees;
4467 * Handle case where previous merge operation did not want cache to
4468 * take effect, e.g. because rename/rename(1to1) makes it invalid.
4470 if (!merge_trees[0]) {
4471 assert(!merge_trees[0] && !merge_trees[1] && !merge_trees[2]);
4472 renames->cached_pairs_valid_side = 0; /* neither side valid */
4473 return;
4477 * Handle other cases; note that merge_trees[0..2] will only
4478 * be NULL if opti is, or if all three were manually set to
4479 * NULL by e.g. rename/rename(1to1) handling.
4481 assert(merge_trees[0] && merge_trees[1] && merge_trees[2]);
4483 /* Check if we meet a condition for re-using cached_pairs */
4484 if (oideq(&merge_base->object.oid, &merge_trees[2]->object.oid) &&
4485 oideq(&side1->object.oid, &result->tree->object.oid))
4486 renames->cached_pairs_valid_side = MERGE_SIDE1;
4487 else if (oideq(&merge_base->object.oid, &merge_trees[1]->object.oid) &&
4488 oideq(&side2->object.oid, &result->tree->object.oid))
4489 renames->cached_pairs_valid_side = MERGE_SIDE2;
4490 else
4491 renames->cached_pairs_valid_side = 0; /* neither side valid */
4494 /*** Function Grouping: merge_incore_*() and their internal variants ***/
4497 * Originally from merge_trees_internal(); heavily adapted, though.
4499 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
4500 struct tree *merge_base,
4501 struct tree *side1,
4502 struct tree *side2,
4503 struct merge_result *result)
4505 struct object_id working_tree_oid;
4507 if (opt->subtree_shift) {
4508 side2 = shift_tree_object(opt->repo, side1, side2,
4509 opt->subtree_shift);
4510 merge_base = shift_tree_object(opt->repo, side1, merge_base,
4511 opt->subtree_shift);
4514 redo:
4515 trace2_region_enter("merge", "collect_merge_info", opt->repo);
4516 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
4518 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
4519 * base, and 2-3) the trees for the two trees we're merging.
4521 err(opt, _("collecting merge info failed for trees %s, %s, %s"),
4522 oid_to_hex(&merge_base->object.oid),
4523 oid_to_hex(&side1->object.oid),
4524 oid_to_hex(&side2->object.oid));
4525 result->clean = -1;
4526 return;
4528 trace2_region_leave("merge", "collect_merge_info", opt->repo);
4530 trace2_region_enter("merge", "renames", opt->repo);
4531 result->clean = detect_and_process_renames(opt, merge_base,
4532 side1, side2);
4533 trace2_region_leave("merge", "renames", opt->repo);
4534 if (opt->priv->renames.redo_after_renames == 2) {
4535 trace2_region_enter("merge", "reset_maps", opt->repo);
4536 clear_or_reinit_internal_opts(opt->priv, 1);
4537 trace2_region_leave("merge", "reset_maps", opt->repo);
4538 goto redo;
4541 trace2_region_enter("merge", "process_entries", opt->repo);
4542 process_entries(opt, &working_tree_oid);
4543 trace2_region_leave("merge", "process_entries", opt->repo);
4545 /* Set return values */
4546 result->tree = parse_tree_indirect(&working_tree_oid);
4547 /* existence of conflicted entries implies unclean */
4548 result->clean &= strmap_empty(&opt->priv->conflicted);
4549 if (!opt->priv->call_depth) {
4550 result->priv = opt->priv;
4551 result->_properly_initialized = RESULT_INITIALIZED;
4552 opt->priv = NULL;
4557 * Originally from merge_recursive_internal(); somewhat adapted, though.
4559 static void merge_ort_internal(struct merge_options *opt,
4560 struct commit_list *merge_bases,
4561 struct commit *h1,
4562 struct commit *h2,
4563 struct merge_result *result)
4565 struct commit_list *iter;
4566 struct commit *merged_merge_bases;
4567 const char *ancestor_name;
4568 struct strbuf merge_base_abbrev = STRBUF_INIT;
4570 if (!merge_bases) {
4571 merge_bases = get_merge_bases(h1, h2);
4572 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
4573 merge_bases = reverse_commit_list(merge_bases);
4576 merged_merge_bases = pop_commit(&merge_bases);
4577 if (merged_merge_bases == NULL) {
4578 /* if there is no common ancestor, use an empty tree */
4579 struct tree *tree;
4581 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
4582 merged_merge_bases = make_virtual_commit(opt->repo, tree,
4583 "ancestor");
4584 ancestor_name = "empty tree";
4585 } else if (merge_bases) {
4586 ancestor_name = "merged common ancestors";
4587 } else {
4588 strbuf_add_unique_abbrev(&merge_base_abbrev,
4589 &merged_merge_bases->object.oid,
4590 DEFAULT_ABBREV);
4591 ancestor_name = merge_base_abbrev.buf;
4594 for (iter = merge_bases; iter; iter = iter->next) {
4595 const char *saved_b1, *saved_b2;
4596 struct commit *prev = merged_merge_bases;
4598 opt->priv->call_depth++;
4600 * When the merge fails, the result contains files
4601 * with conflict markers. The cleanness flag is
4602 * ignored (unless indicating an error), it was never
4603 * actually used, as result of merge_trees has always
4604 * overwritten it: the committed "conflicts" were
4605 * already resolved.
4607 saved_b1 = opt->branch1;
4608 saved_b2 = opt->branch2;
4609 opt->branch1 = "Temporary merge branch 1";
4610 opt->branch2 = "Temporary merge branch 2";
4611 merge_ort_internal(opt, NULL, prev, iter->item, result);
4612 if (result->clean < 0)
4613 return;
4614 opt->branch1 = saved_b1;
4615 opt->branch2 = saved_b2;
4616 opt->priv->call_depth--;
4618 merged_merge_bases = make_virtual_commit(opt->repo,
4619 result->tree,
4620 "merged tree");
4621 commit_list_insert(prev, &merged_merge_bases->parents);
4622 commit_list_insert(iter->item,
4623 &merged_merge_bases->parents->next);
4625 clear_or_reinit_internal_opts(opt->priv, 1);
4628 opt->ancestor = ancestor_name;
4629 merge_ort_nonrecursive_internal(opt,
4630 repo_get_commit_tree(opt->repo,
4631 merged_merge_bases),
4632 repo_get_commit_tree(opt->repo, h1),
4633 repo_get_commit_tree(opt->repo, h2),
4634 result);
4635 strbuf_release(&merge_base_abbrev);
4636 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
4639 void merge_incore_nonrecursive(struct merge_options *opt,
4640 struct tree *merge_base,
4641 struct tree *side1,
4642 struct tree *side2,
4643 struct merge_result *result)
4645 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
4647 trace2_region_enter("merge", "merge_start", opt->repo);
4648 assert(opt->ancestor != NULL);
4649 merge_check_renames_reusable(opt, result, merge_base, side1, side2);
4650 merge_start(opt, result);
4652 * Record the trees used in this merge, so if there's a next merge in
4653 * a cherry-pick or rebase sequence it might be able to take advantage
4654 * of the cached_pairs in that next merge.
4656 opt->priv->renames.merge_trees[0] = merge_base;
4657 opt->priv->renames.merge_trees[1] = side1;
4658 opt->priv->renames.merge_trees[2] = side2;
4659 trace2_region_leave("merge", "merge_start", opt->repo);
4661 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
4662 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
4665 void merge_incore_recursive(struct merge_options *opt,
4666 struct commit_list *merge_bases,
4667 struct commit *side1,
4668 struct commit *side2,
4669 struct merge_result *result)
4671 trace2_region_enter("merge", "incore_recursive", opt->repo);
4673 /* We set the ancestor label based on the merge_bases */
4674 assert(opt->ancestor == NULL);
4676 trace2_region_enter("merge", "merge_start", opt->repo);
4677 merge_start(opt, result);
4678 trace2_region_leave("merge", "merge_start", opt->repo);
4680 merge_ort_internal(opt, merge_bases, side1, side2, result);
4681 trace2_region_leave("merge", "incore_recursive", opt->repo);