midx.c: don't leak MIDX from verify_midx_file
[git/debian.git] / merge-ort.c
blobe5456f4722894a20f09c6255d921306ab5884ccd
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
6 * git merge [-s recursive]
8 * with
10 * git merge -s ort
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
17 #include "cache.h"
18 #include "merge-ort.h"
20 #include "alloc.h"
21 #include "attr.h"
22 #include "blob.h"
23 #include "cache-tree.h"
24 #include "commit.h"
25 #include "commit-reach.h"
26 #include "diff.h"
27 #include "diffcore.h"
28 #include "dir.h"
29 #include "entry.h"
30 #include "ll-merge.h"
31 #include "object-store.h"
32 #include "promisor-remote.h"
33 #include "revision.h"
34 #include "strmap.h"
35 #include "submodule-config.h"
36 #include "submodule.h"
37 #include "tree.h"
38 #include "unpack-trees.h"
39 #include "xdiff-interface.h"
42 * We have many arrays of size 3. Whenever we have such an array, the
43 * indices refer to one of the sides of the three-way merge. This is so
44 * pervasive that the constants 0, 1, and 2 are used in many places in the
45 * code (especially in arithmetic operations to find the other side's index
46 * or to compute a relevant mask), but sometimes these enum names are used
47 * to aid code clarity.
49 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
50 * referred to there is one of these three sides.
52 enum merge_side {
53 MERGE_BASE = 0,
54 MERGE_SIDE1 = 1,
55 MERGE_SIDE2 = 2
58 static unsigned RESULT_INITIALIZED = 0x1abe11ed; /* unlikely accidental value */
60 struct traversal_callback_data {
61 unsigned long mask;
62 unsigned long dirmask;
63 struct name_entry names[3];
66 struct deferred_traversal_data {
68 * possible_trivial_merges: directories to be explored only when needed
70 * possible_trivial_merges is a map of directory names to
71 * dir_rename_mask. When we detect that a directory is unchanged on
72 * one side, we can sometimes resolve the directory without recursing
73 * into it. Renames are the only things that can prevent such an
74 * optimization. However, for rename sources:
75 * - If no parent directory needed directory rename detection, then
76 * no path under such a directory can be a relevant_source.
77 * and for rename destinations:
78 * - If no cached rename has a target path under the directory AND
79 * - If there are no unpaired relevant_sources elsewhere in the
80 * repository
81 * then we don't need any path under this directory for a rename
82 * destination. The only way to know the last item above is to defer
83 * handling such directories until the end of collect_merge_info(),
84 * in handle_deferred_entries().
86 * For each we store dir_rename_mask, since that's the only bit of
87 * information we need, other than the path, to resume the recursive
88 * traversal.
90 struct strintmap possible_trivial_merges;
93 * trivial_merges_okay: if trivial directory merges are okay
95 * See possible_trivial_merges above. The "no unpaired
96 * relevant_sources elsewhere in the repository" is a single boolean
97 * per merge side, which we store here. Note that while 0 means no,
98 * 1 only means "maybe" rather than "yes"; we optimistically set it
99 * to 1 initially and only clear when we determine it is unsafe to
100 * do trivial directory merges.
102 unsigned trivial_merges_okay;
105 * target_dirs: ancestor directories of rename targets
107 * target_dirs contains all directory names that are an ancestor of
108 * any rename destination.
110 struct strset target_dirs;
113 struct rename_info {
115 * All variables that are arrays of size 3 correspond to data tracked
116 * for the sides in enum merge_side. Index 0 is almost always unused
117 * because we often only need to track information for MERGE_SIDE1 and
118 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
119 * are determined relative to what changed since the MERGE_BASE).
123 * pairs: pairing of filenames from diffcore_rename()
125 struct diff_queue_struct pairs[3];
128 * dirs_removed: directories removed on a given side of history.
130 * The keys of dirs_removed[side] are the directories that were removed
131 * on the given side of history. The value of the strintmap for each
132 * directory is a value from enum dir_rename_relevance.
134 struct strintmap dirs_removed[3];
137 * dir_rename_count: tracking where parts of a directory were renamed to
139 * When files in a directory are renamed, they may not all go to the
140 * same location. Each strmap here tracks:
141 * old_dir => {new_dir => int}
142 * That is, dir_rename_count[side] is a strmap to a strintmap.
144 struct strmap dir_rename_count[3];
147 * dir_renames: computed directory renames
149 * This is a map of old_dir => new_dir and is derived in part from
150 * dir_rename_count.
152 struct strmap dir_renames[3];
155 * relevant_sources: deleted paths wanted in rename detection, and why
157 * relevant_sources is a set of deleted paths on each side of
158 * history for which we need rename detection. If a path is deleted
159 * on one side of history, we need to detect if it is part of a
160 * rename if either
161 * * the file is modified/deleted on the other side of history
162 * * we need to detect renames for an ancestor directory
163 * If neither of those are true, we can skip rename detection for
164 * that path. The reason is stored as a value from enum
165 * file_rename_relevance, as the reason can inform the algorithm in
166 * diffcore_rename_extended().
168 struct strintmap relevant_sources[3];
170 struct deferred_traversal_data deferred[3];
173 * dir_rename_mask:
174 * 0: optimization removing unmodified potential rename source okay
175 * 2 or 4: optimization okay, but must check for files added to dir
176 * 7: optimization forbidden; need rename source in case of dir rename
178 unsigned dir_rename_mask:3;
181 * callback_data_*: supporting data structures for alternate traversal
183 * We sometimes need to be able to traverse through all the files
184 * in a given tree before all immediate subdirectories within that
185 * tree. Since traverse_trees() doesn't do that naturally, we have
186 * a traverse_trees_wrapper() that stores any immediate
187 * subdirectories while traversing files, then traverses the
188 * immediate subdirectories later. These callback_data* variables
189 * store the information for the subdirectories so that we can do
190 * that traversal order.
192 struct traversal_callback_data *callback_data;
193 int callback_data_nr, callback_data_alloc;
194 char *callback_data_traverse_path;
197 * merge_trees: trees passed to the merge algorithm for the merge
199 * merge_trees records the trees passed to the merge algorithm. But,
200 * this data also is stored in merge_result->priv. If a sequence of
201 * merges are being done (such as when cherry-picking or rebasing),
202 * the next merge can look at this and re-use information from
203 * previous merges under certain circumstances.
205 * See also all the cached_* variables.
207 struct tree *merge_trees[3];
210 * cached_pairs_valid_side: which side's cached info can be reused
212 * See the description for merge_trees. For repeated merges, at most
213 * only one side's cached information can be used. Valid values:
214 * MERGE_SIDE2: cached data from side2 can be reused
215 * MERGE_SIDE1: cached data from side1 can be reused
216 * 0: no cached data can be reused
217 * -1: See redo_after_renames; both sides can be reused.
219 int cached_pairs_valid_side;
222 * cached_pairs: Caching of renames and deletions.
224 * These are mappings recording renames and deletions of individual
225 * files (not directories). They are thus a map from an old
226 * filename to either NULL (for deletions) or a new filename (for
227 * renames).
229 struct strmap cached_pairs[3];
232 * cached_target_names: just the destinations from cached_pairs
234 * We sometimes want a fast lookup to determine if a given filename
235 * is one of the destinations in cached_pairs. cached_target_names
236 * is thus duplicative information, but it provides a fast lookup.
238 struct strset cached_target_names[3];
241 * cached_irrelevant: Caching of rename_sources that aren't relevant.
243 * If we try to detect a rename for a source path and succeed, it's
244 * part of a rename. If we try to detect a rename for a source path
245 * and fail, then it's a delete. If we do not try to detect a rename
246 * for a path, then we don't know if it's a rename or a delete. If
247 * merge-ort doesn't think the path is relevant, then we just won't
248 * cache anything for that path. But there's a slight problem in
249 * that merge-ort can think a path is RELEVANT_LOCATION, but due to
250 * commit 9bd342137e ("diffcore-rename: determine which
251 * relevant_sources are no longer relevant", 2021-03-13),
252 * diffcore-rename can downgrade the path to RELEVANT_NO_MORE. To
253 * avoid excessive calls to diffcore_rename_extended() we still need
254 * to cache such paths, though we cannot record them as either
255 * renames or deletes. So we cache them here as a "turned out to be
256 * irrelevant *for this commit*" as they are often also irrelevant
257 * for subsequent commits, though we will have to do some extra
258 * checking to see whether such paths become relevant for rename
259 * detection when cherry-picking/rebasing subsequent commits.
261 struct strset cached_irrelevant[3];
264 * redo_after_renames: optimization flag for "restarting" the merge
266 * Sometimes it pays to detect renames, cache them, and then
267 * restart the merge operation from the beginning. The reason for
268 * this is that when we know where all the renames are, we know
269 * whether a certain directory has any paths under it affected --
270 * and if a directory is not affected then it permits us to do
271 * trivial tree merging in more cases. Doing trivial tree merging
272 * prevents the need to run process_entry() on every path
273 * underneath trees that can be trivially merged, and
274 * process_entry() is more expensive than collect_merge_info() --
275 * plus, the second collect_merge_info() will be much faster since
276 * it doesn't have to recurse into the relevant trees.
278 * Values for this flag:
279 * 0 = don't bother, not worth it (or conditions not yet checked)
280 * 1 = conditions for optimization met, optimization worthwhile
281 * 2 = we already did it (don't restart merge yet again)
283 unsigned redo_after_renames;
286 * needed_limit: value needed for inexact rename detection to run
288 * If the current rename limit wasn't high enough for inexact
289 * rename detection to run, this records the limit needed. Otherwise,
290 * this value remains 0.
292 int needed_limit;
295 struct merge_options_internal {
297 * paths: primary data structure in all of merge ort.
299 * The keys of paths:
300 * * are full relative paths from the toplevel of the repository
301 * (e.g. "drivers/firmware/raspberrypi.c").
302 * * store all relevant paths in the repo, both directories and
303 * files (e.g. drivers, drivers/firmware would also be included)
304 * * these keys serve to intern all the path strings, which allows
305 * us to do pointer comparison on directory names instead of
306 * strcmp; we just have to be careful to use the interned strings.
308 * The values of paths:
309 * * either a pointer to a merged_info, or a conflict_info struct
310 * * merged_info contains all relevant information for a
311 * non-conflicted entry.
312 * * conflict_info contains a merged_info, plus any additional
313 * information about a conflict such as the higher orders stages
314 * involved and the names of the paths those came from (handy
315 * once renames get involved).
316 * * a path may start "conflicted" (i.e. point to a conflict_info)
317 * and then a later step (e.g. three-way content merge) determines
318 * it can be cleanly merged, at which point it'll be marked clean
319 * and the algorithm will ignore any data outside the contained
320 * merged_info for that entry
321 * * If an entry remains conflicted, the merged_info portion of a
322 * conflict_info will later be filled with whatever version of
323 * the file should be placed in the working directory (e.g. an
324 * as-merged-as-possible variation that contains conflict markers).
326 struct strmap paths;
329 * conflicted: a subset of keys->values from "paths"
331 * conflicted is basically an optimization between process_entries()
332 * and record_conflicted_index_entries(); the latter could loop over
333 * ALL the entries in paths AGAIN and look for the ones that are
334 * still conflicted, but since process_entries() has to loop over
335 * all of them, it saves the ones it couldn't resolve in this strmap
336 * so that record_conflicted_index_entries() can iterate just the
337 * relevant entries.
339 struct strmap conflicted;
342 * pool: memory pool for fast allocation/deallocation
344 * We allocate room for lots of filenames and auxiliary data
345 * structures in merge_options_internal, and it tends to all be
346 * freed together too. Using a memory pool for these provides a
347 * nice speedup.
349 struct mem_pool pool;
352 * output: special messages and conflict notices for various paths
354 * This is a map of pathnames (a subset of the keys in "paths" above)
355 * to strbufs. It gathers various warning/conflict/notice messages
356 * for later processing.
358 struct strmap output;
361 * renames: various data relating to rename detection
363 struct rename_info renames;
366 * attr_index: hacky minimal index used for renormalization
368 * renormalization code _requires_ an index, though it only needs to
369 * find a .gitattributes file within the index. So, when
370 * renormalization is important, we create a special index with just
371 * that one file.
373 struct index_state attr_index;
376 * current_dir_name, toplevel_dir: temporary vars
378 * These are used in collect_merge_info_callback(), and will set the
379 * various merged_info.directory_name for the various paths we get;
380 * see documentation for that variable and the requirements placed on
381 * that field.
383 const char *current_dir_name;
384 const char *toplevel_dir;
386 /* call_depth: recursion level counter for merging merge bases */
387 int call_depth;
390 struct version_info {
391 struct object_id oid;
392 unsigned short mode;
395 struct merged_info {
396 /* if is_null, ignore result. otherwise result has oid & mode */
397 struct version_info result;
398 unsigned is_null:1;
401 * clean: whether the path in question is cleanly merged.
403 * see conflict_info.merged for more details.
405 unsigned clean:1;
408 * basename_offset: offset of basename of path.
410 * perf optimization to avoid recomputing offset of final '/'
411 * character in pathname (0 if no '/' in pathname).
413 size_t basename_offset;
416 * directory_name: containing directory name.
418 * Note that we assume directory_name is constructed such that
419 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
420 * i.e. string equality is equivalent to pointer equality. For this
421 * to hold, we have to be careful setting directory_name.
423 const char *directory_name;
426 struct conflict_info {
428 * merged: the version of the path that will be written to working tree
430 * WARNING: It is critical to check merged.clean and ensure it is 0
431 * before reading any conflict_info fields outside of merged.
432 * Allocated merge_info structs will always have clean set to 1.
433 * Allocated conflict_info structs will have merged.clean set to 0
434 * initially. The merged.clean field is how we know if it is safe
435 * to access other parts of conflict_info besides merged; if a
436 * conflict_info's merged.clean is changed to 1, the rest of the
437 * algorithm is not allowed to look at anything outside of the
438 * merged member anymore.
440 struct merged_info merged;
442 /* oids & modes from each of the three trees for this path */
443 struct version_info stages[3];
445 /* pathnames for each stage; may differ due to rename detection */
446 const char *pathnames[3];
448 /* Whether this path is/was involved in a directory/file conflict */
449 unsigned df_conflict:1;
452 * Whether this path is/was involved in a non-content conflict other
453 * than a directory/file conflict (e.g. rename/rename, rename/delete,
454 * file location based on possible directory rename).
456 unsigned path_conflict:1;
459 * For filemask and dirmask, the ith bit corresponds to whether the
460 * ith entry is a file (filemask) or a directory (dirmask). Thus,
461 * filemask & dirmask is always zero, and filemask | dirmask is at
462 * most 7 but can be less when a path does not appear as either a
463 * file or a directory on at least one side of history.
465 * Note that these masks are related to enum merge_side, as the ith
466 * entry corresponds to side i.
468 * These values come from a traverse_trees() call; more info may be
469 * found looking at tree-walk.h's struct traverse_info,
470 * particularly the documentation above the "fn" member (note that
471 * filemask = mask & ~dirmask from that documentation).
473 unsigned filemask:3;
474 unsigned dirmask:3;
477 * Optimization to track which stages match, to avoid the need to
478 * recompute it in multiple steps. Either 0 or at least 2 bits are
479 * set; if at least 2 bits are set, their corresponding stages match.
481 unsigned match_mask:3;
484 /*** Function Grouping: various utility functions ***/
487 * For the next three macros, see warning for conflict_info.merged.
489 * In each of the below, mi is a struct merged_info*, and ci was defined
490 * as a struct conflict_info* (but we need to verify ci isn't actually
491 * pointed at a struct merged_info*).
493 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
494 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
495 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
497 #define INITIALIZE_CI(ci, mi) do { \
498 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
499 } while (0)
500 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
501 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
502 (ci) = (struct conflict_info *)(mi); \
503 assert((ci) && !(mi)->clean); \
504 } while (0)
506 static void free_strmap_strings(struct strmap *map)
508 struct hashmap_iter iter;
509 struct strmap_entry *entry;
511 strmap_for_each_entry(map, &iter, entry) {
512 free((char*)entry->key);
516 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
517 int reinitialize)
519 struct rename_info *renames = &opti->renames;
520 int i;
521 void (*strmap_clear_func)(struct strmap *, int) =
522 reinitialize ? strmap_partial_clear : strmap_clear;
523 void (*strintmap_clear_func)(struct strintmap *) =
524 reinitialize ? strintmap_partial_clear : strintmap_clear;
525 void (*strset_clear_func)(struct strset *) =
526 reinitialize ? strset_partial_clear : strset_clear;
528 strmap_clear_func(&opti->paths, 0);
531 * All keys and values in opti->conflicted are a subset of those in
532 * opti->paths. We don't want to deallocate anything twice, so we
533 * don't free the keys and we pass 0 for free_values.
535 strmap_clear_func(&opti->conflicted, 0);
537 if (opti->attr_index.cache_nr) /* true iff opt->renormalize */
538 discard_index(&opti->attr_index);
540 /* Free memory used by various renames maps */
541 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
542 strintmap_clear_func(&renames->dirs_removed[i]);
543 strmap_clear_func(&renames->dir_renames[i], 0);
544 strintmap_clear_func(&renames->relevant_sources[i]);
545 if (!reinitialize)
546 assert(renames->cached_pairs_valid_side == 0);
547 if (i != renames->cached_pairs_valid_side &&
548 -1 != renames->cached_pairs_valid_side) {
549 strset_clear_func(&renames->cached_target_names[i]);
550 strmap_clear_func(&renames->cached_pairs[i], 1);
551 strset_clear_func(&renames->cached_irrelevant[i]);
552 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
553 if (!reinitialize)
554 strmap_clear(&renames->dir_rename_count[i], 1);
557 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
558 strintmap_clear_func(&renames->deferred[i].possible_trivial_merges);
559 strset_clear_func(&renames->deferred[i].target_dirs);
560 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
562 renames->cached_pairs_valid_side = 0;
563 renames->dir_rename_mask = 0;
565 if (!reinitialize) {
566 struct hashmap_iter iter;
567 struct strmap_entry *e;
569 /* Release and free each strbuf found in output */
570 strmap_for_each_entry(&opti->output, &iter, e) {
571 struct strbuf *sb = e->value;
572 strbuf_release(sb);
574 * While strictly speaking we don't need to free(sb)
575 * here because we could pass free_values=1 when
576 * calling strmap_clear() on opti->output, that would
577 * require strmap_clear to do another
578 * strmap_for_each_entry() loop, so we just free it
579 * while we're iterating anyway.
581 free(sb);
583 strmap_clear(&opti->output, 0);
586 mem_pool_discard(&opti->pool, 0);
588 /* Clean out callback_data as well. */
589 FREE_AND_NULL(renames->callback_data);
590 renames->callback_data_nr = renames->callback_data_alloc = 0;
593 __attribute__((format (printf, 2, 3)))
594 static int err(struct merge_options *opt, const char *err, ...)
596 va_list params;
597 struct strbuf sb = STRBUF_INIT;
599 strbuf_addstr(&sb, "error: ");
600 va_start(params, err);
601 strbuf_vaddf(&sb, err, params);
602 va_end(params);
604 error("%s", sb.buf);
605 strbuf_release(&sb);
607 return -1;
610 static void format_commit(struct strbuf *sb,
611 int indent,
612 struct commit *commit)
614 struct merge_remote_desc *desc;
615 struct pretty_print_context ctx = {0};
616 ctx.abbrev = DEFAULT_ABBREV;
618 strbuf_addchars(sb, ' ', indent);
619 desc = merge_remote_util(commit);
620 if (desc) {
621 strbuf_addf(sb, "virtual %s\n", desc->name);
622 return;
625 format_commit_message(commit, "%h %s", sb, &ctx);
626 strbuf_addch(sb, '\n');
629 __attribute__((format (printf, 4, 5)))
630 static void path_msg(struct merge_options *opt,
631 const char *path,
632 int omittable_hint, /* skippable under --remerge-diff */
633 const char *fmt, ...)
635 va_list ap;
636 struct strbuf *sb = strmap_get(&opt->priv->output, path);
637 if (!sb) {
638 sb = xmalloc(sizeof(*sb));
639 strbuf_init(sb, 0);
640 strmap_put(&opt->priv->output, path, sb);
643 va_start(ap, fmt);
644 strbuf_vaddf(sb, fmt, ap);
645 va_end(ap);
647 strbuf_addch(sb, '\n');
650 static struct diff_filespec *pool_alloc_filespec(struct mem_pool *pool,
651 const char *path)
653 /* Similar to alloc_filespec(), but allocate from pool and reuse path */
654 struct diff_filespec *spec;
656 spec = mem_pool_calloc(pool, 1, sizeof(*spec));
657 spec->path = (char*)path; /* spec won't modify it */
659 spec->count = 1;
660 spec->is_binary = -1;
661 return spec;
664 static struct diff_filepair *pool_diff_queue(struct mem_pool *pool,
665 struct diff_queue_struct *queue,
666 struct diff_filespec *one,
667 struct diff_filespec *two)
669 /* Same code as diff_queue(), except allocate from pool */
670 struct diff_filepair *dp;
672 dp = mem_pool_calloc(pool, 1, sizeof(*dp));
673 dp->one = one;
674 dp->two = two;
675 if (queue)
676 diff_q(queue, dp);
677 return dp;
680 /* add a string to a strbuf, but converting "/" to "_" */
681 static void add_flattened_path(struct strbuf *out, const char *s)
683 size_t i = out->len;
684 strbuf_addstr(out, s);
685 for (; i < out->len; i++)
686 if (out->buf[i] == '/')
687 out->buf[i] = '_';
690 static char *unique_path(struct strmap *existing_paths,
691 const char *path,
692 const char *branch)
694 struct strbuf newpath = STRBUF_INIT;
695 int suffix = 0;
696 size_t base_len;
698 strbuf_addf(&newpath, "%s~", path);
699 add_flattened_path(&newpath, branch);
701 base_len = newpath.len;
702 while (strmap_contains(existing_paths, newpath.buf)) {
703 strbuf_setlen(&newpath, base_len);
704 strbuf_addf(&newpath, "_%d", suffix++);
707 return strbuf_detach(&newpath, NULL);
710 /*** Function Grouping: functions related to collect_merge_info() ***/
712 static int traverse_trees_wrapper_callback(int n,
713 unsigned long mask,
714 unsigned long dirmask,
715 struct name_entry *names,
716 struct traverse_info *info)
718 struct merge_options *opt = info->data;
719 struct rename_info *renames = &opt->priv->renames;
720 unsigned filemask = mask & ~dirmask;
722 assert(n==3);
724 if (!renames->callback_data_traverse_path)
725 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
727 if (filemask && filemask == renames->dir_rename_mask)
728 renames->dir_rename_mask = 0x07;
730 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
731 renames->callback_data_alloc);
732 renames->callback_data[renames->callback_data_nr].mask = mask;
733 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
734 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
735 names, 3);
736 renames->callback_data_nr++;
738 return mask;
742 * Much like traverse_trees(), BUT:
743 * - read all the tree entries FIRST, saving them
744 * - note that the above step provides an opportunity to compute necessary
745 * additional details before the "real" traversal
746 * - loop through the saved entries and call the original callback on them
748 static int traverse_trees_wrapper(struct index_state *istate,
749 int n,
750 struct tree_desc *t,
751 struct traverse_info *info)
753 int ret, i, old_offset;
754 traverse_callback_t old_fn;
755 char *old_callback_data_traverse_path;
756 struct merge_options *opt = info->data;
757 struct rename_info *renames = &opt->priv->renames;
759 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
761 old_callback_data_traverse_path = renames->callback_data_traverse_path;
762 old_fn = info->fn;
763 old_offset = renames->callback_data_nr;
765 renames->callback_data_traverse_path = NULL;
766 info->fn = traverse_trees_wrapper_callback;
767 ret = traverse_trees(istate, n, t, info);
768 if (ret < 0)
769 return ret;
771 info->traverse_path = renames->callback_data_traverse_path;
772 info->fn = old_fn;
773 for (i = old_offset; i < renames->callback_data_nr; ++i) {
774 info->fn(n,
775 renames->callback_data[i].mask,
776 renames->callback_data[i].dirmask,
777 renames->callback_data[i].names,
778 info);
781 renames->callback_data_nr = old_offset;
782 free(renames->callback_data_traverse_path);
783 renames->callback_data_traverse_path = old_callback_data_traverse_path;
784 info->traverse_path = NULL;
785 return 0;
788 static void setup_path_info(struct merge_options *opt,
789 struct string_list_item *result,
790 const char *current_dir_name,
791 int current_dir_name_len,
792 char *fullpath, /* we'll take over ownership */
793 struct name_entry *names,
794 struct name_entry *merged_version,
795 unsigned is_null, /* boolean */
796 unsigned df_conflict, /* boolean */
797 unsigned filemask,
798 unsigned dirmask,
799 int resolved /* boolean */)
801 /* result->util is void*, so mi is a convenience typed variable */
802 struct merged_info *mi;
804 assert(!is_null || resolved);
805 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
806 assert(resolved == (merged_version != NULL));
808 mi = mem_pool_calloc(&opt->priv->pool, 1,
809 resolved ? sizeof(struct merged_info) :
810 sizeof(struct conflict_info));
811 mi->directory_name = current_dir_name;
812 mi->basename_offset = current_dir_name_len;
813 mi->clean = !!resolved;
814 if (resolved) {
815 mi->result.mode = merged_version->mode;
816 oidcpy(&mi->result.oid, &merged_version->oid);
817 mi->is_null = !!is_null;
818 } else {
819 int i;
820 struct conflict_info *ci;
822 ASSIGN_AND_VERIFY_CI(ci, mi);
823 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
824 ci->pathnames[i] = fullpath;
825 ci->stages[i].mode = names[i].mode;
826 oidcpy(&ci->stages[i].oid, &names[i].oid);
828 ci->filemask = filemask;
829 ci->dirmask = dirmask;
830 ci->df_conflict = !!df_conflict;
831 if (dirmask)
833 * Assume is_null for now, but if we have entries
834 * under the directory then when it is complete in
835 * write_completed_directory() it'll update this.
836 * Also, for D/F conflicts, we have to handle the
837 * directory first, then clear this bit and process
838 * the file to see how it is handled -- that occurs
839 * near the top of process_entry().
841 mi->is_null = 1;
843 strmap_put(&opt->priv->paths, fullpath, mi);
844 result->string = fullpath;
845 result->util = mi;
848 static void add_pair(struct merge_options *opt,
849 struct name_entry *names,
850 const char *pathname,
851 unsigned side,
852 unsigned is_add /* if false, is_delete */,
853 unsigned match_mask,
854 unsigned dir_rename_mask)
856 struct diff_filespec *one, *two;
857 struct rename_info *renames = &opt->priv->renames;
858 int names_idx = is_add ? side : 0;
860 if (is_add) {
861 assert(match_mask == 0 || match_mask == 6);
862 if (strset_contains(&renames->cached_target_names[side],
863 pathname))
864 return;
865 } else {
866 unsigned content_relevant = (match_mask == 0);
867 unsigned location_relevant = (dir_rename_mask == 0x07);
869 assert(match_mask == 0 || match_mask == 3 || match_mask == 5);
872 * If pathname is found in cached_irrelevant[side] due to
873 * previous pick but for this commit content is relevant,
874 * then we need to remove it from cached_irrelevant.
876 if (content_relevant)
877 /* strset_remove is no-op if strset doesn't have key */
878 strset_remove(&renames->cached_irrelevant[side],
879 pathname);
882 * We do not need to re-detect renames for paths that we already
883 * know the pairing, i.e. for cached_pairs (or
884 * cached_irrelevant). However, handle_deferred_entries() needs
885 * to loop over the union of keys from relevant_sources[side] and
886 * cached_pairs[side], so for simplicity we set relevant_sources
887 * for all the cached_pairs too and then strip them back out in
888 * prune_cached_from_relevant() at the beginning of
889 * detect_regular_renames().
891 if (content_relevant || location_relevant) {
892 /* content_relevant trumps location_relevant */
893 strintmap_set(&renames->relevant_sources[side], pathname,
894 content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION);
898 * Avoid creating pair if we've already cached rename results.
899 * Note that we do this after setting relevant_sources[side]
900 * as noted in the comment above.
902 if (strmap_contains(&renames->cached_pairs[side], pathname) ||
903 strset_contains(&renames->cached_irrelevant[side], pathname))
904 return;
907 one = pool_alloc_filespec(&opt->priv->pool, pathname);
908 two = pool_alloc_filespec(&opt->priv->pool, pathname);
909 fill_filespec(is_add ? two : one,
910 &names[names_idx].oid, 1, names[names_idx].mode);
911 pool_diff_queue(&opt->priv->pool, &renames->pairs[side], one, two);
914 static void collect_rename_info(struct merge_options *opt,
915 struct name_entry *names,
916 const char *dirname,
917 const char *fullname,
918 unsigned filemask,
919 unsigned dirmask,
920 unsigned match_mask)
922 struct rename_info *renames = &opt->priv->renames;
923 unsigned side;
926 * Update dir_rename_mask (determines ignore-rename-source validity)
928 * dir_rename_mask helps us keep track of when directory rename
929 * detection may be relevant. Basically, whenver a directory is
930 * removed on one side of history, and a file is added to that
931 * directory on the other side of history, directory rename
932 * detection is relevant (meaning we have to detect renames for all
933 * files within that directory to deduce where the directory
934 * moved). Also, whenever a directory needs directory rename
935 * detection, due to the "majority rules" choice for where to move
936 * it (see t6423 testcase 1f), we also need to detect renames for
937 * all files within subdirectories of that directory as well.
939 * Here we haven't looked at files within the directory yet, we are
940 * just looking at the directory itself. So, if we aren't yet in
941 * a case where a parent directory needed directory rename detection
942 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
943 * on one side of history, record the mask of the other side of
944 * history in dir_rename_mask.
946 if (renames->dir_rename_mask != 0x07 &&
947 (dirmask == 3 || dirmask == 5)) {
948 /* simple sanity check */
949 assert(renames->dir_rename_mask == 0 ||
950 renames->dir_rename_mask == (dirmask & ~1));
951 /* update dir_rename_mask; have it record mask of new side */
952 renames->dir_rename_mask = (dirmask & ~1);
955 /* Update dirs_removed, as needed */
956 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
957 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
958 unsigned sides = (0x07 - dirmask)/2;
959 unsigned relevance = (renames->dir_rename_mask == 0x07) ?
960 RELEVANT_FOR_ANCESTOR : NOT_RELEVANT;
962 * Record relevance of this directory. However, note that
963 * when collect_merge_info_callback() recurses into this
964 * directory and calls collect_rename_info() on paths
965 * within that directory, if we find a path that was added
966 * to this directory on the other side of history, we will
967 * upgrade this value to RELEVANT_FOR_SELF; see below.
969 if (sides & 1)
970 strintmap_set(&renames->dirs_removed[1], fullname,
971 relevance);
972 if (sides & 2)
973 strintmap_set(&renames->dirs_removed[2], fullname,
974 relevance);
978 * Here's the block that potentially upgrades to RELEVANT_FOR_SELF.
979 * When we run across a file added to a directory. In such a case,
980 * find the directory of the file and upgrade its relevance.
982 if (renames->dir_rename_mask == 0x07 &&
983 (filemask == 2 || filemask == 4)) {
985 * Need directory rename for parent directory on other side
986 * of history from added file. Thus
987 * side = (~filemask & 0x06) >> 1
988 * or
989 * side = 3 - (filemask/2).
991 unsigned side = 3 - (filemask >> 1);
992 strintmap_set(&renames->dirs_removed[side], dirname,
993 RELEVANT_FOR_SELF);
996 if (filemask == 0 || filemask == 7)
997 return;
999 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
1000 unsigned side_mask = (1 << side);
1002 /* Check for deletion on side */
1003 if ((filemask & 1) && !(filemask & side_mask))
1004 add_pair(opt, names, fullname, side, 0 /* delete */,
1005 match_mask & filemask,
1006 renames->dir_rename_mask);
1008 /* Check for addition on side */
1009 if (!(filemask & 1) && (filemask & side_mask))
1010 add_pair(opt, names, fullname, side, 1 /* add */,
1011 match_mask & filemask,
1012 renames->dir_rename_mask);
1016 static int collect_merge_info_callback(int n,
1017 unsigned long mask,
1018 unsigned long dirmask,
1019 struct name_entry *names,
1020 struct traverse_info *info)
1023 * n is 3. Always.
1024 * common ancestor (mbase) has mask 1, and stored in index 0 of names
1025 * head of side 1 (side1) has mask 2, and stored in index 1 of names
1026 * head of side 2 (side2) has mask 4, and stored in index 2 of names
1028 struct merge_options *opt = info->data;
1029 struct merge_options_internal *opti = opt->priv;
1030 struct rename_info *renames = &opt->priv->renames;
1031 struct string_list_item pi; /* Path Info */
1032 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
1033 struct name_entry *p;
1034 size_t len;
1035 char *fullpath;
1036 const char *dirname = opti->current_dir_name;
1037 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
1038 unsigned filemask = mask & ~dirmask;
1039 unsigned match_mask = 0; /* will be updated below */
1040 unsigned mbase_null = !(mask & 1);
1041 unsigned side1_null = !(mask & 2);
1042 unsigned side2_null = !(mask & 4);
1043 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
1044 names[0].mode == names[1].mode &&
1045 oideq(&names[0].oid, &names[1].oid));
1046 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
1047 names[0].mode == names[2].mode &&
1048 oideq(&names[0].oid, &names[2].oid));
1049 unsigned sides_match = (!side1_null && !side2_null &&
1050 names[1].mode == names[2].mode &&
1051 oideq(&names[1].oid, &names[2].oid));
1054 * Note: When a path is a file on one side of history and a directory
1055 * in another, we have a directory/file conflict. In such cases, if
1056 * the conflict doesn't resolve from renames and deletions, then we
1057 * always leave directories where they are and move files out of the
1058 * way. Thus, while struct conflict_info has a df_conflict field to
1059 * track such conflicts, we ignore that field for any directories at
1060 * a path and only pay attention to it for files at the given path.
1061 * The fact that we leave directories were they are also means that
1062 * we do not need to worry about getting additional df_conflict
1063 * information propagated from parent directories down to children
1064 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
1065 * sets a newinfo.df_conflicts field specifically to propagate it).
1067 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
1069 /* n = 3 is a fundamental assumption. */
1070 if (n != 3)
1071 BUG("Called collect_merge_info_callback wrong");
1074 * A bunch of sanity checks verifying that traverse_trees() calls
1075 * us the way I expect. Could just remove these at some point,
1076 * though maybe they are helpful to future code readers.
1078 assert(mbase_null == is_null_oid(&names[0].oid));
1079 assert(side1_null == is_null_oid(&names[1].oid));
1080 assert(side2_null == is_null_oid(&names[2].oid));
1081 assert(!mbase_null || !side1_null || !side2_null);
1082 assert(mask > 0 && mask < 8);
1084 /* Determine match_mask */
1085 if (side1_matches_mbase)
1086 match_mask = (side2_matches_mbase ? 7 : 3);
1087 else if (side2_matches_mbase)
1088 match_mask = 5;
1089 else if (sides_match)
1090 match_mask = 6;
1093 * Get the name of the relevant filepath, which we'll pass to
1094 * setup_path_info() for tracking.
1096 p = names;
1097 while (!p->mode)
1098 p++;
1099 len = traverse_path_len(info, p->pathlen);
1101 /* +1 in both of the following lines to include the NUL byte */
1102 fullpath = mem_pool_alloc(&opt->priv->pool, len + 1);
1103 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
1106 * If mbase, side1, and side2 all match, we can resolve early. Even
1107 * if these are trees, there will be no renames or anything
1108 * underneath.
1110 if (side1_matches_mbase && side2_matches_mbase) {
1111 /* mbase, side1, & side2 all match; use mbase as resolution */
1112 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1113 names, names+0, mbase_null, 0 /* df_conflict */,
1114 filemask, dirmask, 1 /* resolved */);
1115 return mask;
1119 * If the sides match, and all three paths are present and are
1120 * files, then we can take either as the resolution. We can't do
1121 * this with trees, because there may be rename sources from the
1122 * merge_base.
1124 if (sides_match && filemask == 0x07) {
1125 /* use side1 (== side2) version as resolution */
1126 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1127 names, names+1, side1_null, 0,
1128 filemask, dirmask, 1);
1129 return mask;
1133 * If side1 matches mbase and all three paths are present and are
1134 * files, then we can use side2 as the resolution. We cannot
1135 * necessarily do so this for trees, because there may be rename
1136 * destinations within side2.
1138 if (side1_matches_mbase && filemask == 0x07) {
1139 /* use side2 version as resolution */
1140 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1141 names, names+2, side2_null, 0,
1142 filemask, dirmask, 1);
1143 return mask;
1146 /* Similar to above but swapping sides 1 and 2 */
1147 if (side2_matches_mbase && filemask == 0x07) {
1148 /* use side1 version as resolution */
1149 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1150 names, names+1, side1_null, 0,
1151 filemask, dirmask, 1);
1152 return mask;
1156 * Sometimes we can tell that a source path need not be included in
1157 * rename detection -- namely, whenever either
1158 * side1_matches_mbase && side2_null
1159 * or
1160 * side2_matches_mbase && side1_null
1161 * However, we call collect_rename_info() even in those cases,
1162 * because exact renames are cheap and would let us remove both a
1163 * source and destination path. We'll cull the unneeded sources
1164 * later.
1166 collect_rename_info(opt, names, dirname, fullpath,
1167 filemask, dirmask, match_mask);
1170 * None of the special cases above matched, so we have a
1171 * provisional conflict. (Rename detection might allow us to
1172 * unconflict some more cases, but that comes later so all we can
1173 * do now is record the different non-null file hashes.)
1175 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1176 names, NULL, 0, df_conflict, filemask, dirmask, 0);
1178 ci = pi.util;
1179 VERIFY_CI(ci);
1180 ci->match_mask = match_mask;
1182 /* If dirmask, recurse into subdirectories */
1183 if (dirmask) {
1184 struct traverse_info newinfo;
1185 struct tree_desc t[3];
1186 void *buf[3] = {NULL, NULL, NULL};
1187 const char *original_dir_name;
1188 int i, ret, side;
1191 * Check for whether we can avoid recursing due to one side
1192 * matching the merge base. The side that does NOT match is
1193 * the one that might have a rename destination we need.
1195 assert(!side1_matches_mbase || !side2_matches_mbase);
1196 side = side1_matches_mbase ? MERGE_SIDE2 :
1197 side2_matches_mbase ? MERGE_SIDE1 : MERGE_BASE;
1198 if (filemask == 0 && (dirmask == 2 || dirmask == 4)) {
1200 * Also defer recursing into new directories; set up a
1201 * few variables to let us do so.
1203 ci->match_mask = (7 - dirmask);
1204 side = dirmask / 2;
1206 if (renames->dir_rename_mask != 0x07 &&
1207 side != MERGE_BASE &&
1208 renames->deferred[side].trivial_merges_okay &&
1209 !strset_contains(&renames->deferred[side].target_dirs,
1210 pi.string)) {
1211 strintmap_set(&renames->deferred[side].possible_trivial_merges,
1212 pi.string, renames->dir_rename_mask);
1213 renames->dir_rename_mask = prev_dir_rename_mask;
1214 return mask;
1217 /* We need to recurse */
1218 ci->match_mask &= filemask;
1219 newinfo = *info;
1220 newinfo.prev = info;
1221 newinfo.name = p->path;
1222 newinfo.namelen = p->pathlen;
1223 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
1225 * If this directory we are about to recurse into cared about
1226 * its parent directory (the current directory) having a D/F
1227 * conflict, then we'd propagate the masks in this way:
1228 * newinfo.df_conflicts |= (mask & ~dirmask);
1229 * But we don't worry about propagating D/F conflicts. (See
1230 * comment near setting of local df_conflict variable near
1231 * the beginning of this function).
1234 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1235 if (i == 1 && side1_matches_mbase)
1236 t[1] = t[0];
1237 else if (i == 2 && side2_matches_mbase)
1238 t[2] = t[0];
1239 else if (i == 2 && sides_match)
1240 t[2] = t[1];
1241 else {
1242 const struct object_id *oid = NULL;
1243 if (dirmask & 1)
1244 oid = &names[i].oid;
1245 buf[i] = fill_tree_descriptor(opt->repo,
1246 t + i, oid);
1248 dirmask >>= 1;
1251 original_dir_name = opti->current_dir_name;
1252 opti->current_dir_name = pi.string;
1253 if (renames->dir_rename_mask == 0 ||
1254 renames->dir_rename_mask == 0x07)
1255 ret = traverse_trees(NULL, 3, t, &newinfo);
1256 else
1257 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
1258 opti->current_dir_name = original_dir_name;
1259 renames->dir_rename_mask = prev_dir_rename_mask;
1261 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1262 free(buf[i]);
1264 if (ret < 0)
1265 return -1;
1268 return mask;
1271 static void resolve_trivial_directory_merge(struct conflict_info *ci, int side)
1273 VERIFY_CI(ci);
1274 assert((side == 1 && ci->match_mask == 5) ||
1275 (side == 2 && ci->match_mask == 3));
1276 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
1277 ci->merged.result.mode = ci->stages[side].mode;
1278 ci->merged.is_null = is_null_oid(&ci->stages[side].oid);
1279 ci->match_mask = 0;
1280 ci->merged.clean = 1; /* (ci->filemask == 0); */
1283 static int handle_deferred_entries(struct merge_options *opt,
1284 struct traverse_info *info)
1286 struct rename_info *renames = &opt->priv->renames;
1287 struct hashmap_iter iter;
1288 struct strmap_entry *entry;
1289 int side, ret = 0;
1290 int path_count_before, path_count_after = 0;
1292 path_count_before = strmap_get_size(&opt->priv->paths);
1293 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
1294 unsigned optimization_okay = 1;
1295 struct strintmap copy;
1297 /* Loop over the set of paths we need to know rename info for */
1298 strset_for_each_entry(&renames->relevant_sources[side],
1299 &iter, entry) {
1300 char *rename_target, *dir, *dir_marker;
1301 struct strmap_entry *e;
1304 * If we don't know delete/rename info for this path,
1305 * then we need to recurse into all trees to get all
1306 * adds to make sure we have it.
1308 if (strset_contains(&renames->cached_irrelevant[side],
1309 entry->key))
1310 continue;
1311 e = strmap_get_entry(&renames->cached_pairs[side],
1312 entry->key);
1313 if (!e) {
1314 optimization_okay = 0;
1315 break;
1318 /* If this is a delete, we have enough info already */
1319 rename_target = e->value;
1320 if (!rename_target)
1321 continue;
1323 /* If we already walked the rename target, we're good */
1324 if (strmap_contains(&opt->priv->paths, rename_target))
1325 continue;
1328 * Otherwise, we need to get a list of directories that
1329 * will need to be recursed into to get this
1330 * rename_target.
1332 dir = xstrdup(rename_target);
1333 while ((dir_marker = strrchr(dir, '/'))) {
1334 *dir_marker = '\0';
1335 if (strset_contains(&renames->deferred[side].target_dirs,
1336 dir))
1337 break;
1338 strset_add(&renames->deferred[side].target_dirs,
1339 dir);
1341 free(dir);
1343 renames->deferred[side].trivial_merges_okay = optimization_okay;
1345 * We need to recurse into any directories in
1346 * possible_trivial_merges[side] found in target_dirs[side].
1347 * But when we recurse, we may need to queue up some of the
1348 * subdirectories for possible_trivial_merges[side]. Since
1349 * we can't safely iterate through a hashmap while also adding
1350 * entries, move the entries into 'copy', iterate over 'copy',
1351 * and then we'll also iterate anything added into
1352 * possible_trivial_merges[side] once this loop is done.
1354 copy = renames->deferred[side].possible_trivial_merges;
1355 strintmap_init_with_options(&renames->deferred[side].possible_trivial_merges,
1357 &opt->priv->pool,
1359 strintmap_for_each_entry(&copy, &iter, entry) {
1360 const char *path = entry->key;
1361 unsigned dir_rename_mask = (intptr_t)entry->value;
1362 struct conflict_info *ci;
1363 unsigned dirmask;
1364 struct tree_desc t[3];
1365 void *buf[3] = {NULL,};
1366 int i;
1368 ci = strmap_get(&opt->priv->paths, path);
1369 VERIFY_CI(ci);
1370 dirmask = ci->dirmask;
1372 if (optimization_okay &&
1373 !strset_contains(&renames->deferred[side].target_dirs,
1374 path)) {
1375 resolve_trivial_directory_merge(ci, side);
1376 continue;
1379 info->name = path;
1380 info->namelen = strlen(path);
1381 info->pathlen = info->namelen + 1;
1383 for (i = 0; i < 3; i++, dirmask >>= 1) {
1384 if (i == 1 && ci->match_mask == 3)
1385 t[1] = t[0];
1386 else if (i == 2 && ci->match_mask == 5)
1387 t[2] = t[0];
1388 else if (i == 2 && ci->match_mask == 6)
1389 t[2] = t[1];
1390 else {
1391 const struct object_id *oid = NULL;
1392 if (dirmask & 1)
1393 oid = &ci->stages[i].oid;
1394 buf[i] = fill_tree_descriptor(opt->repo,
1395 t+i, oid);
1399 ci->match_mask &= ci->filemask;
1400 opt->priv->current_dir_name = path;
1401 renames->dir_rename_mask = dir_rename_mask;
1402 if (renames->dir_rename_mask == 0 ||
1403 renames->dir_rename_mask == 0x07)
1404 ret = traverse_trees(NULL, 3, t, info);
1405 else
1406 ret = traverse_trees_wrapper(NULL, 3, t, info);
1408 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1409 free(buf[i]);
1411 if (ret < 0)
1412 return ret;
1414 strintmap_clear(&copy);
1415 strintmap_for_each_entry(&renames->deferred[side].possible_trivial_merges,
1416 &iter, entry) {
1417 const char *path = entry->key;
1418 struct conflict_info *ci;
1420 ci = strmap_get(&opt->priv->paths, path);
1421 VERIFY_CI(ci);
1423 assert(renames->deferred[side].trivial_merges_okay &&
1424 !strset_contains(&renames->deferred[side].target_dirs,
1425 path));
1426 resolve_trivial_directory_merge(ci, side);
1428 if (!optimization_okay || path_count_after)
1429 path_count_after = strmap_get_size(&opt->priv->paths);
1431 if (path_count_after) {
1433 * The choice of wanted_factor here does not affect
1434 * correctness, only performance. When the
1435 * path_count_after / path_count_before
1436 * ratio is high, redoing after renames is a big
1437 * performance boost. I suspect that redoing is a wash
1438 * somewhere near a value of 2, and below that redoing will
1439 * slow things down. I applied a fudge factor and picked
1440 * 3; see the commit message when this was introduced for
1441 * back of the envelope calculations for this ratio.
1443 const int wanted_factor = 3;
1445 /* We should only redo collect_merge_info one time */
1446 assert(renames->redo_after_renames == 0);
1448 if (path_count_after / path_count_before >= wanted_factor) {
1449 renames->redo_after_renames = 1;
1450 renames->cached_pairs_valid_side = -1;
1452 } else if (renames->redo_after_renames == 2)
1453 renames->redo_after_renames = 0;
1454 return ret;
1457 static int collect_merge_info(struct merge_options *opt,
1458 struct tree *merge_base,
1459 struct tree *side1,
1460 struct tree *side2)
1462 int ret;
1463 struct tree_desc t[3];
1464 struct traverse_info info;
1466 opt->priv->toplevel_dir = "";
1467 opt->priv->current_dir_name = opt->priv->toplevel_dir;
1468 setup_traverse_info(&info, opt->priv->toplevel_dir);
1469 info.fn = collect_merge_info_callback;
1470 info.data = opt;
1471 info.show_all_errors = 1;
1473 parse_tree(merge_base);
1474 parse_tree(side1);
1475 parse_tree(side2);
1476 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
1477 init_tree_desc(t + 1, side1->buffer, side1->size);
1478 init_tree_desc(t + 2, side2->buffer, side2->size);
1480 trace2_region_enter("merge", "traverse_trees", opt->repo);
1481 ret = traverse_trees(NULL, 3, t, &info);
1482 if (ret == 0)
1483 ret = handle_deferred_entries(opt, &info);
1484 trace2_region_leave("merge", "traverse_trees", opt->repo);
1486 return ret;
1489 /*** Function Grouping: functions related to threeway content merges ***/
1491 static int find_first_merges(struct repository *repo,
1492 const char *path,
1493 struct commit *a,
1494 struct commit *b,
1495 struct object_array *result)
1497 int i, j;
1498 struct object_array merges = OBJECT_ARRAY_INIT;
1499 struct commit *commit;
1500 int contains_another;
1502 char merged_revision[GIT_MAX_HEXSZ + 2];
1503 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
1504 "--all", merged_revision, NULL };
1505 struct rev_info revs;
1506 struct setup_revision_opt rev_opts;
1508 memset(result, 0, sizeof(struct object_array));
1509 memset(&rev_opts, 0, sizeof(rev_opts));
1511 /* get all revisions that merge commit a */
1512 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
1513 oid_to_hex(&a->object.oid));
1514 repo_init_revisions(repo, &revs, NULL);
1515 /* FIXME: can't handle linked worktrees in submodules yet */
1516 revs.single_worktree = path != NULL;
1517 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
1519 /* save all revisions from the above list that contain b */
1520 if (prepare_revision_walk(&revs))
1521 die("revision walk setup failed");
1522 while ((commit = get_revision(&revs)) != NULL) {
1523 struct object *o = &(commit->object);
1524 if (repo_in_merge_bases(repo, b, commit))
1525 add_object_array(o, NULL, &merges);
1527 reset_revision_walk();
1529 /* Now we've got all merges that contain a and b. Prune all
1530 * merges that contain another found merge and save them in
1531 * result.
1533 for (i = 0; i < merges.nr; i++) {
1534 struct commit *m1 = (struct commit *) merges.objects[i].item;
1536 contains_another = 0;
1537 for (j = 0; j < merges.nr; j++) {
1538 struct commit *m2 = (struct commit *) merges.objects[j].item;
1539 if (i != j && repo_in_merge_bases(repo, m2, m1)) {
1540 contains_another = 1;
1541 break;
1545 if (!contains_another)
1546 add_object_array(merges.objects[i].item, NULL, result);
1549 object_array_clear(&merges);
1550 return result->nr;
1553 static int merge_submodule(struct merge_options *opt,
1554 const char *path,
1555 const struct object_id *o,
1556 const struct object_id *a,
1557 const struct object_id *b,
1558 struct object_id *result)
1560 struct repository subrepo;
1561 struct strbuf sb = STRBUF_INIT;
1562 int ret = 0;
1563 struct commit *commit_o, *commit_a, *commit_b;
1564 int parent_count;
1565 struct object_array merges;
1567 int i;
1568 int search = !opt->priv->call_depth;
1570 /* store fallback answer in result in case we fail */
1571 oidcpy(result, opt->priv->call_depth ? o : a);
1573 /* we can not handle deletion conflicts */
1574 if (is_null_oid(o))
1575 return 0;
1576 if (is_null_oid(a))
1577 return 0;
1578 if (is_null_oid(b))
1579 return 0;
1582 * NEEDSWORK: Remove this when all submodule object accesses are
1583 * through explicitly specified repositores.
1585 if (add_submodule_odb(path)) {
1586 path_msg(opt, path, 0,
1587 _("Failed to merge submodule %s (not checked out)"),
1588 path);
1589 return 0;
1592 if (repo_submodule_init(&subrepo, opt->repo, path, null_oid())) {
1593 path_msg(opt, path, 0,
1594 _("Failed to merge submodule %s (not checked out)"),
1595 path);
1596 return 0;
1599 if (!(commit_o = lookup_commit_reference(&subrepo, o)) ||
1600 !(commit_a = lookup_commit_reference(&subrepo, a)) ||
1601 !(commit_b = lookup_commit_reference(&subrepo, b))) {
1602 path_msg(opt, path, 0,
1603 _("Failed to merge submodule %s (commits not present)"),
1604 path);
1605 goto cleanup;
1608 /* check whether both changes are forward */
1609 if (!repo_in_merge_bases(&subrepo, commit_o, commit_a) ||
1610 !repo_in_merge_bases(&subrepo, commit_o, commit_b)) {
1611 path_msg(opt, path, 0,
1612 _("Failed to merge submodule %s "
1613 "(commits don't follow merge-base)"),
1614 path);
1615 goto cleanup;
1618 /* Case #1: a is contained in b or vice versa */
1619 if (repo_in_merge_bases(&subrepo, commit_a, commit_b)) {
1620 oidcpy(result, b);
1621 path_msg(opt, path, 1,
1622 _("Note: Fast-forwarding submodule %s to %s"),
1623 path, oid_to_hex(b));
1624 ret = 1;
1625 goto cleanup;
1627 if (repo_in_merge_bases(&subrepo, commit_b, commit_a)) {
1628 oidcpy(result, a);
1629 path_msg(opt, path, 1,
1630 _("Note: Fast-forwarding submodule %s to %s"),
1631 path, oid_to_hex(a));
1632 ret = 1;
1633 goto cleanup;
1637 * Case #2: There are one or more merges that contain a and b in
1638 * the submodule. If there is only one, then present it as a
1639 * suggestion to the user, but leave it marked unmerged so the
1640 * user needs to confirm the resolution.
1643 /* Skip the search if makes no sense to the calling context. */
1644 if (!search)
1645 goto cleanup;
1647 /* find commit which merges them */
1648 parent_count = find_first_merges(&subrepo, path, commit_a, commit_b,
1649 &merges);
1650 switch (parent_count) {
1651 case 0:
1652 path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
1653 break;
1655 case 1:
1656 format_commit(&sb, 4,
1657 (struct commit *)merges.objects[0].item);
1658 path_msg(opt, path, 0,
1659 _("Failed to merge submodule %s, but a possible merge "
1660 "resolution exists:\n%s\n"),
1661 path, sb.buf);
1662 path_msg(opt, path, 1,
1663 _("If this is correct simply add it to the index "
1664 "for example\n"
1665 "by using:\n\n"
1666 " git update-index --cacheinfo 160000 %s \"%s\"\n\n"
1667 "which will accept this suggestion.\n"),
1668 oid_to_hex(&merges.objects[0].item->oid), path);
1669 strbuf_release(&sb);
1670 break;
1671 default:
1672 for (i = 0; i < merges.nr; i++)
1673 format_commit(&sb, 4,
1674 (struct commit *)merges.objects[i].item);
1675 path_msg(opt, path, 0,
1676 _("Failed to merge submodule %s, but multiple "
1677 "possible merges exist:\n%s"), path, sb.buf);
1678 strbuf_release(&sb);
1681 object_array_clear(&merges);
1682 cleanup:
1683 repo_clear(&subrepo);
1684 return ret;
1687 static void initialize_attr_index(struct merge_options *opt)
1690 * The renormalize_buffer() functions require attributes, and
1691 * annoyingly those can only be read from the working tree or from
1692 * an index_state. merge-ort doesn't have an index_state, so we
1693 * generate a fake one containing only attribute information.
1695 struct merged_info *mi;
1696 struct index_state *attr_index = &opt->priv->attr_index;
1697 struct cache_entry *ce;
1699 attr_index->initialized = 1;
1701 if (!opt->renormalize)
1702 return;
1704 mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE);
1705 if (!mi)
1706 return;
1708 if (mi->clean) {
1709 int len = strlen(GITATTRIBUTES_FILE);
1710 ce = make_empty_cache_entry(attr_index, len);
1711 ce->ce_mode = create_ce_mode(mi->result.mode);
1712 ce->ce_flags = create_ce_flags(0);
1713 ce->ce_namelen = len;
1714 oidcpy(&ce->oid, &mi->result.oid);
1715 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1716 add_index_entry(attr_index, ce,
1717 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1718 get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid);
1719 } else {
1720 int stage, len;
1721 struct conflict_info *ci;
1723 ASSIGN_AND_VERIFY_CI(ci, mi);
1724 for (stage = 0; stage < 3; stage++) {
1725 unsigned stage_mask = (1 << stage);
1727 if (!(ci->filemask & stage_mask))
1728 continue;
1729 len = strlen(GITATTRIBUTES_FILE);
1730 ce = make_empty_cache_entry(attr_index, len);
1731 ce->ce_mode = create_ce_mode(ci->stages[stage].mode);
1732 ce->ce_flags = create_ce_flags(stage);
1733 ce->ce_namelen = len;
1734 oidcpy(&ce->oid, &ci->stages[stage].oid);
1735 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1736 add_index_entry(attr_index, ce,
1737 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1738 get_stream_filter(attr_index, GITATTRIBUTES_FILE,
1739 &ce->oid);
1744 static int merge_3way(struct merge_options *opt,
1745 const char *path,
1746 const struct object_id *o,
1747 const struct object_id *a,
1748 const struct object_id *b,
1749 const char *pathnames[3],
1750 const int extra_marker_size,
1751 mmbuffer_t *result_buf)
1753 mmfile_t orig, src1, src2;
1754 struct ll_merge_options ll_opts = {0};
1755 char *base, *name1, *name2;
1756 int merge_status;
1758 if (!opt->priv->attr_index.initialized)
1759 initialize_attr_index(opt);
1761 ll_opts.renormalize = opt->renormalize;
1762 ll_opts.extra_marker_size = extra_marker_size;
1763 ll_opts.xdl_opts = opt->xdl_opts;
1765 if (opt->priv->call_depth) {
1766 ll_opts.virtual_ancestor = 1;
1767 ll_opts.variant = 0;
1768 } else {
1769 switch (opt->recursive_variant) {
1770 case MERGE_VARIANT_OURS:
1771 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
1772 break;
1773 case MERGE_VARIANT_THEIRS:
1774 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
1775 break;
1776 default:
1777 ll_opts.variant = 0;
1778 break;
1782 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
1783 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
1784 base = mkpathdup("%s", opt->ancestor);
1785 name1 = mkpathdup("%s", opt->branch1);
1786 name2 = mkpathdup("%s", opt->branch2);
1787 } else {
1788 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
1789 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
1790 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
1793 read_mmblob(&orig, o);
1794 read_mmblob(&src1, a);
1795 read_mmblob(&src2, b);
1797 merge_status = ll_merge(result_buf, path, &orig, base,
1798 &src1, name1, &src2, name2,
1799 &opt->priv->attr_index, &ll_opts);
1801 free(base);
1802 free(name1);
1803 free(name2);
1804 free(orig.ptr);
1805 free(src1.ptr);
1806 free(src2.ptr);
1807 return merge_status;
1810 static int handle_content_merge(struct merge_options *opt,
1811 const char *path,
1812 const struct version_info *o,
1813 const struct version_info *a,
1814 const struct version_info *b,
1815 const char *pathnames[3],
1816 const int extra_marker_size,
1817 struct version_info *result)
1820 * path is the target location where we want to put the file, and
1821 * is used to determine any normalization rules in ll_merge.
1823 * The normal case is that path and all entries in pathnames are
1824 * identical, though renames can affect which path we got one of
1825 * the three blobs to merge on various sides of history.
1827 * extra_marker_size is the amount to extend conflict markers in
1828 * ll_merge; this is neeed if we have content merges of content
1829 * merges, which happens for example with rename/rename(2to1) and
1830 * rename/add conflicts.
1832 unsigned clean = 1;
1835 * handle_content_merge() needs both files to be of the same type, i.e.
1836 * both files OR both submodules OR both symlinks. Conflicting types
1837 * needs to be handled elsewhere.
1839 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
1841 /* Merge modes */
1842 if (a->mode == b->mode || a->mode == o->mode)
1843 result->mode = b->mode;
1844 else {
1845 /* must be the 100644/100755 case */
1846 assert(S_ISREG(a->mode));
1847 result->mode = a->mode;
1848 clean = (b->mode == o->mode);
1850 * FIXME: If opt->priv->call_depth && !clean, then we really
1851 * should not make result->mode match either a->mode or
1852 * b->mode; that causes t6036 "check conflicting mode for
1853 * regular file" to fail. It would be best to use some other
1854 * mode, but we'll confuse all kinds of stuff if we use one
1855 * where S_ISREG(result->mode) isn't true, and if we use
1856 * something like 0100666, then tree-walk.c's calls to
1857 * canon_mode() will just normalize that to 100644 for us and
1858 * thus not solve anything.
1860 * Figure out if there's some kind of way we can work around
1861 * this...
1866 * Trivial oid merge.
1868 * Note: While one might assume that the next four lines would
1869 * be unnecessary due to the fact that match_mask is often
1870 * setup and already handled, renames don't always take care
1871 * of that.
1873 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
1874 oidcpy(&result->oid, &b->oid);
1875 else if (oideq(&b->oid, &o->oid))
1876 oidcpy(&result->oid, &a->oid);
1878 /* Remaining rules depend on file vs. submodule vs. symlink. */
1879 else if (S_ISREG(a->mode)) {
1880 mmbuffer_t result_buf;
1881 int ret = 0, merge_status;
1882 int two_way;
1885 * If 'o' is different type, treat it as null so we do a
1886 * two-way merge.
1888 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1890 merge_status = merge_3way(opt, path,
1891 two_way ? null_oid() : &o->oid,
1892 &a->oid, &b->oid,
1893 pathnames, extra_marker_size,
1894 &result_buf);
1896 if ((merge_status < 0) || !result_buf.ptr)
1897 ret = err(opt, _("Failed to execute internal merge"));
1899 if (!ret &&
1900 write_object_file(result_buf.ptr, result_buf.size,
1901 blob_type, &result->oid))
1902 ret = err(opt, _("Unable to add %s to database"),
1903 path);
1905 free(result_buf.ptr);
1906 if (ret)
1907 return -1;
1908 clean &= (merge_status == 0);
1909 path_msg(opt, path, 1, _("Auto-merging %s"), path);
1910 } else if (S_ISGITLINK(a->mode)) {
1911 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1912 clean = merge_submodule(opt, pathnames[0],
1913 two_way ? null_oid() : &o->oid,
1914 &a->oid, &b->oid, &result->oid);
1915 if (opt->priv->call_depth && two_way && !clean) {
1916 result->mode = o->mode;
1917 oidcpy(&result->oid, &o->oid);
1919 } else if (S_ISLNK(a->mode)) {
1920 if (opt->priv->call_depth) {
1921 clean = 0;
1922 result->mode = o->mode;
1923 oidcpy(&result->oid, &o->oid);
1924 } else {
1925 switch (opt->recursive_variant) {
1926 case MERGE_VARIANT_NORMAL:
1927 clean = 0;
1928 oidcpy(&result->oid, &a->oid);
1929 break;
1930 case MERGE_VARIANT_OURS:
1931 oidcpy(&result->oid, &a->oid);
1932 break;
1933 case MERGE_VARIANT_THEIRS:
1934 oidcpy(&result->oid, &b->oid);
1935 break;
1938 } else
1939 BUG("unsupported object type in the tree: %06o for %s",
1940 a->mode, path);
1942 return clean;
1945 /*** Function Grouping: functions related to detect_and_process_renames(), ***
1946 *** which are split into directory and regular rename detection sections. ***/
1948 /*** Function Grouping: functions related to directory rename detection ***/
1950 struct collision_info {
1951 struct string_list source_files;
1952 unsigned reported_already:1;
1956 * Return a new string that replaces the beginning portion (which matches
1957 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
1958 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
1959 * NOTE:
1960 * Caller must ensure that old_path starts with rename_info->key + '/'.
1962 static char *apply_dir_rename(struct strmap_entry *rename_info,
1963 const char *old_path)
1965 struct strbuf new_path = STRBUF_INIT;
1966 const char *old_dir = rename_info->key;
1967 const char *new_dir = rename_info->value;
1968 int oldlen, newlen, new_dir_len;
1970 oldlen = strlen(old_dir);
1971 if (*new_dir == '\0')
1973 * If someone renamed/merged a subdirectory into the root
1974 * directory (e.g. 'some/subdir' -> ''), then we want to
1975 * avoid returning
1976 * '' + '/filename'
1977 * as the rename; we need to make old_path + oldlen advance
1978 * past the '/' character.
1980 oldlen++;
1981 new_dir_len = strlen(new_dir);
1982 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
1983 strbuf_grow(&new_path, newlen);
1984 strbuf_add(&new_path, new_dir, new_dir_len);
1985 strbuf_addstr(&new_path, &old_path[oldlen]);
1987 return strbuf_detach(&new_path, NULL);
1990 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
1992 struct merged_info *mi = strmap_get(paths, path);
1993 struct conflict_info *ci;
1994 if (!mi)
1995 return 0;
1996 INITIALIZE_CI(ci, mi);
1997 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
2001 * See if there is a directory rename for path, and if there are any file
2002 * level conflicts on the given side for the renamed location. If there is
2003 * a rename and there are no conflicts, return the new name. Otherwise,
2004 * return NULL.
2006 static char *handle_path_level_conflicts(struct merge_options *opt,
2007 const char *path,
2008 unsigned side_index,
2009 struct strmap_entry *rename_info,
2010 struct strmap *collisions)
2012 char *new_path = NULL;
2013 struct collision_info *c_info;
2014 int clean = 1;
2015 struct strbuf collision_paths = STRBUF_INIT;
2018 * entry has the mapping of old directory name to new directory name
2019 * that we want to apply to path.
2021 new_path = apply_dir_rename(rename_info, path);
2022 if (!new_path)
2023 BUG("Failed to apply directory rename!");
2026 * The caller needs to have ensured that it has pre-populated
2027 * collisions with all paths that map to new_path. Do a quick check
2028 * to ensure that's the case.
2030 c_info = strmap_get(collisions, new_path);
2031 if (c_info == NULL)
2032 BUG("c_info is NULL");
2035 * Check for one-sided add/add/.../add conflicts, i.e.
2036 * where implicit renames from the other side doing
2037 * directory rename(s) can affect this side of history
2038 * to put multiple paths into the same location. Warn
2039 * and bail on directory renames for such paths.
2041 if (c_info->reported_already) {
2042 clean = 0;
2043 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
2044 c_info->reported_already = 1;
2045 strbuf_add_separated_string_list(&collision_paths, ", ",
2046 &c_info->source_files);
2047 path_msg(opt, new_path, 0,
2048 _("CONFLICT (implicit dir rename): Existing file/dir "
2049 "at %s in the way of implicit directory rename(s) "
2050 "putting the following path(s) there: %s."),
2051 new_path, collision_paths.buf);
2052 clean = 0;
2053 } else if (c_info->source_files.nr > 1) {
2054 c_info->reported_already = 1;
2055 strbuf_add_separated_string_list(&collision_paths, ", ",
2056 &c_info->source_files);
2057 path_msg(opt, new_path, 0,
2058 _("CONFLICT (implicit dir rename): Cannot map more "
2059 "than one path to %s; implicit directory renames "
2060 "tried to put these paths there: %s"),
2061 new_path, collision_paths.buf);
2062 clean = 0;
2065 /* Free memory we no longer need */
2066 strbuf_release(&collision_paths);
2067 if (!clean && new_path) {
2068 free(new_path);
2069 return NULL;
2072 return new_path;
2075 static void get_provisional_directory_renames(struct merge_options *opt,
2076 unsigned side,
2077 int *clean)
2079 struct hashmap_iter iter;
2080 struct strmap_entry *entry;
2081 struct rename_info *renames = &opt->priv->renames;
2084 * Collapse
2085 * dir_rename_count: old_directory -> {new_directory -> count}
2086 * down to
2087 * dir_renames: old_directory -> best_new_directory
2088 * where best_new_directory is the one with the unique highest count.
2090 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
2091 const char *source_dir = entry->key;
2092 struct strintmap *counts = entry->value;
2093 struct hashmap_iter count_iter;
2094 struct strmap_entry *count_entry;
2095 int max = 0;
2096 int bad_max = 0;
2097 const char *best = NULL;
2099 strintmap_for_each_entry(counts, &count_iter, count_entry) {
2100 const char *target_dir = count_entry->key;
2101 intptr_t count = (intptr_t)count_entry->value;
2103 if (count == max)
2104 bad_max = max;
2105 else if (count > max) {
2106 max = count;
2107 best = target_dir;
2111 if (max == 0)
2112 continue;
2114 if (bad_max == max) {
2115 path_msg(opt, source_dir, 0,
2116 _("CONFLICT (directory rename split): "
2117 "Unclear where to rename %s to; it was "
2118 "renamed to multiple other directories, with "
2119 "no destination getting a majority of the "
2120 "files."),
2121 source_dir);
2122 *clean = 0;
2123 } else {
2124 strmap_put(&renames->dir_renames[side],
2125 source_dir, (void*)best);
2130 static void handle_directory_level_conflicts(struct merge_options *opt)
2132 struct hashmap_iter iter;
2133 struct strmap_entry *entry;
2134 struct string_list duplicated = STRING_LIST_INIT_NODUP;
2135 struct rename_info *renames = &opt->priv->renames;
2136 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
2137 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
2138 int i;
2140 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
2141 if (strmap_contains(side2_dir_renames, entry->key))
2142 string_list_append(&duplicated, entry->key);
2145 for (i = 0; i < duplicated.nr; i++) {
2146 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
2147 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
2149 string_list_clear(&duplicated, 0);
2152 static struct strmap_entry *check_dir_renamed(const char *path,
2153 struct strmap *dir_renames)
2155 char *temp = xstrdup(path);
2156 char *end;
2157 struct strmap_entry *e = NULL;
2159 while ((end = strrchr(temp, '/'))) {
2160 *end = '\0';
2161 e = strmap_get_entry(dir_renames, temp);
2162 if (e)
2163 break;
2165 free(temp);
2166 return e;
2169 static void compute_collisions(struct strmap *collisions,
2170 struct strmap *dir_renames,
2171 struct diff_queue_struct *pairs)
2173 int i;
2175 strmap_init_with_options(collisions, NULL, 0);
2176 if (strmap_empty(dir_renames))
2177 return;
2180 * Multiple files can be mapped to the same path due to directory
2181 * renames done by the other side of history. Since that other
2182 * side of history could have merged multiple directories into one,
2183 * if our side of history added the same file basename to each of
2184 * those directories, then all N of them would get implicitly
2185 * renamed by the directory rename detection into the same path,
2186 * and we'd get an add/add/.../add conflict, and all those adds
2187 * from *this* side of history. This is not representable in the
2188 * index, and users aren't going to easily be able to make sense of
2189 * it. So we need to provide a good warning about what's
2190 * happening, and fall back to no-directory-rename detection
2191 * behavior for those paths.
2193 * See testcases 9e and all of section 5 from t6043 for examples.
2195 for (i = 0; i < pairs->nr; ++i) {
2196 struct strmap_entry *rename_info;
2197 struct collision_info *collision_info;
2198 char *new_path;
2199 struct diff_filepair *pair = pairs->queue[i];
2201 if (pair->status != 'A' && pair->status != 'R')
2202 continue;
2203 rename_info = check_dir_renamed(pair->two->path, dir_renames);
2204 if (!rename_info)
2205 continue;
2207 new_path = apply_dir_rename(rename_info, pair->two->path);
2208 assert(new_path);
2209 collision_info = strmap_get(collisions, new_path);
2210 if (collision_info) {
2211 free(new_path);
2212 } else {
2213 CALLOC_ARRAY(collision_info, 1);
2214 string_list_init_nodup(&collision_info->source_files);
2215 strmap_put(collisions, new_path, collision_info);
2217 string_list_insert(&collision_info->source_files,
2218 pair->two->path);
2222 static char *check_for_directory_rename(struct merge_options *opt,
2223 const char *path,
2224 unsigned side_index,
2225 struct strmap *dir_renames,
2226 struct strmap *dir_rename_exclusions,
2227 struct strmap *collisions,
2228 int *clean_merge)
2230 char *new_path = NULL;
2231 struct strmap_entry *rename_info;
2232 struct strmap_entry *otherinfo = NULL;
2233 const char *new_dir;
2235 if (strmap_empty(dir_renames))
2236 return new_path;
2237 rename_info = check_dir_renamed(path, dir_renames);
2238 if (!rename_info)
2239 return new_path;
2240 /* old_dir = rename_info->key; */
2241 new_dir = rename_info->value;
2244 * This next part is a little weird. We do not want to do an
2245 * implicit rename into a directory we renamed on our side, because
2246 * that will result in a spurious rename/rename(1to2) conflict. An
2247 * example:
2248 * Base commit: dumbdir/afile, otherdir/bfile
2249 * Side 1: smrtdir/afile, otherdir/bfile
2250 * Side 2: dumbdir/afile, dumbdir/bfile
2251 * Here, while working on Side 1, we could notice that otherdir was
2252 * renamed/merged to dumbdir, and change the diff_filepair for
2253 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
2254 * 2 will notice the rename from dumbdir to smrtdir, and do the
2255 * transitive rename to move it from dumbdir/bfile to
2256 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
2257 * smrtdir, a rename/rename(1to2) conflict. We really just want
2258 * the file to end up in smrtdir. And the way to achieve that is
2259 * to not let Side1 do the rename to dumbdir, since we know that is
2260 * the source of one of our directory renames.
2262 * That's why otherinfo and dir_rename_exclusions is here.
2264 * As it turns out, this also prevents N-way transient rename
2265 * confusion; See testcases 9c and 9d of t6043.
2267 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
2268 if (otherinfo) {
2269 path_msg(opt, rename_info->key, 1,
2270 _("WARNING: Avoiding applying %s -> %s rename "
2271 "to %s, because %s itself was renamed."),
2272 rename_info->key, new_dir, path, new_dir);
2273 return NULL;
2276 new_path = handle_path_level_conflicts(opt, path, side_index,
2277 rename_info, collisions);
2278 *clean_merge &= (new_path != NULL);
2280 return new_path;
2283 static void apply_directory_rename_modifications(struct merge_options *opt,
2284 struct diff_filepair *pair,
2285 char *new_path)
2288 * The basic idea is to get the conflict_info from opt->priv->paths
2289 * at old path, and insert it into new_path; basically just this:
2290 * ci = strmap_get(&opt->priv->paths, old_path);
2291 * strmap_remove(&opt->priv->paths, old_path, 0);
2292 * strmap_put(&opt->priv->paths, new_path, ci);
2293 * However, there are some factors complicating this:
2294 * - opt->priv->paths may already have an entry at new_path
2295 * - Each ci tracks its containing directory, so we need to
2296 * update that
2297 * - If another ci has the same containing directory, then
2298 * the two char*'s MUST point to the same location. See the
2299 * comment in struct merged_info. strcmp equality is not
2300 * enough; we need pointer equality.
2301 * - opt->priv->paths must hold the parent directories of any
2302 * entries that are added. So, if this directory rename
2303 * causes entirely new directories, we must recursively add
2304 * parent directories.
2305 * - For each parent directory added to opt->priv->paths, we
2306 * also need to get its parent directory stored in its
2307 * conflict_info->merged.directory_name with all the same
2308 * requirements about pointer equality.
2310 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
2311 struct conflict_info *ci, *new_ci;
2312 struct strmap_entry *entry;
2313 const char *branch_with_new_path, *branch_with_dir_rename;
2314 const char *old_path = pair->two->path;
2315 const char *parent_name;
2316 const char *cur_path;
2317 int i, len;
2319 entry = strmap_get_entry(&opt->priv->paths, old_path);
2320 old_path = entry->key;
2321 ci = entry->value;
2322 VERIFY_CI(ci);
2324 /* Find parent directories missing from opt->priv->paths */
2325 cur_path = mem_pool_strdup(&opt->priv->pool, new_path);
2326 free((char*)new_path);
2327 new_path = (char *)cur_path;
2329 while (1) {
2330 /* Find the parent directory of cur_path */
2331 char *last_slash = strrchr(cur_path, '/');
2332 if (last_slash) {
2333 parent_name = mem_pool_strndup(&opt->priv->pool,
2334 cur_path,
2335 last_slash - cur_path);
2336 } else {
2337 parent_name = opt->priv->toplevel_dir;
2338 break;
2341 /* Look it up in opt->priv->paths */
2342 entry = strmap_get_entry(&opt->priv->paths, parent_name);
2343 if (entry) {
2344 parent_name = entry->key; /* reuse known pointer */
2345 break;
2348 /* Record this is one of the directories we need to insert */
2349 string_list_append(&dirs_to_insert, parent_name);
2350 cur_path = parent_name;
2353 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
2354 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
2355 struct conflict_info *dir_ci;
2356 char *cur_dir = dirs_to_insert.items[i].string;
2358 CALLOC_ARRAY(dir_ci, 1);
2360 dir_ci->merged.directory_name = parent_name;
2361 len = strlen(parent_name);
2362 /* len+1 because of trailing '/' character */
2363 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
2364 dir_ci->dirmask = ci->filemask;
2365 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
2367 parent_name = cur_dir;
2370 assert(ci->filemask == 2 || ci->filemask == 4);
2371 assert(ci->dirmask == 0);
2372 strmap_remove(&opt->priv->paths, old_path, 0);
2374 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
2375 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
2377 /* Now, finally update ci and stick it into opt->priv->paths */
2378 ci->merged.directory_name = parent_name;
2379 len = strlen(parent_name);
2380 ci->merged.basename_offset = (len > 0 ? len+1 : len);
2381 new_ci = strmap_get(&opt->priv->paths, new_path);
2382 if (!new_ci) {
2383 /* Place ci back into opt->priv->paths, but at new_path */
2384 strmap_put(&opt->priv->paths, new_path, ci);
2385 } else {
2386 int index;
2388 /* A few sanity checks */
2389 VERIFY_CI(new_ci);
2390 assert(ci->filemask == 2 || ci->filemask == 4);
2391 assert((new_ci->filemask & ci->filemask) == 0);
2392 assert(!new_ci->merged.clean);
2394 /* Copy stuff from ci into new_ci */
2395 new_ci->filemask |= ci->filemask;
2396 if (new_ci->dirmask)
2397 new_ci->df_conflict = 1;
2398 index = (ci->filemask >> 1);
2399 new_ci->pathnames[index] = ci->pathnames[index];
2400 new_ci->stages[index].mode = ci->stages[index].mode;
2401 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
2403 ci = new_ci;
2406 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
2407 /* Notify user of updated path */
2408 if (pair->status == 'A')
2409 path_msg(opt, new_path, 1,
2410 _("Path updated: %s added in %s inside a "
2411 "directory that was renamed in %s; moving "
2412 "it to %s."),
2413 old_path, branch_with_new_path,
2414 branch_with_dir_rename, new_path);
2415 else
2416 path_msg(opt, new_path, 1,
2417 _("Path updated: %s renamed to %s in %s, "
2418 "inside a directory that was renamed in %s; "
2419 "moving it to %s."),
2420 pair->one->path, old_path, branch_with_new_path,
2421 branch_with_dir_rename, new_path);
2422 } else {
2424 * opt->detect_directory_renames has the value
2425 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
2427 ci->path_conflict = 1;
2428 if (pair->status == 'A')
2429 path_msg(opt, new_path, 0,
2430 _("CONFLICT (file location): %s added in %s "
2431 "inside a directory that was renamed in %s, "
2432 "suggesting it should perhaps be moved to "
2433 "%s."),
2434 old_path, branch_with_new_path,
2435 branch_with_dir_rename, new_path);
2436 else
2437 path_msg(opt, new_path, 0,
2438 _("CONFLICT (file location): %s renamed to %s "
2439 "in %s, inside a directory that was renamed "
2440 "in %s, suggesting it should perhaps be "
2441 "moved to %s."),
2442 pair->one->path, old_path, branch_with_new_path,
2443 branch_with_dir_rename, new_path);
2447 * Finally, record the new location.
2449 pair->two->path = new_path;
2452 /*** Function Grouping: functions related to regular rename detection ***/
2454 static int process_renames(struct merge_options *opt,
2455 struct diff_queue_struct *renames)
2457 int clean_merge = 1, i;
2459 for (i = 0; i < renames->nr; ++i) {
2460 const char *oldpath = NULL, *newpath;
2461 struct diff_filepair *pair = renames->queue[i];
2462 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
2463 struct strmap_entry *old_ent, *new_ent;
2464 unsigned int old_sidemask;
2465 int target_index, other_source_index;
2466 int source_deleted, collision, type_changed;
2467 const char *rename_branch = NULL, *delete_branch = NULL;
2469 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
2470 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
2471 if (old_ent) {
2472 oldpath = old_ent->key;
2473 oldinfo = old_ent->value;
2475 newpath = pair->two->path;
2476 if (new_ent) {
2477 newpath = new_ent->key;
2478 newinfo = new_ent->value;
2482 * If pair->one->path isn't in opt->priv->paths, that means
2483 * that either directory rename detection removed that
2484 * path, or a parent directory of oldpath was resolved and
2485 * we don't even need the rename; in either case, we can
2486 * skip it. If oldinfo->merged.clean, then the other side
2487 * of history had no changes to oldpath and we don't need
2488 * the rename and can skip it.
2490 if (!oldinfo || oldinfo->merged.clean)
2491 continue;
2494 * diff_filepairs have copies of pathnames, thus we have to
2495 * use standard 'strcmp()' (negated) instead of '=='.
2497 if (i + 1 < renames->nr &&
2498 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
2499 /* Handle rename/rename(1to2) or rename/rename(1to1) */
2500 const char *pathnames[3];
2501 struct version_info merged;
2502 struct conflict_info *base, *side1, *side2;
2503 unsigned was_binary_blob = 0;
2505 pathnames[0] = oldpath;
2506 pathnames[1] = newpath;
2507 pathnames[2] = renames->queue[i+1]->two->path;
2509 base = strmap_get(&opt->priv->paths, pathnames[0]);
2510 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2511 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2513 VERIFY_CI(base);
2514 VERIFY_CI(side1);
2515 VERIFY_CI(side2);
2517 if (!strcmp(pathnames[1], pathnames[2])) {
2518 struct rename_info *ri = &opt->priv->renames;
2519 int j;
2521 /* Both sides renamed the same way */
2522 assert(side1 == side2);
2523 memcpy(&side1->stages[0], &base->stages[0],
2524 sizeof(merged));
2525 side1->filemask |= (1 << MERGE_BASE);
2526 /* Mark base as resolved by removal */
2527 base->merged.is_null = 1;
2528 base->merged.clean = 1;
2531 * Disable remembering renames optimization;
2532 * rename/rename(1to1) is incredibly rare, and
2533 * just disabling the optimization is easier
2534 * than purging cached_pairs,
2535 * cached_target_names, and dir_rename_counts.
2537 for (j = 0; j < 3; j++)
2538 ri->merge_trees[j] = NULL;
2540 /* We handled both renames, i.e. i+1 handled */
2541 i++;
2542 /* Move to next rename */
2543 continue;
2546 /* This is a rename/rename(1to2) */
2547 clean_merge = handle_content_merge(opt,
2548 pair->one->path,
2549 &base->stages[0],
2550 &side1->stages[1],
2551 &side2->stages[2],
2552 pathnames,
2553 1 + 2 * opt->priv->call_depth,
2554 &merged);
2555 if (!clean_merge &&
2556 merged.mode == side1->stages[1].mode &&
2557 oideq(&merged.oid, &side1->stages[1].oid))
2558 was_binary_blob = 1;
2559 memcpy(&side1->stages[1], &merged, sizeof(merged));
2560 if (was_binary_blob) {
2562 * Getting here means we were attempting to
2563 * merge a binary blob.
2565 * Since we can't merge binaries,
2566 * handle_content_merge() just takes one
2567 * side. But we don't want to copy the
2568 * contents of one side to both paths. We
2569 * used the contents of side1 above for
2570 * side1->stages, let's use the contents of
2571 * side2 for side2->stages below.
2573 oidcpy(&merged.oid, &side2->stages[2].oid);
2574 merged.mode = side2->stages[2].mode;
2576 memcpy(&side2->stages[2], &merged, sizeof(merged));
2578 side1->path_conflict = 1;
2579 side2->path_conflict = 1;
2581 * TODO: For renames we normally remove the path at the
2582 * old name. It would thus seem consistent to do the
2583 * same for rename/rename(1to2) cases, but we haven't
2584 * done so traditionally and a number of the regression
2585 * tests now encode an expectation that the file is
2586 * left there at stage 1. If we ever decide to change
2587 * this, add the following two lines here:
2588 * base->merged.is_null = 1;
2589 * base->merged.clean = 1;
2590 * and remove the setting of base->path_conflict to 1.
2592 base->path_conflict = 1;
2593 path_msg(opt, oldpath, 0,
2594 _("CONFLICT (rename/rename): %s renamed to "
2595 "%s in %s and to %s in %s."),
2596 pathnames[0],
2597 pathnames[1], opt->branch1,
2598 pathnames[2], opt->branch2);
2600 i++; /* We handled both renames, i.e. i+1 handled */
2601 continue;
2604 VERIFY_CI(oldinfo);
2605 VERIFY_CI(newinfo);
2606 target_index = pair->score; /* from collect_renames() */
2607 assert(target_index == 1 || target_index == 2);
2608 other_source_index = 3 - target_index;
2609 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2610 source_deleted = (oldinfo->filemask == 1);
2611 collision = ((newinfo->filemask & old_sidemask) != 0);
2612 type_changed = !source_deleted &&
2613 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2614 S_ISREG(newinfo->stages[target_index].mode));
2615 if (type_changed && collision) {
2617 * special handling so later blocks can handle this...
2619 * if type_changed && collision are both true, then this
2620 * was really a double rename, but one side wasn't
2621 * detected due to lack of break detection. I.e.
2622 * something like
2623 * orig: has normal file 'foo'
2624 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2625 * side2: renames 'foo' to 'bar'
2626 * In this case, the foo->bar rename on side1 won't be
2627 * detected because the new symlink named 'foo' is
2628 * there and we don't do break detection. But we detect
2629 * this here because we don't want to merge the content
2630 * of the foo symlink with the foo->bar file, so we
2631 * have some logic to handle this special case. The
2632 * easiest way to do that is make 'bar' on side1 not
2633 * be considered a colliding file but the other part
2634 * of a normal rename. If the file is very different,
2635 * well we're going to get content merge conflicts
2636 * anyway so it doesn't hurt. And if the colliding
2637 * file also has a different type, that'll be handled
2638 * by the content merge logic in process_entry() too.
2640 * See also t6430, 'rename vs. rename/symlink'
2642 collision = 0;
2644 if (source_deleted) {
2645 if (target_index == 1) {
2646 rename_branch = opt->branch1;
2647 delete_branch = opt->branch2;
2648 } else {
2649 rename_branch = opt->branch2;
2650 delete_branch = opt->branch1;
2654 assert(source_deleted || oldinfo->filemask & old_sidemask);
2656 /* Need to check for special types of rename conflicts... */
2657 if (collision && !source_deleted) {
2658 /* collision: rename/add or rename/rename(2to1) */
2659 const char *pathnames[3];
2660 struct version_info merged;
2662 struct conflict_info *base, *side1, *side2;
2663 unsigned clean;
2665 pathnames[0] = oldpath;
2666 pathnames[other_source_index] = oldpath;
2667 pathnames[target_index] = newpath;
2669 base = strmap_get(&opt->priv->paths, pathnames[0]);
2670 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2671 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2673 VERIFY_CI(base);
2674 VERIFY_CI(side1);
2675 VERIFY_CI(side2);
2677 clean = handle_content_merge(opt, pair->one->path,
2678 &base->stages[0],
2679 &side1->stages[1],
2680 &side2->stages[2],
2681 pathnames,
2682 1 + 2 * opt->priv->call_depth,
2683 &merged);
2685 memcpy(&newinfo->stages[target_index], &merged,
2686 sizeof(merged));
2687 if (!clean) {
2688 path_msg(opt, newpath, 0,
2689 _("CONFLICT (rename involved in "
2690 "collision): rename of %s -> %s has "
2691 "content conflicts AND collides "
2692 "with another path; this may result "
2693 "in nested conflict markers."),
2694 oldpath, newpath);
2696 } else if (collision && source_deleted) {
2698 * rename/add/delete or rename/rename(2to1)/delete:
2699 * since oldpath was deleted on the side that didn't
2700 * do the rename, there's not much of a content merge
2701 * we can do for the rename. oldinfo->merged.is_null
2702 * was already set, so we just leave things as-is so
2703 * they look like an add/add conflict.
2706 newinfo->path_conflict = 1;
2707 path_msg(opt, newpath, 0,
2708 _("CONFLICT (rename/delete): %s renamed "
2709 "to %s in %s, but deleted in %s."),
2710 oldpath, newpath, rename_branch, delete_branch);
2711 } else {
2713 * a few different cases...start by copying the
2714 * existing stage(s) from oldinfo over the newinfo
2715 * and update the pathname(s).
2717 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
2718 sizeof(newinfo->stages[0]));
2719 newinfo->filemask |= (1 << MERGE_BASE);
2720 newinfo->pathnames[0] = oldpath;
2721 if (type_changed) {
2722 /* rename vs. typechange */
2723 /* Mark the original as resolved by removal */
2724 memcpy(&oldinfo->stages[0].oid, null_oid(),
2725 sizeof(oldinfo->stages[0].oid));
2726 oldinfo->stages[0].mode = 0;
2727 oldinfo->filemask &= 0x06;
2728 } else if (source_deleted) {
2729 /* rename/delete */
2730 newinfo->path_conflict = 1;
2731 path_msg(opt, newpath, 0,
2732 _("CONFLICT (rename/delete): %s renamed"
2733 " to %s in %s, but deleted in %s."),
2734 oldpath, newpath,
2735 rename_branch, delete_branch);
2736 } else {
2737 /* normal rename */
2738 memcpy(&newinfo->stages[other_source_index],
2739 &oldinfo->stages[other_source_index],
2740 sizeof(newinfo->stages[0]));
2741 newinfo->filemask |= (1 << other_source_index);
2742 newinfo->pathnames[other_source_index] = oldpath;
2746 if (!type_changed) {
2747 /* Mark the original as resolved by removal */
2748 oldinfo->merged.is_null = 1;
2749 oldinfo->merged.clean = 1;
2754 return clean_merge;
2757 static inline int possible_side_renames(struct rename_info *renames,
2758 unsigned side_index)
2760 return renames->pairs[side_index].nr > 0 &&
2761 !strintmap_empty(&renames->relevant_sources[side_index]);
2764 static inline int possible_renames(struct rename_info *renames)
2766 return possible_side_renames(renames, 1) ||
2767 possible_side_renames(renames, 2) ||
2768 !strmap_empty(&renames->cached_pairs[1]) ||
2769 !strmap_empty(&renames->cached_pairs[2]);
2772 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
2775 * A simplified version of diff_resolve_rename_copy(); would probably
2776 * just use that function but it's static...
2778 int i;
2779 struct diff_filepair *p;
2781 for (i = 0; i < q->nr; ++i) {
2782 p = q->queue[i];
2783 p->status = 0; /* undecided */
2784 if (!DIFF_FILE_VALID(p->one))
2785 p->status = DIFF_STATUS_ADDED;
2786 else if (!DIFF_FILE_VALID(p->two))
2787 p->status = DIFF_STATUS_DELETED;
2788 else if (DIFF_PAIR_RENAME(p))
2789 p->status = DIFF_STATUS_RENAMED;
2793 static void prune_cached_from_relevant(struct rename_info *renames,
2794 unsigned side)
2796 /* Reason for this function described in add_pair() */
2797 struct hashmap_iter iter;
2798 struct strmap_entry *entry;
2800 /* Remove from relevant_sources all entries in cached_pairs[side] */
2801 strmap_for_each_entry(&renames->cached_pairs[side], &iter, entry) {
2802 strintmap_remove(&renames->relevant_sources[side],
2803 entry->key);
2805 /* Remove from relevant_sources all entries in cached_irrelevant[side] */
2806 strset_for_each_entry(&renames->cached_irrelevant[side], &iter, entry) {
2807 strintmap_remove(&renames->relevant_sources[side],
2808 entry->key);
2812 static void use_cached_pairs(struct merge_options *opt,
2813 struct strmap *cached_pairs,
2814 struct diff_queue_struct *pairs)
2816 struct hashmap_iter iter;
2817 struct strmap_entry *entry;
2820 * Add to side_pairs all entries from renames->cached_pairs[side_index].
2821 * (Info in cached_irrelevant[side_index] is not relevant here.)
2823 strmap_for_each_entry(cached_pairs, &iter, entry) {
2824 struct diff_filespec *one, *two;
2825 const char *old_name = entry->key;
2826 const char *new_name = entry->value;
2827 if (!new_name)
2828 new_name = old_name;
2831 * cached_pairs has *copies* of old_name and new_name,
2832 * because it has to persist across merges. Since
2833 * pool_alloc_filespec() will just re-use the existing
2834 * filenames, which will also get re-used by
2835 * opt->priv->paths if they become renames, and then
2836 * get freed at the end of the merge, that would leave
2837 * the copy in cached_pairs dangling. Avoid this by
2838 * making a copy here.
2840 old_name = mem_pool_strdup(&opt->priv->pool, old_name);
2841 new_name = mem_pool_strdup(&opt->priv->pool, new_name);
2843 /* We don't care about oid/mode, only filenames and status */
2844 one = pool_alloc_filespec(&opt->priv->pool, old_name);
2845 two = pool_alloc_filespec(&opt->priv->pool, new_name);
2846 pool_diff_queue(&opt->priv->pool, pairs, one, two);
2847 pairs->queue[pairs->nr-1]->status = entry->value ? 'R' : 'D';
2851 static void cache_new_pair(struct rename_info *renames,
2852 int side,
2853 char *old_path,
2854 char *new_path,
2855 int free_old_value)
2857 char *old_value;
2858 new_path = xstrdup(new_path);
2859 old_value = strmap_put(&renames->cached_pairs[side],
2860 old_path, new_path);
2861 strset_add(&renames->cached_target_names[side], new_path);
2862 if (free_old_value)
2863 free(old_value);
2864 else
2865 assert(!old_value);
2868 static void possibly_cache_new_pair(struct rename_info *renames,
2869 struct diff_filepair *p,
2870 unsigned side,
2871 char *new_path)
2873 int dir_renamed_side = 0;
2875 if (new_path) {
2877 * Directory renames happen on the other side of history from
2878 * the side that adds new files to the old directory.
2880 dir_renamed_side = 3 - side;
2881 } else {
2882 int val = strintmap_get(&renames->relevant_sources[side],
2883 p->one->path);
2884 if (val == RELEVANT_NO_MORE) {
2885 assert(p->status == 'D');
2886 strset_add(&renames->cached_irrelevant[side],
2887 p->one->path);
2889 if (val <= 0)
2890 return;
2893 if (p->status == 'D') {
2895 * If we already had this delete, we'll just set it's value
2896 * to NULL again, so no harm.
2898 strmap_put(&renames->cached_pairs[side], p->one->path, NULL);
2899 } else if (p->status == 'R') {
2900 if (!new_path)
2901 new_path = p->two->path;
2902 else
2903 cache_new_pair(renames, dir_renamed_side,
2904 p->two->path, new_path, 0);
2905 cache_new_pair(renames, side, p->one->path, new_path, 1);
2906 } else if (p->status == 'A' && new_path) {
2907 cache_new_pair(renames, dir_renamed_side,
2908 p->two->path, new_path, 0);
2912 static int compare_pairs(const void *a_, const void *b_)
2914 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
2915 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
2917 return strcmp(a->one->path, b->one->path);
2920 /* Call diffcore_rename() to update deleted/added pairs into rename pairs */
2921 static int detect_regular_renames(struct merge_options *opt,
2922 unsigned side_index)
2924 struct diff_options diff_opts;
2925 struct rename_info *renames = &opt->priv->renames;
2927 prune_cached_from_relevant(renames, side_index);
2928 if (!possible_side_renames(renames, side_index)) {
2930 * No rename detection needed for this side, but we still need
2931 * to make sure 'adds' are marked correctly in case the other
2932 * side had directory renames.
2934 resolve_diffpair_statuses(&renames->pairs[side_index]);
2935 return 0;
2938 partial_clear_dir_rename_count(&renames->dir_rename_count[side_index]);
2939 repo_diff_setup(opt->repo, &diff_opts);
2940 diff_opts.flags.recursive = 1;
2941 diff_opts.flags.rename_empty = 0;
2942 diff_opts.detect_rename = DIFF_DETECT_RENAME;
2943 diff_opts.rename_limit = opt->rename_limit;
2944 if (opt->rename_limit <= 0)
2945 diff_opts.rename_limit = 7000;
2946 diff_opts.rename_score = opt->rename_score;
2947 diff_opts.show_rename_progress = opt->show_rename_progress;
2948 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2949 diff_setup_done(&diff_opts);
2951 diff_queued_diff = renames->pairs[side_index];
2952 trace2_region_enter("diff", "diffcore_rename", opt->repo);
2953 diffcore_rename_extended(&diff_opts,
2954 &opt->priv->pool,
2955 &renames->relevant_sources[side_index],
2956 &renames->dirs_removed[side_index],
2957 &renames->dir_rename_count[side_index],
2958 &renames->cached_pairs[side_index]);
2959 trace2_region_leave("diff", "diffcore_rename", opt->repo);
2960 resolve_diffpair_statuses(&diff_queued_diff);
2962 if (diff_opts.needed_rename_limit > 0)
2963 renames->redo_after_renames = 0;
2964 if (diff_opts.needed_rename_limit > renames->needed_limit)
2965 renames->needed_limit = diff_opts.needed_rename_limit;
2967 renames->pairs[side_index] = diff_queued_diff;
2969 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2970 diff_queued_diff.nr = 0;
2971 diff_queued_diff.queue = NULL;
2972 diff_flush(&diff_opts);
2974 return 1;
2978 * Get information of all renames which occurred in 'side_pairs', making use
2979 * of any implicit directory renames in side_dir_renames (also making use of
2980 * implicit directory renames rename_exclusions as needed by
2981 * check_for_directory_rename()). Add all (updated) renames into result.
2983 static int collect_renames(struct merge_options *opt,
2984 struct diff_queue_struct *result,
2985 unsigned side_index,
2986 struct strmap *dir_renames_for_side,
2987 struct strmap *rename_exclusions)
2989 int i, clean = 1;
2990 struct strmap collisions;
2991 struct diff_queue_struct *side_pairs;
2992 struct hashmap_iter iter;
2993 struct strmap_entry *entry;
2994 struct rename_info *renames = &opt->priv->renames;
2996 side_pairs = &renames->pairs[side_index];
2997 compute_collisions(&collisions, dir_renames_for_side, side_pairs);
2999 for (i = 0; i < side_pairs->nr; ++i) {
3000 struct diff_filepair *p = side_pairs->queue[i];
3001 char *new_path; /* non-NULL only with directory renames */
3003 if (p->status != 'A' && p->status != 'R') {
3004 possibly_cache_new_pair(renames, p, side_index, NULL);
3005 pool_diff_free_filepair(&opt->priv->pool, p);
3006 continue;
3009 new_path = check_for_directory_rename(opt, p->two->path,
3010 side_index,
3011 dir_renames_for_side,
3012 rename_exclusions,
3013 &collisions,
3014 &clean);
3016 possibly_cache_new_pair(renames, p, side_index, new_path);
3017 if (p->status != 'R' && !new_path) {
3018 pool_diff_free_filepair(&opt->priv->pool, p);
3019 continue;
3022 if (new_path)
3023 apply_directory_rename_modifications(opt, p, new_path);
3026 * p->score comes back from diffcore_rename_extended() with
3027 * the similarity of the renamed file. The similarity is
3028 * was used to determine that the two files were related
3029 * and are a rename, which we have already used, but beyond
3030 * that we have no use for the similarity. So p->score is
3031 * now irrelevant. However, process_renames() will need to
3032 * know which side of the merge this rename was associated
3033 * with, so overwrite p->score with that value.
3035 p->score = side_index;
3036 result->queue[result->nr++] = p;
3039 /* Free each value in the collisions map */
3040 strmap_for_each_entry(&collisions, &iter, entry) {
3041 struct collision_info *info = entry->value;
3042 string_list_clear(&info->source_files, 0);
3045 * In compute_collisions(), we set collisions.strdup_strings to 0
3046 * so that we wouldn't have to make another copy of the new_path
3047 * allocated by apply_dir_rename(). But now that we've used them
3048 * and have no other references to these strings, it is time to
3049 * deallocate them.
3051 free_strmap_strings(&collisions);
3052 strmap_clear(&collisions, 1);
3053 return clean;
3056 static int detect_and_process_renames(struct merge_options *opt,
3057 struct tree *merge_base,
3058 struct tree *side1,
3059 struct tree *side2)
3061 struct diff_queue_struct combined;
3062 struct rename_info *renames = &opt->priv->renames;
3063 int need_dir_renames, s, clean = 1;
3064 unsigned detection_run = 0;
3066 memset(&combined, 0, sizeof(combined));
3067 if (!possible_renames(renames))
3068 goto cleanup;
3070 trace2_region_enter("merge", "regular renames", opt->repo);
3071 detection_run |= detect_regular_renames(opt, MERGE_SIDE1);
3072 detection_run |= detect_regular_renames(opt, MERGE_SIDE2);
3073 if (renames->redo_after_renames && detection_run) {
3074 int i, side;
3075 struct diff_filepair *p;
3077 /* Cache the renames, we found */
3078 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
3079 for (i = 0; i < renames->pairs[side].nr; ++i) {
3080 p = renames->pairs[side].queue[i];
3081 possibly_cache_new_pair(renames, p, side, NULL);
3085 /* Restart the merge with the cached renames */
3086 renames->redo_after_renames = 2;
3087 trace2_region_leave("merge", "regular renames", opt->repo);
3088 goto cleanup;
3090 use_cached_pairs(opt, &renames->cached_pairs[1], &renames->pairs[1]);
3091 use_cached_pairs(opt, &renames->cached_pairs[2], &renames->pairs[2]);
3092 trace2_region_leave("merge", "regular renames", opt->repo);
3094 trace2_region_enter("merge", "directory renames", opt->repo);
3095 need_dir_renames =
3096 !opt->priv->call_depth &&
3097 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
3098 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
3100 if (need_dir_renames) {
3101 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
3102 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
3103 handle_directory_level_conflicts(opt);
3106 ALLOC_GROW(combined.queue,
3107 renames->pairs[1].nr + renames->pairs[2].nr,
3108 combined.alloc);
3109 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
3110 &renames->dir_renames[2],
3111 &renames->dir_renames[1]);
3112 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
3113 &renames->dir_renames[1],
3114 &renames->dir_renames[2]);
3115 STABLE_QSORT(combined.queue, combined.nr, compare_pairs);
3116 trace2_region_leave("merge", "directory renames", opt->repo);
3118 trace2_region_enter("merge", "process renames", opt->repo);
3119 clean &= process_renames(opt, &combined);
3120 trace2_region_leave("merge", "process renames", opt->repo);
3122 goto simple_cleanup; /* collect_renames() handles some of cleanup */
3124 cleanup:
3126 * Free now unneeded filepairs, which would have been handled
3127 * in collect_renames() normally but we skipped that code.
3129 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3130 struct diff_queue_struct *side_pairs;
3131 int i;
3133 side_pairs = &renames->pairs[s];
3134 for (i = 0; i < side_pairs->nr; ++i) {
3135 struct diff_filepair *p = side_pairs->queue[i];
3136 pool_diff_free_filepair(&opt->priv->pool, p);
3140 simple_cleanup:
3141 /* Free memory for renames->pairs[] and combined */
3142 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3143 free(renames->pairs[s].queue);
3144 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
3146 if (combined.nr) {
3147 int i;
3148 for (i = 0; i < combined.nr; i++)
3149 pool_diff_free_filepair(&opt->priv->pool,
3150 combined.queue[i]);
3151 free(combined.queue);
3154 return clean;
3157 /*** Function Grouping: functions related to process_entries() ***/
3159 static int sort_dirs_next_to_their_children(const char *one, const char *two)
3161 unsigned char c1, c2;
3164 * Here we only care that entries for directories appear adjacent
3165 * to and before files underneath the directory. We can achieve
3166 * that by pretending to add a trailing slash to every file and
3167 * then sorting. In other words, we do not want the natural
3168 * sorting of
3169 * foo
3170 * foo.txt
3171 * foo/bar
3172 * Instead, we want "foo" to sort as though it were "foo/", so that
3173 * we instead get
3174 * foo.txt
3175 * foo
3176 * foo/bar
3177 * To achieve this, we basically implement our own strcmp, except that
3178 * if we get to the end of either string instead of comparing NUL to
3179 * another character, we compare '/' to it.
3181 * If this unusual "sort as though '/' were appended" perplexes
3182 * you, perhaps it will help to note that this is not the final
3183 * sort. write_tree() will sort again without the trailing slash
3184 * magic, but just on paths immediately under a given tree.
3186 * The reason to not use df_name_compare directly was that it was
3187 * just too expensive (we don't have the string lengths handy), so
3188 * it was reimplemented.
3192 * NOTE: This function will never be called with two equal strings,
3193 * because it is used to sort the keys of a strmap, and strmaps have
3194 * unique keys by construction. That simplifies our c1==c2 handling
3195 * below.
3198 while (*one && (*one == *two)) {
3199 one++;
3200 two++;
3203 c1 = *one ? *one : '/';
3204 c2 = *two ? *two : '/';
3206 if (c1 == c2) {
3207 /* Getting here means one is a leading directory of the other */
3208 return (*one) ? 1 : -1;
3209 } else
3210 return c1 - c2;
3213 static int read_oid_strbuf(struct merge_options *opt,
3214 const struct object_id *oid,
3215 struct strbuf *dst)
3217 void *buf;
3218 enum object_type type;
3219 unsigned long size;
3220 buf = read_object_file(oid, &type, &size);
3221 if (!buf)
3222 return err(opt, _("cannot read object %s"), oid_to_hex(oid));
3223 if (type != OBJ_BLOB) {
3224 free(buf);
3225 return err(opt, _("object %s is not a blob"), oid_to_hex(oid));
3227 strbuf_attach(dst, buf, size, size + 1);
3228 return 0;
3231 static int blob_unchanged(struct merge_options *opt,
3232 const struct version_info *base,
3233 const struct version_info *side,
3234 const char *path)
3236 struct strbuf basebuf = STRBUF_INIT;
3237 struct strbuf sidebuf = STRBUF_INIT;
3238 int ret = 0; /* assume changed for safety */
3239 struct index_state *idx = &opt->priv->attr_index;
3241 if (!idx->initialized)
3242 initialize_attr_index(opt);
3244 if (base->mode != side->mode)
3245 return 0;
3246 if (oideq(&base->oid, &side->oid))
3247 return 1;
3249 if (read_oid_strbuf(opt, &base->oid, &basebuf) ||
3250 read_oid_strbuf(opt, &side->oid, &sidebuf))
3251 goto error_return;
3253 * Note: binary | is used so that both renormalizations are
3254 * performed. Comparison can be skipped if both files are
3255 * unchanged since their sha1s have already been compared.
3257 if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) |
3258 renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf))
3259 ret = (basebuf.len == sidebuf.len &&
3260 !memcmp(basebuf.buf, sidebuf.buf, basebuf.len));
3262 error_return:
3263 strbuf_release(&basebuf);
3264 strbuf_release(&sidebuf);
3265 return ret;
3268 struct directory_versions {
3270 * versions: list of (basename -> version_info)
3272 * The basenames are in reverse lexicographic order of full pathnames,
3273 * as processed in process_entries(). This puts all entries within
3274 * a directory together, and covers the directory itself after
3275 * everything within it, allowing us to write subtrees before needing
3276 * to record information for the tree itself.
3278 struct string_list versions;
3281 * offsets: list of (full relative path directories -> integer offsets)
3283 * Since versions contains basenames from files in multiple different
3284 * directories, we need to know which entries in versions correspond
3285 * to which directories. Values of e.g.
3286 * "" 0
3287 * src 2
3288 * src/moduleA 5
3289 * Would mean that entries 0-1 of versions are files in the toplevel
3290 * directory, entries 2-4 are files under src/, and the remaining
3291 * entries starting at index 5 are files under src/moduleA/.
3293 struct string_list offsets;
3296 * last_directory: directory that previously processed file found in
3298 * last_directory starts NULL, but records the directory in which the
3299 * previous file was found within. As soon as
3300 * directory(current_file) != last_directory
3301 * then we need to start updating accounting in versions & offsets.
3302 * Note that last_directory is always the last path in "offsets" (or
3303 * NULL if "offsets" is empty) so this exists just for quick access.
3305 const char *last_directory;
3307 /* last_directory_len: cached computation of strlen(last_directory) */
3308 unsigned last_directory_len;
3311 static int tree_entry_order(const void *a_, const void *b_)
3313 const struct string_list_item *a = a_;
3314 const struct string_list_item *b = b_;
3316 const struct merged_info *ami = a->util;
3317 const struct merged_info *bmi = b->util;
3318 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
3319 b->string, strlen(b->string), bmi->result.mode);
3322 static void write_tree(struct object_id *result_oid,
3323 struct string_list *versions,
3324 unsigned int offset,
3325 size_t hash_size)
3327 size_t maxlen = 0, extra;
3328 unsigned int nr;
3329 struct strbuf buf = STRBUF_INIT;
3330 int i;
3332 assert(offset <= versions->nr);
3333 nr = versions->nr - offset;
3334 if (versions->nr)
3335 /* No need for STABLE_QSORT -- filenames must be unique */
3336 QSORT(versions->items + offset, nr, tree_entry_order);
3338 /* Pre-allocate some space in buf */
3339 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
3340 for (i = 0; i < nr; i++) {
3341 maxlen += strlen(versions->items[offset+i].string) + extra;
3343 strbuf_grow(&buf, maxlen);
3345 /* Write each entry out to buf */
3346 for (i = 0; i < nr; i++) {
3347 struct merged_info *mi = versions->items[offset+i].util;
3348 struct version_info *ri = &mi->result;
3349 strbuf_addf(&buf, "%o %s%c",
3350 ri->mode,
3351 versions->items[offset+i].string, '\0');
3352 strbuf_add(&buf, ri->oid.hash, hash_size);
3355 /* Write this object file out, and record in result_oid */
3356 write_object_file(buf.buf, buf.len, tree_type, result_oid);
3357 strbuf_release(&buf);
3360 static void record_entry_for_tree(struct directory_versions *dir_metadata,
3361 const char *path,
3362 struct merged_info *mi)
3364 const char *basename;
3366 if (mi->is_null)
3367 /* nothing to record */
3368 return;
3370 basename = path + mi->basename_offset;
3371 assert(strchr(basename, '/') == NULL);
3372 string_list_append(&dir_metadata->versions,
3373 basename)->util = &mi->result;
3376 static void write_completed_directory(struct merge_options *opt,
3377 const char *new_directory_name,
3378 struct directory_versions *info)
3380 const char *prev_dir;
3381 struct merged_info *dir_info = NULL;
3382 unsigned int offset;
3385 * Some explanation of info->versions and info->offsets...
3387 * process_entries() iterates over all relevant files AND
3388 * directories in reverse lexicographic order, and calls this
3389 * function. Thus, an example of the paths that process_entries()
3390 * could operate on (along with the directories for those paths
3391 * being shown) is:
3393 * xtract.c ""
3394 * tokens.txt ""
3395 * src/moduleB/umm.c src/moduleB
3396 * src/moduleB/stuff.h src/moduleB
3397 * src/moduleB/baz.c src/moduleB
3398 * src/moduleB src
3399 * src/moduleA/foo.c src/moduleA
3400 * src/moduleA/bar.c src/moduleA
3401 * src/moduleA src
3402 * src ""
3403 * Makefile ""
3405 * info->versions:
3407 * always contains the unprocessed entries and their
3408 * version_info information. For example, after the first five
3409 * entries above, info->versions would be:
3411 * xtract.c <xtract.c's version_info>
3412 * token.txt <token.txt's version_info>
3413 * umm.c <src/moduleB/umm.c's version_info>
3414 * stuff.h <src/moduleB/stuff.h's version_info>
3415 * baz.c <src/moduleB/baz.c's version_info>
3417 * Once a subdirectory is completed we remove the entries in
3418 * that subdirectory from info->versions, writing it as a tree
3419 * (write_tree()). Thus, as soon as we get to src/moduleB,
3420 * info->versions would be updated to
3422 * xtract.c <xtract.c's version_info>
3423 * token.txt <token.txt's version_info>
3424 * moduleB <src/moduleB's version_info>
3426 * info->offsets:
3428 * helps us track which entries in info->versions correspond to
3429 * which directories. When we are N directories deep (e.g. 4
3430 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
3431 * directories (+1 because of toplevel dir). Corresponding to
3432 * the info->versions example above, after processing five entries
3433 * info->offsets will be:
3435 * "" 0
3436 * src/moduleB 2
3438 * which is used to know that xtract.c & token.txt are from the
3439 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
3440 * src/moduleB directory. Again, following the example above,
3441 * once we need to process src/moduleB, then info->offsets is
3442 * updated to
3444 * "" 0
3445 * src 2
3447 * which says that moduleB (and only moduleB so far) is in the
3448 * src directory.
3450 * One unique thing to note about info->offsets here is that
3451 * "src" was not added to info->offsets until there was a path
3452 * (a file OR directory) immediately below src/ that got
3453 * processed.
3455 * Since process_entry() just appends new entries to info->versions,
3456 * write_completed_directory() only needs to do work if the next path
3457 * is in a directory that is different than the last directory found
3458 * in info->offsets.
3462 * If we are working with the same directory as the last entry, there
3463 * is no work to do. (See comments above the directory_name member of
3464 * struct merged_info for why we can use pointer comparison instead of
3465 * strcmp here.)
3467 if (new_directory_name == info->last_directory)
3468 return;
3471 * If we are just starting (last_directory is NULL), or last_directory
3472 * is a prefix of the current directory, then we can just update
3473 * info->offsets to record the offset where we started this directory
3474 * and update last_directory to have quick access to it.
3476 if (info->last_directory == NULL ||
3477 !strncmp(new_directory_name, info->last_directory,
3478 info->last_directory_len)) {
3479 uintptr_t offset = info->versions.nr;
3481 info->last_directory = new_directory_name;
3482 info->last_directory_len = strlen(info->last_directory);
3484 * Record the offset into info->versions where we will
3485 * start recording basenames of paths found within
3486 * new_directory_name.
3488 string_list_append(&info->offsets,
3489 info->last_directory)->util = (void*)offset;
3490 return;
3494 * The next entry that will be processed will be within
3495 * new_directory_name. Since at this point we know that
3496 * new_directory_name is within a different directory than
3497 * info->last_directory, we have all entries for info->last_directory
3498 * in info->versions and we need to create a tree object for them.
3500 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
3501 assert(dir_info);
3502 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
3503 if (offset == info->versions.nr) {
3505 * Actually, we don't need to create a tree object in this
3506 * case. Whenever all files within a directory disappear
3507 * during the merge (e.g. unmodified on one side and
3508 * deleted on the other, or files were renamed elsewhere),
3509 * then we get here and the directory itself needs to be
3510 * omitted from its parent tree as well.
3512 dir_info->is_null = 1;
3513 } else {
3515 * Write out the tree to the git object directory, and also
3516 * record the mode and oid in dir_info->result.
3518 dir_info->is_null = 0;
3519 dir_info->result.mode = S_IFDIR;
3520 write_tree(&dir_info->result.oid, &info->versions, offset,
3521 opt->repo->hash_algo->rawsz);
3525 * We've now used several entries from info->versions and one entry
3526 * from info->offsets, so we get rid of those values.
3528 info->offsets.nr--;
3529 info->versions.nr = offset;
3532 * Now we've taken care of the completed directory, but we need to
3533 * prepare things since future entries will be in
3534 * new_directory_name. (In particular, process_entry() will be
3535 * appending new entries to info->versions.) So, we need to make
3536 * sure new_directory_name is the last entry in info->offsets.
3538 prev_dir = info->offsets.nr == 0 ? NULL :
3539 info->offsets.items[info->offsets.nr-1].string;
3540 if (new_directory_name != prev_dir) {
3541 uintptr_t c = info->versions.nr;
3542 string_list_append(&info->offsets,
3543 new_directory_name)->util = (void*)c;
3546 /* And, of course, we need to update last_directory to match. */
3547 info->last_directory = new_directory_name;
3548 info->last_directory_len = strlen(info->last_directory);
3551 /* Per entry merge function */
3552 static void process_entry(struct merge_options *opt,
3553 const char *path,
3554 struct conflict_info *ci,
3555 struct directory_versions *dir_metadata)
3557 int df_file_index = 0;
3559 VERIFY_CI(ci);
3560 assert(ci->filemask >= 0 && ci->filemask <= 7);
3561 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
3562 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
3563 ci->match_mask == 5 || ci->match_mask == 6);
3565 if (ci->dirmask) {
3566 record_entry_for_tree(dir_metadata, path, &ci->merged);
3567 if (ci->filemask == 0)
3568 /* nothing else to handle */
3569 return;
3570 assert(ci->df_conflict);
3573 if (ci->df_conflict && ci->merged.result.mode == 0) {
3574 int i;
3577 * directory no longer in the way, but we do have a file we
3578 * need to place here so we need to clean away the "directory
3579 * merges to nothing" result.
3581 ci->df_conflict = 0;
3582 assert(ci->filemask != 0);
3583 ci->merged.clean = 0;
3584 ci->merged.is_null = 0;
3585 /* and we want to zero out any directory-related entries */
3586 ci->match_mask = (ci->match_mask & ~ci->dirmask);
3587 ci->dirmask = 0;
3588 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3589 if (ci->filemask & (1 << i))
3590 continue;
3591 ci->stages[i].mode = 0;
3592 oidcpy(&ci->stages[i].oid, null_oid());
3594 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
3596 * This started out as a D/F conflict, and the entries in
3597 * the competing directory were not removed by the merge as
3598 * evidenced by write_completed_directory() writing a value
3599 * to ci->merged.result.mode.
3601 struct conflict_info *new_ci;
3602 const char *branch;
3603 const char *old_path = path;
3604 int i;
3606 assert(ci->merged.result.mode == S_IFDIR);
3609 * If filemask is 1, we can just ignore the file as having
3610 * been deleted on both sides. We do not want to overwrite
3611 * ci->merged.result, since it stores the tree for all the
3612 * files under it.
3614 if (ci->filemask == 1) {
3615 ci->filemask = 0;
3616 return;
3620 * This file still exists on at least one side, and we want
3621 * the directory to remain here, so we need to move this
3622 * path to some new location.
3624 new_ci = mem_pool_calloc(&opt->priv->pool, 1, sizeof(*new_ci));
3626 /* We don't really want new_ci->merged.result copied, but it'll
3627 * be overwritten below so it doesn't matter. We also don't
3628 * want any directory mode/oid values copied, but we'll zero
3629 * those out immediately. We do want the rest of ci copied.
3631 memcpy(new_ci, ci, sizeof(*ci));
3632 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
3633 new_ci->dirmask = 0;
3634 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3635 if (new_ci->filemask & (1 << i))
3636 continue;
3637 /* zero out any entries related to directories */
3638 new_ci->stages[i].mode = 0;
3639 oidcpy(&new_ci->stages[i].oid, null_oid());
3643 * Find out which side this file came from; note that we
3644 * cannot just use ci->filemask, because renames could cause
3645 * the filemask to go back to 7. So we use dirmask, then
3646 * pick the opposite side's index.
3648 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
3649 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
3650 path = unique_path(&opt->priv->paths, path, branch);
3651 strmap_put(&opt->priv->paths, path, new_ci);
3653 path_msg(opt, path, 0,
3654 _("CONFLICT (file/directory): directory in the way "
3655 "of %s from %s; moving it to %s instead."),
3656 old_path, branch, path);
3659 * Zero out the filemask for the old ci. At this point, ci
3660 * was just an entry for a directory, so we don't need to
3661 * do anything more with it.
3663 ci->filemask = 0;
3666 * Now note that we're working on the new entry (path was
3667 * updated above.
3669 ci = new_ci;
3673 * NOTE: Below there is a long switch-like if-elseif-elseif... block
3674 * which the code goes through even for the df_conflict cases
3675 * above.
3677 if (ci->match_mask) {
3678 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3679 if (ci->match_mask == 6) {
3680 /* stages[1] == stages[2] */
3681 ci->merged.result.mode = ci->stages[1].mode;
3682 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3683 } else {
3684 /* determine the mask of the side that didn't match */
3685 unsigned int othermask = 7 & ~ci->match_mask;
3686 int side = (othermask == 4) ? 2 : 1;
3688 ci->merged.result.mode = ci->stages[side].mode;
3689 ci->merged.is_null = !ci->merged.result.mode;
3690 if (ci->merged.is_null)
3691 ci->merged.clean = 1;
3692 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3694 assert(othermask == 2 || othermask == 4);
3695 assert(ci->merged.is_null ==
3696 (ci->filemask == ci->match_mask));
3698 } else if (ci->filemask >= 6 &&
3699 (S_IFMT & ci->stages[1].mode) !=
3700 (S_IFMT & ci->stages[2].mode)) {
3701 /* Two different items from (file/submodule/symlink) */
3702 if (opt->priv->call_depth) {
3703 /* Just use the version from the merge base */
3704 ci->merged.clean = 0;
3705 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
3706 ci->merged.result.mode = ci->stages[0].mode;
3707 ci->merged.is_null = (ci->merged.result.mode == 0);
3708 } else {
3709 /* Handle by renaming one or both to separate paths. */
3710 unsigned o_mode = ci->stages[0].mode;
3711 unsigned a_mode = ci->stages[1].mode;
3712 unsigned b_mode = ci->stages[2].mode;
3713 struct conflict_info *new_ci;
3714 const char *a_path = NULL, *b_path = NULL;
3715 int rename_a = 0, rename_b = 0;
3717 new_ci = mem_pool_alloc(&opt->priv->pool,
3718 sizeof(*new_ci));
3720 if (S_ISREG(a_mode))
3721 rename_a = 1;
3722 else if (S_ISREG(b_mode))
3723 rename_b = 1;
3724 else {
3725 rename_a = 1;
3726 rename_b = 1;
3729 if (rename_a && rename_b) {
3730 path_msg(opt, path, 0,
3731 _("CONFLICT (distinct types): %s had "
3732 "different types on each side; "
3733 "renamed both of them so each can "
3734 "be recorded somewhere."),
3735 path);
3736 } else {
3737 path_msg(opt, path, 0,
3738 _("CONFLICT (distinct types): %s had "
3739 "different types on each side; "
3740 "renamed one of them so each can be "
3741 "recorded somewhere."),
3742 path);
3745 ci->merged.clean = 0;
3746 memcpy(new_ci, ci, sizeof(*new_ci));
3748 /* Put b into new_ci, removing a from stages */
3749 new_ci->merged.result.mode = ci->stages[2].mode;
3750 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
3751 new_ci->stages[1].mode = 0;
3752 oidcpy(&new_ci->stages[1].oid, null_oid());
3753 new_ci->filemask = 5;
3754 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
3755 new_ci->stages[0].mode = 0;
3756 oidcpy(&new_ci->stages[0].oid, null_oid());
3757 new_ci->filemask = 4;
3760 /* Leave only a in ci, fixing stages. */
3761 ci->merged.result.mode = ci->stages[1].mode;
3762 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3763 ci->stages[2].mode = 0;
3764 oidcpy(&ci->stages[2].oid, null_oid());
3765 ci->filemask = 3;
3766 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
3767 ci->stages[0].mode = 0;
3768 oidcpy(&ci->stages[0].oid, null_oid());
3769 ci->filemask = 2;
3772 /* Insert entries into opt->priv_paths */
3773 assert(rename_a || rename_b);
3774 if (rename_a) {
3775 a_path = unique_path(&opt->priv->paths,
3776 path, opt->branch1);
3777 strmap_put(&opt->priv->paths, a_path, ci);
3780 if (rename_b)
3781 b_path = unique_path(&opt->priv->paths,
3782 path, opt->branch2);
3783 else
3784 b_path = path;
3785 strmap_put(&opt->priv->paths, b_path, new_ci);
3787 if (rename_a && rename_b)
3788 strmap_remove(&opt->priv->paths, path, 0);
3791 * Do special handling for b_path since process_entry()
3792 * won't be called on it specially.
3794 strmap_put(&opt->priv->conflicted, b_path, new_ci);
3795 record_entry_for_tree(dir_metadata, b_path,
3796 &new_ci->merged);
3799 * Remaining code for processing this entry should
3800 * think in terms of processing a_path.
3802 if (a_path)
3803 path = a_path;
3805 } else if (ci->filemask >= 6) {
3806 /* Need a two-way or three-way content merge */
3807 struct version_info merged_file;
3808 unsigned clean_merge;
3809 struct version_info *o = &ci->stages[0];
3810 struct version_info *a = &ci->stages[1];
3811 struct version_info *b = &ci->stages[2];
3813 clean_merge = handle_content_merge(opt, path, o, a, b,
3814 ci->pathnames,
3815 opt->priv->call_depth * 2,
3816 &merged_file);
3817 ci->merged.clean = clean_merge &&
3818 !ci->df_conflict && !ci->path_conflict;
3819 ci->merged.result.mode = merged_file.mode;
3820 ci->merged.is_null = (merged_file.mode == 0);
3821 oidcpy(&ci->merged.result.oid, &merged_file.oid);
3822 if (clean_merge && ci->df_conflict) {
3823 assert(df_file_index == 1 || df_file_index == 2);
3824 ci->filemask = 1 << df_file_index;
3825 ci->stages[df_file_index].mode = merged_file.mode;
3826 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
3828 if (!clean_merge) {
3829 const char *reason = _("content");
3830 if (ci->filemask == 6)
3831 reason = _("add/add");
3832 if (S_ISGITLINK(merged_file.mode))
3833 reason = _("submodule");
3834 path_msg(opt, path, 0,
3835 _("CONFLICT (%s): Merge conflict in %s"),
3836 reason, path);
3838 } else if (ci->filemask == 3 || ci->filemask == 5) {
3839 /* Modify/delete */
3840 const char *modify_branch, *delete_branch;
3841 int side = (ci->filemask == 5) ? 2 : 1;
3842 int index = opt->priv->call_depth ? 0 : side;
3844 ci->merged.result.mode = ci->stages[index].mode;
3845 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
3846 ci->merged.clean = 0;
3848 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
3849 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
3851 if (opt->renormalize &&
3852 blob_unchanged(opt, &ci->stages[0], &ci->stages[side],
3853 path)) {
3854 ci->merged.is_null = 1;
3855 ci->merged.clean = 1;
3856 assert(!ci->df_conflict && !ci->path_conflict);
3857 } else if (ci->path_conflict &&
3858 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
3860 * This came from a rename/delete; no action to take,
3861 * but avoid printing "modify/delete" conflict notice
3862 * since the contents were not modified.
3864 } else {
3865 path_msg(opt, path, 0,
3866 _("CONFLICT (modify/delete): %s deleted in %s "
3867 "and modified in %s. Version %s of %s left "
3868 "in tree."),
3869 path, delete_branch, modify_branch,
3870 modify_branch, path);
3872 } else if (ci->filemask == 2 || ci->filemask == 4) {
3873 /* Added on one side */
3874 int side = (ci->filemask == 4) ? 2 : 1;
3875 ci->merged.result.mode = ci->stages[side].mode;
3876 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3877 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3878 } else if (ci->filemask == 1) {
3879 /* Deleted on both sides */
3880 ci->merged.is_null = 1;
3881 ci->merged.result.mode = 0;
3882 oidcpy(&ci->merged.result.oid, null_oid());
3883 assert(!ci->df_conflict);
3884 ci->merged.clean = !ci->path_conflict;
3888 * If still conflicted, record it separately. This allows us to later
3889 * iterate over just conflicted entries when updating the index instead
3890 * of iterating over all entries.
3892 if (!ci->merged.clean)
3893 strmap_put(&opt->priv->conflicted, path, ci);
3895 /* Record metadata for ci->merged in dir_metadata */
3896 record_entry_for_tree(dir_metadata, path, &ci->merged);
3899 static void prefetch_for_content_merges(struct merge_options *opt,
3900 struct string_list *plist)
3902 struct string_list_item *e;
3903 struct oid_array to_fetch = OID_ARRAY_INIT;
3905 if (opt->repo != the_repository || !has_promisor_remote())
3906 return;
3908 for (e = &plist->items[plist->nr-1]; e >= plist->items; --e) {
3909 /* char *path = e->string; */
3910 struct conflict_info *ci = e->util;
3911 int i;
3913 /* Ignore clean entries */
3914 if (ci->merged.clean)
3915 continue;
3917 /* Ignore entries that don't need a content merge */
3918 if (ci->match_mask || ci->filemask < 6 ||
3919 !S_ISREG(ci->stages[1].mode) ||
3920 !S_ISREG(ci->stages[2].mode) ||
3921 oideq(&ci->stages[1].oid, &ci->stages[2].oid))
3922 continue;
3924 /* Also don't need content merge if base matches either side */
3925 if (ci->filemask == 7 &&
3926 S_ISREG(ci->stages[0].mode) &&
3927 (oideq(&ci->stages[0].oid, &ci->stages[1].oid) ||
3928 oideq(&ci->stages[0].oid, &ci->stages[2].oid)))
3929 continue;
3931 for (i = 0; i < 3; i++) {
3932 unsigned side_mask = (1 << i);
3933 struct version_info *vi = &ci->stages[i];
3935 if ((ci->filemask & side_mask) &&
3936 S_ISREG(vi->mode) &&
3937 oid_object_info_extended(opt->repo, &vi->oid, NULL,
3938 OBJECT_INFO_FOR_PREFETCH))
3939 oid_array_append(&to_fetch, &vi->oid);
3943 promisor_remote_get_direct(opt->repo, to_fetch.oid, to_fetch.nr);
3944 oid_array_clear(&to_fetch);
3947 static void process_entries(struct merge_options *opt,
3948 struct object_id *result_oid)
3950 struct hashmap_iter iter;
3951 struct strmap_entry *e;
3952 struct string_list plist = STRING_LIST_INIT_NODUP;
3953 struct string_list_item *entry;
3954 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
3955 STRING_LIST_INIT_NODUP,
3956 NULL, 0 };
3958 trace2_region_enter("merge", "process_entries setup", opt->repo);
3959 if (strmap_empty(&opt->priv->paths)) {
3960 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
3961 return;
3964 /* Hack to pre-allocate plist to the desired size */
3965 trace2_region_enter("merge", "plist grow", opt->repo);
3966 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
3967 trace2_region_leave("merge", "plist grow", opt->repo);
3969 /* Put every entry from paths into plist, then sort */
3970 trace2_region_enter("merge", "plist copy", opt->repo);
3971 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
3972 string_list_append(&plist, e->key)->util = e->value;
3974 trace2_region_leave("merge", "plist copy", opt->repo);
3976 trace2_region_enter("merge", "plist special sort", opt->repo);
3977 plist.cmp = sort_dirs_next_to_their_children;
3978 string_list_sort(&plist);
3979 trace2_region_leave("merge", "plist special sort", opt->repo);
3981 trace2_region_leave("merge", "process_entries setup", opt->repo);
3984 * Iterate over the items in reverse order, so we can handle paths
3985 * below a directory before needing to handle the directory itself.
3987 * This allows us to write subtrees before we need to write trees,
3988 * and it also enables sane handling of directory/file conflicts
3989 * (because it allows us to know whether the directory is still in
3990 * the way when it is time to process the file at the same path).
3992 trace2_region_enter("merge", "processing", opt->repo);
3993 prefetch_for_content_merges(opt, &plist);
3994 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
3995 char *path = entry->string;
3997 * NOTE: mi may actually be a pointer to a conflict_info, but
3998 * we have to check mi->clean first to see if it's safe to
3999 * reassign to such a pointer type.
4001 struct merged_info *mi = entry->util;
4003 write_completed_directory(opt, mi->directory_name,
4004 &dir_metadata);
4005 if (mi->clean)
4006 record_entry_for_tree(&dir_metadata, path, mi);
4007 else {
4008 struct conflict_info *ci = (struct conflict_info *)mi;
4009 process_entry(opt, path, ci, &dir_metadata);
4012 trace2_region_leave("merge", "processing", opt->repo);
4014 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
4015 if (dir_metadata.offsets.nr != 1 ||
4016 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
4017 printf("dir_metadata.offsets.nr = %d (should be 1)\n",
4018 dir_metadata.offsets.nr);
4019 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
4020 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
4021 fflush(stdout);
4022 BUG("dir_metadata accounting completely off; shouldn't happen");
4024 write_tree(result_oid, &dir_metadata.versions, 0,
4025 opt->repo->hash_algo->rawsz);
4026 string_list_clear(&plist, 0);
4027 string_list_clear(&dir_metadata.versions, 0);
4028 string_list_clear(&dir_metadata.offsets, 0);
4029 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
4032 /*** Function Grouping: functions related to merge_switch_to_result() ***/
4034 static int checkout(struct merge_options *opt,
4035 struct tree *prev,
4036 struct tree *next)
4038 /* Switch the index/working copy from old to new */
4039 int ret;
4040 struct tree_desc trees[2];
4041 struct unpack_trees_options unpack_opts;
4043 memset(&unpack_opts, 0, sizeof(unpack_opts));
4044 unpack_opts.head_idx = -1;
4045 unpack_opts.src_index = opt->repo->index;
4046 unpack_opts.dst_index = opt->repo->index;
4048 setup_unpack_trees_porcelain(&unpack_opts, "merge");
4051 * NOTE: if this were just "git checkout" code, we would probably
4052 * read or refresh the cache and check for a conflicted index, but
4053 * builtin/merge.c or sequencer.c really needs to read the index
4054 * and check for conflicted entries before starting merging for a
4055 * good user experience (no sense waiting for merges/rebases before
4056 * erroring out), so there's no reason to duplicate that work here.
4059 /* 2-way merge to the new branch */
4060 unpack_opts.update = 1;
4061 unpack_opts.merge = 1;
4062 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
4063 unpack_opts.verbose_update = (opt->verbosity > 2);
4064 unpack_opts.fn = twoway_merge;
4065 unpack_opts.preserve_ignored = 0; /* FIXME: !opts->overwrite_ignore */
4066 parse_tree(prev);
4067 init_tree_desc(&trees[0], prev->buffer, prev->size);
4068 parse_tree(next);
4069 init_tree_desc(&trees[1], next->buffer, next->size);
4071 ret = unpack_trees(2, trees, &unpack_opts);
4072 clear_unpack_trees_porcelain(&unpack_opts);
4073 return ret;
4076 static int record_conflicted_index_entries(struct merge_options *opt)
4078 struct hashmap_iter iter;
4079 struct strmap_entry *e;
4080 struct index_state *index = opt->repo->index;
4081 struct checkout state = CHECKOUT_INIT;
4082 int errs = 0;
4083 int original_cache_nr;
4085 if (strmap_empty(&opt->priv->conflicted))
4086 return 0;
4089 * We are in a conflicted state. These conflicts might be inside
4090 * sparse-directory entries, so check if any entries are outside
4091 * of the sparse-checkout cone preemptively.
4093 * We set original_cache_nr below, but that might change if
4094 * index_name_pos() calls ask for paths within sparse directories.
4096 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4097 if (!path_in_sparse_checkout(e->key, index)) {
4098 ensure_full_index(index);
4099 break;
4103 /* If any entries have skip_worktree set, we'll have to check 'em out */
4104 state.force = 1;
4105 state.quiet = 1;
4106 state.refresh_cache = 1;
4107 state.istate = index;
4108 original_cache_nr = index->cache_nr;
4110 /* Append every entry from conflicted into index, then sort */
4111 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4112 const char *path = e->key;
4113 struct conflict_info *ci = e->value;
4114 int pos;
4115 struct cache_entry *ce;
4116 int i;
4118 VERIFY_CI(ci);
4121 * The index will already have a stage=0 entry for this path,
4122 * because we created an as-merged-as-possible version of the
4123 * file and checkout() moved the working copy and index over
4124 * to that version.
4126 * However, previous iterations through this loop will have
4127 * added unstaged entries to the end of the cache which
4128 * ignore the standard alphabetical ordering of cache
4129 * entries and break invariants needed for index_name_pos()
4130 * to work. However, we know the entry we want is before
4131 * those appended cache entries, so do a temporary swap on
4132 * cache_nr to only look through entries of interest.
4134 SWAP(index->cache_nr, original_cache_nr);
4135 pos = index_name_pos(index, path, strlen(path));
4136 SWAP(index->cache_nr, original_cache_nr);
4137 if (pos < 0) {
4138 if (ci->filemask != 1)
4139 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
4140 cache_tree_invalidate_path(index, path);
4141 } else {
4142 ce = index->cache[pos];
4145 * Clean paths with CE_SKIP_WORKTREE set will not be
4146 * written to the working tree by the unpack_trees()
4147 * call in checkout(). Our conflicted entries would
4148 * have appeared clean to that code since we ignored
4149 * the higher order stages. Thus, we need override
4150 * the CE_SKIP_WORKTREE bit and manually write those
4151 * files to the working disk here.
4153 if (ce_skip_worktree(ce)) {
4154 struct stat st;
4156 if (!lstat(path, &st)) {
4157 char *new_name = unique_path(&opt->priv->paths,
4158 path,
4159 "cruft");
4161 path_msg(opt, path, 1,
4162 _("Note: %s not up to date and in way of checking out conflicted version; old copy renamed to %s"),
4163 path, new_name);
4164 errs |= rename(path, new_name);
4165 free(new_name);
4167 errs |= checkout_entry(ce, &state, NULL, NULL);
4171 * Mark this cache entry for removal and instead add
4172 * new stage>0 entries corresponding to the
4173 * conflicts. If there are many conflicted entries, we
4174 * want to avoid memmove'ing O(NM) entries by
4175 * inserting the new entries one at a time. So,
4176 * instead, we just add the new cache entries to the
4177 * end (ignoring normal index requirements on sort
4178 * order) and sort the index once we're all done.
4180 ce->ce_flags |= CE_REMOVE;
4183 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4184 struct version_info *vi;
4185 if (!(ci->filemask & (1ul << i)))
4186 continue;
4187 vi = &ci->stages[i];
4188 ce = make_cache_entry(index, vi->mode, &vi->oid,
4189 path, i+1, 0);
4190 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
4195 * Remove the unused cache entries (and invalidate the relevant
4196 * cache-trees), then sort the index entries to get the conflicted
4197 * entries we added to the end into their right locations.
4199 remove_marked_cache_entries(index, 1);
4201 * No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily
4202 * on filename and secondarily on stage, and (name, stage #) are a
4203 * unique tuple.
4205 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
4207 return errs;
4210 void merge_switch_to_result(struct merge_options *opt,
4211 struct tree *head,
4212 struct merge_result *result,
4213 int update_worktree_and_index,
4214 int display_update_msgs)
4216 assert(opt->priv == NULL);
4217 if (result->clean >= 0 && update_worktree_and_index) {
4218 const char *filename;
4219 FILE *fp;
4221 trace2_region_enter("merge", "checkout", opt->repo);
4222 if (checkout(opt, head, result->tree)) {
4223 /* failure to function */
4224 result->clean = -1;
4225 return;
4227 trace2_region_leave("merge", "checkout", opt->repo);
4229 trace2_region_enter("merge", "record_conflicted", opt->repo);
4230 opt->priv = result->priv;
4231 if (record_conflicted_index_entries(opt)) {
4232 /* failure to function */
4233 opt->priv = NULL;
4234 result->clean = -1;
4235 return;
4237 opt->priv = NULL;
4238 trace2_region_leave("merge", "record_conflicted", opt->repo);
4240 trace2_region_enter("merge", "write_auto_merge", opt->repo);
4241 filename = git_path_auto_merge(opt->repo);
4242 fp = xfopen(filename, "w");
4243 fprintf(fp, "%s\n", oid_to_hex(&result->tree->object.oid));
4244 fclose(fp);
4245 trace2_region_leave("merge", "write_auto_merge", opt->repo);
4248 if (display_update_msgs) {
4249 struct merge_options_internal *opti = result->priv;
4250 struct hashmap_iter iter;
4251 struct strmap_entry *e;
4252 struct string_list olist = STRING_LIST_INIT_NODUP;
4253 int i;
4255 trace2_region_enter("merge", "display messages", opt->repo);
4257 /* Hack to pre-allocate olist to the desired size */
4258 ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
4259 olist.alloc);
4261 /* Put every entry from output into olist, then sort */
4262 strmap_for_each_entry(&opti->output, &iter, e) {
4263 string_list_append(&olist, e->key)->util = e->value;
4265 string_list_sort(&olist);
4267 /* Iterate over the items, printing them */
4268 for (i = 0; i < olist.nr; ++i) {
4269 struct strbuf *sb = olist.items[i].util;
4271 printf("%s", sb->buf);
4273 string_list_clear(&olist, 0);
4275 /* Also include needed rename limit adjustment now */
4276 diff_warn_rename_limit("merge.renamelimit",
4277 opti->renames.needed_limit, 0);
4279 trace2_region_leave("merge", "display messages", opt->repo);
4282 merge_finalize(opt, result);
4285 void merge_finalize(struct merge_options *opt,
4286 struct merge_result *result)
4288 struct merge_options_internal *opti = result->priv;
4290 if (opt->renormalize)
4291 git_attr_set_direction(GIT_ATTR_CHECKIN);
4292 assert(opt->priv == NULL);
4294 clear_or_reinit_internal_opts(opti, 0);
4295 FREE_AND_NULL(opti);
4298 /*** Function Grouping: helper functions for merge_incore_*() ***/
4300 static struct tree *shift_tree_object(struct repository *repo,
4301 struct tree *one, struct tree *two,
4302 const char *subtree_shift)
4304 struct object_id shifted;
4306 if (!*subtree_shift) {
4307 shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0);
4308 } else {
4309 shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted,
4310 subtree_shift);
4312 if (oideq(&two->object.oid, &shifted))
4313 return two;
4314 return lookup_tree(repo, &shifted);
4317 static inline void set_commit_tree(struct commit *c, struct tree *t)
4319 c->maybe_tree = t;
4322 static struct commit *make_virtual_commit(struct repository *repo,
4323 struct tree *tree,
4324 const char *comment)
4326 struct commit *commit = alloc_commit_node(repo);
4328 set_merge_remote_desc(commit, comment, (struct object *)commit);
4329 set_commit_tree(commit, tree);
4330 commit->object.parsed = 1;
4331 return commit;
4334 static void merge_start(struct merge_options *opt, struct merge_result *result)
4336 struct rename_info *renames;
4337 int i;
4338 struct mem_pool *pool = NULL;
4340 /* Sanity checks on opt */
4341 trace2_region_enter("merge", "sanity checks", opt->repo);
4342 assert(opt->repo);
4344 assert(opt->branch1 && opt->branch2);
4346 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
4347 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
4348 assert(opt->rename_limit >= -1);
4349 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
4350 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
4352 assert(opt->xdl_opts >= 0);
4353 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
4354 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
4357 * detect_renames, verbosity, buffer_output, and obuf are ignored
4358 * fields that were used by "recursive" rather than "ort" -- but
4359 * sanity check them anyway.
4361 assert(opt->detect_renames >= -1 &&
4362 opt->detect_renames <= DIFF_DETECT_COPY);
4363 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
4364 assert(opt->buffer_output <= 2);
4365 assert(opt->obuf.len == 0);
4367 assert(opt->priv == NULL);
4368 if (result->_properly_initialized != 0 &&
4369 result->_properly_initialized != RESULT_INITIALIZED)
4370 BUG("struct merge_result passed to merge_incore_*recursive() must be zeroed or filled with values from a previous run");
4371 assert(!!result->priv == !!result->_properly_initialized);
4372 if (result->priv) {
4373 opt->priv = result->priv;
4374 result->priv = NULL;
4376 * opt->priv non-NULL means we had results from a previous
4377 * run; do a few sanity checks that user didn't mess with
4378 * it in an obvious fashion.
4380 assert(opt->priv->call_depth == 0);
4381 assert(!opt->priv->toplevel_dir ||
4382 0 == strlen(opt->priv->toplevel_dir));
4384 trace2_region_leave("merge", "sanity checks", opt->repo);
4386 /* Default to histogram diff. Actually, just hardcode it...for now. */
4387 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
4389 /* Handle attr direction stuff for renormalization */
4390 if (opt->renormalize)
4391 git_attr_set_direction(GIT_ATTR_CHECKOUT);
4393 /* Initialization of opt->priv, our internal merge data */
4394 trace2_region_enter("merge", "allocate/init", opt->repo);
4395 if (opt->priv) {
4396 clear_or_reinit_internal_opts(opt->priv, 1);
4397 trace2_region_leave("merge", "allocate/init", opt->repo);
4398 return;
4400 opt->priv = xcalloc(1, sizeof(*opt->priv));
4402 /* Initialization of various renames fields */
4403 renames = &opt->priv->renames;
4404 mem_pool_init(&opt->priv->pool, 0);
4405 pool = &opt->priv->pool;
4406 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4407 strintmap_init_with_options(&renames->dirs_removed[i],
4408 NOT_RELEVANT, pool, 0);
4409 strmap_init_with_options(&renames->dir_rename_count[i],
4410 NULL, 1);
4411 strmap_init_with_options(&renames->dir_renames[i],
4412 NULL, 0);
4414 * relevant_sources uses -1 for the default, because we need
4415 * to be able to distinguish not-in-strintmap from valid
4416 * relevant_source values from enum file_rename_relevance.
4417 * In particular, possibly_cache_new_pair() expects a negative
4418 * value for not-found entries.
4420 strintmap_init_with_options(&renames->relevant_sources[i],
4421 -1 /* explicitly invalid */,
4422 pool, 0);
4423 strmap_init_with_options(&renames->cached_pairs[i],
4424 NULL, 1);
4425 strset_init_with_options(&renames->cached_irrelevant[i],
4426 NULL, 1);
4427 strset_init_with_options(&renames->cached_target_names[i],
4428 NULL, 0);
4430 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4431 strintmap_init_with_options(&renames->deferred[i].possible_trivial_merges,
4432 0, pool, 0);
4433 strset_init_with_options(&renames->deferred[i].target_dirs,
4434 pool, 1);
4435 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
4439 * Although we initialize opt->priv->paths with strdup_strings=0,
4440 * that's just to avoid making yet another copy of an allocated
4441 * string. Putting the entry into paths means we are taking
4442 * ownership, so we will later free it.
4444 * In contrast, conflicted just has a subset of keys from paths, so
4445 * we don't want to free those (it'd be a duplicate free).
4447 strmap_init_with_options(&opt->priv->paths, pool, 0);
4448 strmap_init_with_options(&opt->priv->conflicted, pool, 0);
4451 * keys & strbufs in output will sometimes need to outlive "paths",
4452 * so it will have a copy of relevant keys. It's probably a small
4453 * subset of the overall paths that have special output.
4455 strmap_init(&opt->priv->output);
4457 trace2_region_leave("merge", "allocate/init", opt->repo);
4460 static void merge_check_renames_reusable(struct merge_options *opt,
4461 struct merge_result *result,
4462 struct tree *merge_base,
4463 struct tree *side1,
4464 struct tree *side2)
4466 struct rename_info *renames;
4467 struct tree **merge_trees;
4468 struct merge_options_internal *opti = result->priv;
4470 if (!opti)
4471 return;
4473 renames = &opti->renames;
4474 merge_trees = renames->merge_trees;
4477 * Handle case where previous merge operation did not want cache to
4478 * take effect, e.g. because rename/rename(1to1) makes it invalid.
4480 if (!merge_trees[0]) {
4481 assert(!merge_trees[0] && !merge_trees[1] && !merge_trees[2]);
4482 renames->cached_pairs_valid_side = 0; /* neither side valid */
4483 return;
4487 * Handle other cases; note that merge_trees[0..2] will only
4488 * be NULL if opti is, or if all three were manually set to
4489 * NULL by e.g. rename/rename(1to1) handling.
4491 assert(merge_trees[0] && merge_trees[1] && merge_trees[2]);
4493 /* Check if we meet a condition for re-using cached_pairs */
4494 if (oideq(&merge_base->object.oid, &merge_trees[2]->object.oid) &&
4495 oideq(&side1->object.oid, &result->tree->object.oid))
4496 renames->cached_pairs_valid_side = MERGE_SIDE1;
4497 else if (oideq(&merge_base->object.oid, &merge_trees[1]->object.oid) &&
4498 oideq(&side2->object.oid, &result->tree->object.oid))
4499 renames->cached_pairs_valid_side = MERGE_SIDE2;
4500 else
4501 renames->cached_pairs_valid_side = 0; /* neither side valid */
4504 /*** Function Grouping: merge_incore_*() and their internal variants ***/
4507 * Originally from merge_trees_internal(); heavily adapted, though.
4509 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
4510 struct tree *merge_base,
4511 struct tree *side1,
4512 struct tree *side2,
4513 struct merge_result *result)
4515 struct object_id working_tree_oid;
4517 if (opt->subtree_shift) {
4518 side2 = shift_tree_object(opt->repo, side1, side2,
4519 opt->subtree_shift);
4520 merge_base = shift_tree_object(opt->repo, side1, merge_base,
4521 opt->subtree_shift);
4524 redo:
4525 trace2_region_enter("merge", "collect_merge_info", opt->repo);
4526 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
4528 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
4529 * base, and 2-3) the trees for the two trees we're merging.
4531 err(opt, _("collecting merge info failed for trees %s, %s, %s"),
4532 oid_to_hex(&merge_base->object.oid),
4533 oid_to_hex(&side1->object.oid),
4534 oid_to_hex(&side2->object.oid));
4535 result->clean = -1;
4536 return;
4538 trace2_region_leave("merge", "collect_merge_info", opt->repo);
4540 trace2_region_enter("merge", "renames", opt->repo);
4541 result->clean = detect_and_process_renames(opt, merge_base,
4542 side1, side2);
4543 trace2_region_leave("merge", "renames", opt->repo);
4544 if (opt->priv->renames.redo_after_renames == 2) {
4545 trace2_region_enter("merge", "reset_maps", opt->repo);
4546 clear_or_reinit_internal_opts(opt->priv, 1);
4547 trace2_region_leave("merge", "reset_maps", opt->repo);
4548 goto redo;
4551 trace2_region_enter("merge", "process_entries", opt->repo);
4552 process_entries(opt, &working_tree_oid);
4553 trace2_region_leave("merge", "process_entries", opt->repo);
4555 /* Set return values */
4556 result->tree = parse_tree_indirect(&working_tree_oid);
4557 /* existence of conflicted entries implies unclean */
4558 result->clean &= strmap_empty(&opt->priv->conflicted);
4559 if (!opt->priv->call_depth) {
4560 result->priv = opt->priv;
4561 result->_properly_initialized = RESULT_INITIALIZED;
4562 opt->priv = NULL;
4567 * Originally from merge_recursive_internal(); somewhat adapted, though.
4569 static void merge_ort_internal(struct merge_options *opt,
4570 struct commit_list *merge_bases,
4571 struct commit *h1,
4572 struct commit *h2,
4573 struct merge_result *result)
4575 struct commit_list *iter;
4576 struct commit *merged_merge_bases;
4577 const char *ancestor_name;
4578 struct strbuf merge_base_abbrev = STRBUF_INIT;
4580 if (!merge_bases) {
4581 merge_bases = get_merge_bases(h1, h2);
4582 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
4583 merge_bases = reverse_commit_list(merge_bases);
4586 merged_merge_bases = pop_commit(&merge_bases);
4587 if (merged_merge_bases == NULL) {
4588 /* if there is no common ancestor, use an empty tree */
4589 struct tree *tree;
4591 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
4592 merged_merge_bases = make_virtual_commit(opt->repo, tree,
4593 "ancestor");
4594 ancestor_name = "empty tree";
4595 } else if (merge_bases) {
4596 ancestor_name = "merged common ancestors";
4597 } else {
4598 strbuf_add_unique_abbrev(&merge_base_abbrev,
4599 &merged_merge_bases->object.oid,
4600 DEFAULT_ABBREV);
4601 ancestor_name = merge_base_abbrev.buf;
4604 for (iter = merge_bases; iter; iter = iter->next) {
4605 const char *saved_b1, *saved_b2;
4606 struct commit *prev = merged_merge_bases;
4608 opt->priv->call_depth++;
4610 * When the merge fails, the result contains files
4611 * with conflict markers. The cleanness flag is
4612 * ignored (unless indicating an error), it was never
4613 * actually used, as result of merge_trees has always
4614 * overwritten it: the committed "conflicts" were
4615 * already resolved.
4617 saved_b1 = opt->branch1;
4618 saved_b2 = opt->branch2;
4619 opt->branch1 = "Temporary merge branch 1";
4620 opt->branch2 = "Temporary merge branch 2";
4621 merge_ort_internal(opt, NULL, prev, iter->item, result);
4622 if (result->clean < 0)
4623 return;
4624 opt->branch1 = saved_b1;
4625 opt->branch2 = saved_b2;
4626 opt->priv->call_depth--;
4628 merged_merge_bases = make_virtual_commit(opt->repo,
4629 result->tree,
4630 "merged tree");
4631 commit_list_insert(prev, &merged_merge_bases->parents);
4632 commit_list_insert(iter->item,
4633 &merged_merge_bases->parents->next);
4635 clear_or_reinit_internal_opts(opt->priv, 1);
4638 opt->ancestor = ancestor_name;
4639 merge_ort_nonrecursive_internal(opt,
4640 repo_get_commit_tree(opt->repo,
4641 merged_merge_bases),
4642 repo_get_commit_tree(opt->repo, h1),
4643 repo_get_commit_tree(opt->repo, h2),
4644 result);
4645 strbuf_release(&merge_base_abbrev);
4646 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
4649 void merge_incore_nonrecursive(struct merge_options *opt,
4650 struct tree *merge_base,
4651 struct tree *side1,
4652 struct tree *side2,
4653 struct merge_result *result)
4655 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
4657 trace2_region_enter("merge", "merge_start", opt->repo);
4658 assert(opt->ancestor != NULL);
4659 merge_check_renames_reusable(opt, result, merge_base, side1, side2);
4660 merge_start(opt, result);
4662 * Record the trees used in this merge, so if there's a next merge in
4663 * a cherry-pick or rebase sequence it might be able to take advantage
4664 * of the cached_pairs in that next merge.
4666 opt->priv->renames.merge_trees[0] = merge_base;
4667 opt->priv->renames.merge_trees[1] = side1;
4668 opt->priv->renames.merge_trees[2] = side2;
4669 trace2_region_leave("merge", "merge_start", opt->repo);
4671 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
4672 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
4675 void merge_incore_recursive(struct merge_options *opt,
4676 struct commit_list *merge_bases,
4677 struct commit *side1,
4678 struct commit *side2,
4679 struct merge_result *result)
4681 trace2_region_enter("merge", "incore_recursive", opt->repo);
4683 /* We set the ancestor label based on the merge_bases */
4684 assert(opt->ancestor == NULL);
4686 trace2_region_enter("merge", "merge_start", opt->repo);
4687 merge_start(opt, result);
4688 trace2_region_leave("merge", "merge_start", opt->repo);
4690 merge_ort_internal(opt, merge_bases, side1, side2, result);
4691 trace2_region_leave("merge", "incore_recursive", opt->repo);