2 #include "split-index.h"
5 struct split_index
*init_split_index(struct index_state
*istate
)
7 if (!istate
->split_index
) {
8 istate
->split_index
= xcalloc(1, sizeof(*istate
->split_index
));
9 istate
->split_index
->refcount
= 1;
11 return istate
->split_index
;
14 int read_link_extension(struct index_state
*istate
,
15 const void *data_
, unsigned long sz
)
17 const unsigned char *data
= data_
;
18 struct split_index
*si
;
21 if (sz
< the_hash_algo
->rawsz
)
22 return error("corrupt link extension (too short)");
23 si
= init_split_index(istate
);
24 hashcpy(si
->base_oid
.hash
, data
);
25 data
+= the_hash_algo
->rawsz
;
26 sz
-= the_hash_algo
->rawsz
;
29 si
->delete_bitmap
= ewah_new();
30 ret
= ewah_read_mmap(si
->delete_bitmap
, data
, sz
);
32 return error("corrupt delete bitmap in link extension");
35 si
->replace_bitmap
= ewah_new();
36 ret
= ewah_read_mmap(si
->replace_bitmap
, data
, sz
);
38 return error("corrupt replace bitmap in link extension");
40 return error("garbage at the end of link extension");
44 int write_link_extension(struct strbuf
*sb
,
45 struct index_state
*istate
)
47 struct split_index
*si
= istate
->split_index
;
48 strbuf_add(sb
, si
->base_oid
.hash
, the_hash_algo
->rawsz
);
49 if (!si
->delete_bitmap
&& !si
->replace_bitmap
)
51 ewah_serialize_strbuf(si
->delete_bitmap
, sb
);
52 ewah_serialize_strbuf(si
->replace_bitmap
, sb
);
56 static void mark_base_index_entries(struct index_state
*base
)
60 * To keep track of the shared entries between
61 * istate->base->cache[] and istate->cache[], base entry
62 * position is stored in each base entry. All positions start
63 * from 1 instead of 0, which is reserved to say "this is a new
66 for (i
= 0; i
< base
->cache_nr
; i
++)
67 base
->cache
[i
]->index
= i
+ 1;
70 void move_cache_to_base_index(struct index_state
*istate
)
72 struct split_index
*si
= istate
->split_index
;
76 * If there was a previous base index, then transfer ownership of allocated
77 * entries to the parent index.
80 si
->base
->ce_mem_pool
) {
82 if (!istate
->ce_mem_pool
) {
83 istate
->ce_mem_pool
= xmalloc(sizeof(struct mem_pool
));
84 mem_pool_init(istate
->ce_mem_pool
, 0);
87 mem_pool_combine(istate
->ce_mem_pool
, istate
->split_index
->base
->ce_mem_pool
);
90 si
->base
= xcalloc(1, sizeof(*si
->base
));
91 si
->base
->version
= istate
->version
;
92 /* zero timestamp disables racy test in ce_write_index() */
93 si
->base
->timestamp
= istate
->timestamp
;
94 ALLOC_GROW(si
->base
->cache
, istate
->cache_nr
, si
->base
->cache_alloc
);
95 si
->base
->cache_nr
= istate
->cache_nr
;
98 * The mem_pool needs to move with the allocated entries.
100 si
->base
->ce_mem_pool
= istate
->ce_mem_pool
;
101 istate
->ce_mem_pool
= NULL
;
103 COPY_ARRAY(si
->base
->cache
, istate
->cache
, istate
->cache_nr
);
104 mark_base_index_entries(si
->base
);
105 for (i
= 0; i
< si
->base
->cache_nr
; i
++)
106 si
->base
->cache
[i
]->ce_flags
&= ~CE_UPDATE_IN_BASE
;
109 static void mark_entry_for_delete(size_t pos
, void *data
)
111 struct index_state
*istate
= data
;
112 if (pos
>= istate
->cache_nr
)
113 die("position for delete %d exceeds base index size %d",
114 (int)pos
, istate
->cache_nr
);
115 istate
->cache
[pos
]->ce_flags
|= CE_REMOVE
;
116 istate
->split_index
->nr_deletions
++;
119 static void replace_entry(size_t pos
, void *data
)
121 struct index_state
*istate
= data
;
122 struct split_index
*si
= istate
->split_index
;
123 struct cache_entry
*dst
, *src
;
125 if (pos
>= istate
->cache_nr
)
126 die("position for replacement %d exceeds base index size %d",
127 (int)pos
, istate
->cache_nr
);
128 if (si
->nr_replacements
>= si
->saved_cache_nr
)
129 die("too many replacements (%d vs %d)",
130 si
->nr_replacements
, si
->saved_cache_nr
);
131 dst
= istate
->cache
[pos
];
132 if (dst
->ce_flags
& CE_REMOVE
)
133 die("entry %d is marked as both replaced and deleted",
135 src
= si
->saved_cache
[si
->nr_replacements
];
137 die("corrupt link extension, entry %d should have "
138 "zero length name", (int)pos
);
139 src
->index
= pos
+ 1;
140 src
->ce_flags
|= CE_UPDATE_IN_BASE
;
141 src
->ce_namelen
= dst
->ce_namelen
;
142 copy_cache_entry(dst
, src
);
143 discard_cache_entry(src
);
144 si
->nr_replacements
++;
147 void merge_base_index(struct index_state
*istate
)
149 struct split_index
*si
= istate
->split_index
;
152 mark_base_index_entries(si
->base
);
154 si
->saved_cache
= istate
->cache
;
155 si
->saved_cache_nr
= istate
->cache_nr
;
156 istate
->cache_nr
= si
->base
->cache_nr
;
157 istate
->cache
= NULL
;
158 istate
->cache_alloc
= 0;
159 ALLOC_GROW(istate
->cache
, istate
->cache_nr
, istate
->cache_alloc
);
160 COPY_ARRAY(istate
->cache
, si
->base
->cache
, istate
->cache_nr
);
162 si
->nr_deletions
= 0;
163 si
->nr_replacements
= 0;
164 ewah_each_bit(si
->replace_bitmap
, replace_entry
, istate
);
165 ewah_each_bit(si
->delete_bitmap
, mark_entry_for_delete
, istate
);
166 if (si
->nr_deletions
)
167 remove_marked_cache_entries(istate
, 0);
169 for (i
= si
->nr_replacements
; i
< si
->saved_cache_nr
; i
++) {
170 if (!ce_namelen(si
->saved_cache
[i
]))
171 die("corrupt link extension, entry %d should "
172 "have non-zero length name", i
);
173 add_index_entry(istate
, si
->saved_cache
[i
],
174 ADD_CACHE_OK_TO_ADD
|
175 ADD_CACHE_KEEP_CACHE_TREE
|
177 * we may have to replay what
178 * merge-recursive.c:update_stages()
179 * does, which has this flag on
181 ADD_CACHE_SKIP_DFCHECK
);
182 si
->saved_cache
[i
] = NULL
;
185 ewah_free(si
->delete_bitmap
);
186 ewah_free(si
->replace_bitmap
);
187 FREE_AND_NULL(si
->saved_cache
);
188 si
->delete_bitmap
= NULL
;
189 si
->replace_bitmap
= NULL
;
190 si
->saved_cache_nr
= 0;
194 * Compare most of the fields in two cache entries, i.e. all except the
195 * hashmap_entry and the name.
197 static int compare_ce_content(struct cache_entry
*a
, struct cache_entry
*b
)
199 const unsigned int ondisk_flags
= CE_STAGEMASK
| CE_VALID
|
201 unsigned int ce_flags
= a
->ce_flags
;
202 unsigned int base_flags
= b
->ce_flags
;
205 /* only on-disk flags matter */
206 a
->ce_flags
&= ondisk_flags
;
207 b
->ce_flags
&= ondisk_flags
;
208 ret
= memcmp(&a
->ce_stat_data
, &b
->ce_stat_data
,
209 offsetof(struct cache_entry
, name
) -
210 offsetof(struct cache_entry
, ce_stat_data
));
211 a
->ce_flags
= ce_flags
;
212 b
->ce_flags
= base_flags
;
217 void prepare_to_write_split_index(struct index_state
*istate
)
219 struct split_index
*si
= init_split_index(istate
);
220 struct cache_entry
**entries
= NULL
, *ce
;
221 int i
, nr_entries
= 0, nr_alloc
= 0;
223 si
->delete_bitmap
= ewah_new();
224 si
->replace_bitmap
= ewah_new();
227 /* Go through istate->cache[] and mark CE_MATCHED to
228 * entry with positive index. We'll go through
229 * base->cache[] later to delete all entries in base
230 * that are not marked with either CE_MATCHED or
231 * CE_UPDATE_IN_BASE. If istate->cache[i] is a
232 * duplicate, deduplicate it.
234 for (i
= 0; i
< istate
->cache_nr
; i
++) {
235 struct cache_entry
*base
;
236 ce
= istate
->cache
[i
];
239 * During simple update index operations this
240 * is a cache entry that is not present in
241 * the shared index. It will be added to the
244 * However, it might also represent a file
245 * that already has a cache entry in the
246 * shared index, but a new index has just
247 * been constructed by unpack_trees(), and
248 * this entry now refers to different content
249 * than what was recorded in the original
250 * index, e.g. during 'read-tree -m HEAD^' or
251 * 'checkout HEAD^'. In this case the
252 * original entry in the shared index will be
253 * marked as deleted, and this entry will be
254 * added to the split index.
258 if (ce
->index
> si
->base
->cache_nr
) {
259 BUG("ce refers to a shared ce at %d, which is beyond the shared index size %d",
260 ce
->index
, si
->base
->cache_nr
);
262 ce
->ce_flags
|= CE_MATCHED
; /* or "shared" */
263 base
= si
->base
->cache
[ce
->index
- 1];
265 /* The entry is present in the shared index. */
266 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
268 * Already marked for inclusion in
269 * the split index, either because
270 * the corresponding file was
271 * modified and the cached stat data
272 * was refreshed, or because there
273 * is already a replacement entry in
275 * Nothing more to do here.
277 } else if (!ce_uptodate(ce
) &&
278 is_racy_timestamp(istate
, ce
)) {
280 * A racily clean cache entry stored
281 * only in the shared index: it must
282 * be added to the split index, so
283 * the subsequent do_write_index()
284 * can smudge its stat data.
286 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
289 * The entry is only present in the
290 * shared index and it was not
292 * Just leave it there.
297 if (ce
->ce_namelen
!= base
->ce_namelen
||
298 strcmp(ce
->name
, base
->name
)) {
303 * This is the copy of a cache entry that is present
304 * in the shared index, created by unpack_trees()
305 * while it constructed a new index.
307 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
309 * Already marked for inclusion in the split
310 * index, either because the corresponding
311 * file was modified and the cached stat data
312 * was refreshed, or because the original
313 * entry already had a replacement entry in
317 } else if (!ce_uptodate(ce
) &&
318 is_racy_timestamp(istate
, ce
)) {
320 * A copy of a racily clean cache entry from
321 * the shared index. It must be added to
322 * the split index, so the subsequent
323 * do_write_index() can smudge its stat data.
325 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
328 * Thoroughly compare the cached data to see
329 * whether it should be marked for inclusion
330 * in the split index.
332 * This comparison might be unnecessary, as
333 * code paths modifying the cached data do
334 * set CE_UPDATE_IN_BASE as well.
336 if (compare_ce_content(ce
, base
))
337 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
339 discard_cache_entry(base
);
340 si
->base
->cache
[ce
->index
- 1] = ce
;
342 for (i
= 0; i
< si
->base
->cache_nr
; i
++) {
343 ce
= si
->base
->cache
[i
];
344 if ((ce
->ce_flags
& CE_REMOVE
) ||
345 !(ce
->ce_flags
& CE_MATCHED
))
346 ewah_set(si
->delete_bitmap
, i
);
347 else if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
348 ewah_set(si
->replace_bitmap
, i
);
349 ce
->ce_flags
|= CE_STRIP_NAME
;
350 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
351 entries
[nr_entries
++] = ce
;
353 if (is_null_oid(&ce
->oid
))
354 istate
->drop_cache_tree
= 1;
358 for (i
= 0; i
< istate
->cache_nr
; i
++) {
359 ce
= istate
->cache
[i
];
360 if ((!si
->base
|| !ce
->index
) && !(ce
->ce_flags
& CE_REMOVE
)) {
361 assert(!(ce
->ce_flags
& CE_STRIP_NAME
));
362 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
363 entries
[nr_entries
++] = ce
;
365 ce
->ce_flags
&= ~CE_MATCHED
;
369 * take cache[] out temporarily, put entries[] in its place
372 si
->saved_cache
= istate
->cache
;
373 si
->saved_cache_nr
= istate
->cache_nr
;
374 istate
->cache
= entries
;
375 istate
->cache_nr
= nr_entries
;
378 void finish_writing_split_index(struct index_state
*istate
)
380 struct split_index
*si
= init_split_index(istate
);
382 ewah_free(si
->delete_bitmap
);
383 ewah_free(si
->replace_bitmap
);
384 si
->delete_bitmap
= NULL
;
385 si
->replace_bitmap
= NULL
;
387 istate
->cache
= si
->saved_cache
;
388 istate
->cache_nr
= si
->saved_cache_nr
;
391 void discard_split_index(struct index_state
*istate
)
393 struct split_index
*si
= istate
->split_index
;
396 istate
->split_index
= NULL
;
401 discard_index(si
->base
);
407 void save_or_free_index_entry(struct index_state
*istate
, struct cache_entry
*ce
)
410 istate
->split_index
&&
411 istate
->split_index
->base
&&
412 ce
->index
<= istate
->split_index
->base
->cache_nr
&&
413 ce
== istate
->split_index
->base
->cache
[ce
->index
- 1])
414 ce
->ce_flags
|= CE_REMOVE
;
416 discard_cache_entry(ce
);
419 void replace_index_entry_in_base(struct index_state
*istate
,
420 struct cache_entry
*old_entry
,
421 struct cache_entry
*new_entry
)
423 if (old_entry
->index
&&
424 istate
->split_index
&&
425 istate
->split_index
->base
&&
426 old_entry
->index
<= istate
->split_index
->base
->cache_nr
) {
427 new_entry
->index
= old_entry
->index
;
428 if (old_entry
!= istate
->split_index
->base
->cache
[new_entry
->index
- 1])
429 discard_cache_entry(istate
->split_index
->base
->cache
[new_entry
->index
- 1]);
430 istate
->split_index
->base
->cache
[new_entry
->index
- 1] = new_entry
;
434 void add_split_index(struct index_state
*istate
)
436 if (!istate
->split_index
) {
437 init_split_index(istate
);
438 istate
->cache_changed
|= SPLIT_INDEX_ORDERED
;
442 void remove_split_index(struct index_state
*istate
)
444 if (istate
->split_index
) {
445 if (istate
->split_index
->base
) {
447 * When removing the split index, we need to move
448 * ownership of the mem_pool associated with the
449 * base index to the main index. There may be cache entries
450 * allocated from the base's memory pool that are shared with
453 mem_pool_combine(istate
->ce_mem_pool
,
454 istate
->split_index
->base
->ce_mem_pool
);
457 * The split index no longer owns the mem_pool backing
458 * its cache array. As we are discarding this index,
459 * mark the index as having no cache entries, so it
460 * will not attempt to clean up the cache entries or
463 istate
->split_index
->base
->cache_nr
= 0;
467 * We can discard the split index because its
468 * memory pool has been incorporated into the
469 * memory pool associated with the the_index.
471 discard_split_index(istate
);
473 istate
->cache_changed
|= SOMETHING_CHANGED
;