treewide: replace cache.h with more direct headers, where possible
[git.git] / notes.c
blobc9e4b8b4a55b639ce7faa52093ebe9293dcae09c
1 #include "cache.h"
2 #include "config.h"
3 #include "hex.h"
4 #include "notes.h"
5 #include "object-store.h"
6 #include "blob.h"
7 #include "tree.h"
8 #include "utf8.h"
9 #include "strbuf.h"
10 #include "tree-walk.h"
11 #include "string-list.h"
12 #include "refs.h"
15 * Use a non-balancing simple 16-tree structure with struct int_node as
16 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
17 * 16-array of pointers to its children.
18 * The bottom 2 bits of each pointer is used to identify the pointer type
19 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
20 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
21 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
22 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
24 * The root node is a statically allocated struct int_node.
26 struct int_node {
27 void *a[16];
31 * Leaf nodes come in two variants, note entries and subtree entries,
32 * distinguished by the LSb of the leaf node pointer (see above).
33 * As a note entry, the key is the SHA1 of the referenced object, and the
34 * value is the SHA1 of the note object.
35 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
36 * referenced object, using the last byte of the key to store the length of
37 * the prefix. The value is the SHA1 of the tree object containing the notes
38 * subtree.
40 struct leaf_node {
41 struct object_id key_oid;
42 struct object_id val_oid;
46 * A notes tree may contain entries that are not notes, and that do not follow
47 * the naming conventions of notes. There are typically none/few of these, but
48 * we still need to keep track of them. Keep a simple linked list sorted alpha-
49 * betically on the non-note path. The list is populated when parsing tree
50 * objects in load_subtree(), and the non-notes are correctly written back into
51 * the tree objects produced by write_notes_tree().
53 struct non_note {
54 struct non_note *next; /* grounded (last->next == NULL) */
55 char *path;
56 unsigned int mode;
57 struct object_id oid;
60 #define PTR_TYPE_NULL 0
61 #define PTR_TYPE_INTERNAL 1
62 #define PTR_TYPE_NOTE 2
63 #define PTR_TYPE_SUBTREE 3
65 #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
66 #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
67 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
69 #define GET_NIBBLE(n, sha1) ((((sha1)[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
71 #define KEY_INDEX (the_hash_algo->rawsz - 1)
72 #define FANOUT_PATH_SEPARATORS (the_hash_algo->rawsz - 1)
73 #define FANOUT_PATH_SEPARATORS_MAX ((GIT_MAX_HEXSZ / 2) - 1)
74 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
75 (memcmp(key_sha1, subtree_sha1, subtree_sha1[KEY_INDEX]))
77 struct notes_tree default_notes_tree;
79 static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
80 static struct notes_tree **display_notes_trees;
82 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
83 struct int_node *node, unsigned int n);
86 * Search the tree until the appropriate location for the given key is found:
87 * 1. Start at the root node, with n = 0
88 * 2. If a[0] at the current level is a matching subtree entry, unpack that
89 * subtree entry and remove it; restart search at the current level.
90 * 3. Use the nth nibble of the key as an index into a:
91 * - If a[n] is an int_node, recurse from #2 into that node and increment n
92 * - If a matching subtree entry, unpack that subtree entry (and remove it);
93 * restart search at the current level.
94 * - Otherwise, we have found one of the following:
95 * - a subtree entry which does not match the key
96 * - a note entry which may or may not match the key
97 * - an unused leaf node (NULL)
98 * In any case, set *tree and *n, and return pointer to the tree location.
100 static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
101 unsigned char *n, const unsigned char *key_sha1)
103 struct leaf_node *l;
104 unsigned char i;
105 void *p = (*tree)->a[0];
107 if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
108 l = (struct leaf_node *) CLR_PTR_TYPE(p);
109 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
110 /* unpack tree and resume search */
111 (*tree)->a[0] = NULL;
112 load_subtree(t, l, *tree, *n);
113 free(l);
114 return note_tree_search(t, tree, n, key_sha1);
118 i = GET_NIBBLE(*n, key_sha1);
119 p = (*tree)->a[i];
120 switch (GET_PTR_TYPE(p)) {
121 case PTR_TYPE_INTERNAL:
122 *tree = CLR_PTR_TYPE(p);
123 (*n)++;
124 return note_tree_search(t, tree, n, key_sha1);
125 case PTR_TYPE_SUBTREE:
126 l = (struct leaf_node *) CLR_PTR_TYPE(p);
127 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
128 /* unpack tree and resume search */
129 (*tree)->a[i] = NULL;
130 load_subtree(t, l, *tree, *n);
131 free(l);
132 return note_tree_search(t, tree, n, key_sha1);
134 /* fall through */
135 default:
136 return &((*tree)->a[i]);
141 * To find a leaf_node:
142 * Search to the tree location appropriate for the given key:
143 * If a note entry with matching key, return the note entry, else return NULL.
145 static struct leaf_node *note_tree_find(struct notes_tree *t,
146 struct int_node *tree, unsigned char n,
147 const unsigned char *key_sha1)
149 void **p = note_tree_search(t, &tree, &n, key_sha1);
150 if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
151 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
152 if (hasheq(key_sha1, l->key_oid.hash))
153 return l;
155 return NULL;
159 * How to consolidate an int_node:
160 * If there are > 1 non-NULL entries, give up and return non-zero.
161 * Otherwise replace the int_node at the given index in the given parent node
162 * with the only NOTE entry (or a NULL entry if no entries) from the given
163 * tree, and return 0.
165 static int note_tree_consolidate(struct int_node *tree,
166 struct int_node *parent, unsigned char index)
168 unsigned int i;
169 void *p = NULL;
171 assert(tree && parent);
172 assert(CLR_PTR_TYPE(parent->a[index]) == tree);
174 for (i = 0; i < 16; i++) {
175 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
176 if (p) /* more than one entry */
177 return -2;
178 p = tree->a[i];
182 if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
183 return -2;
184 /* replace tree with p in parent[index] */
185 parent->a[index] = p;
186 free(tree);
187 return 0;
191 * To remove a leaf_node:
192 * Search to the tree location appropriate for the given leaf_node's key:
193 * - If location does not hold a matching entry, abort and do nothing.
194 * - Copy the matching entry's value into the given entry.
195 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
196 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
198 static void note_tree_remove(struct notes_tree *t,
199 struct int_node *tree, unsigned char n,
200 struct leaf_node *entry)
202 struct leaf_node *l;
203 struct int_node *parent_stack[GIT_MAX_RAWSZ];
204 unsigned char i, j;
205 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
207 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
208 if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
209 return; /* type mismatch, nothing to remove */
210 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
211 if (!oideq(&l->key_oid, &entry->key_oid))
212 return; /* key mismatch, nothing to remove */
214 /* we have found a matching entry */
215 oidcpy(&entry->val_oid, &l->val_oid);
216 free(l);
217 *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
219 /* consolidate this tree level, and parent levels, if possible */
220 if (!n)
221 return; /* cannot consolidate top level */
222 /* first, build stack of ancestors between root and current node */
223 parent_stack[0] = t->root;
224 for (i = 0; i < n; i++) {
225 j = GET_NIBBLE(i, entry->key_oid.hash);
226 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
228 assert(i == n && parent_stack[i] == tree);
229 /* next, unwind stack until note_tree_consolidate() is done */
230 while (i > 0 &&
231 !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
232 GET_NIBBLE(i - 1, entry->key_oid.hash)))
233 i--;
237 * To insert a leaf_node:
238 * Search to the tree location appropriate for the given leaf_node's key:
239 * - If location is unused (NULL), store the tweaked pointer directly there
240 * - If location holds a note entry that matches the note-to-be-inserted, then
241 * combine the two notes (by calling the given combine_notes function).
242 * - If location holds a note entry that matches the subtree-to-be-inserted,
243 * then unpack the subtree-to-be-inserted into the location.
244 * - If location holds a matching subtree entry, unpack the subtree at that
245 * location, and restart the insert operation from that level.
246 * - Else, create a new int_node, holding both the node-at-location and the
247 * node-to-be-inserted, and store the new int_node into the location.
249 static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
250 unsigned char n, struct leaf_node *entry, unsigned char type,
251 combine_notes_fn combine_notes)
253 struct int_node *new_node;
254 struct leaf_node *l;
255 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
256 int ret = 0;
258 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
259 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
260 switch (GET_PTR_TYPE(*p)) {
261 case PTR_TYPE_NULL:
262 assert(!*p);
263 if (is_null_oid(&entry->val_oid))
264 free(entry);
265 else
266 *p = SET_PTR_TYPE(entry, type);
267 return 0;
268 case PTR_TYPE_NOTE:
269 switch (type) {
270 case PTR_TYPE_NOTE:
271 if (oideq(&l->key_oid, &entry->key_oid)) {
272 /* skip concatenation if l == entry */
273 if (oideq(&l->val_oid, &entry->val_oid)) {
274 free(entry);
275 return 0;
278 ret = combine_notes(&l->val_oid,
279 &entry->val_oid);
280 if (!ret && is_null_oid(&l->val_oid))
281 note_tree_remove(t, tree, n, entry);
282 free(entry);
283 return ret;
285 break;
286 case PTR_TYPE_SUBTREE:
287 if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash,
288 entry->key_oid.hash)) {
289 /* unpack 'entry' */
290 load_subtree(t, entry, tree, n);
291 free(entry);
292 return 0;
294 break;
296 break;
297 case PTR_TYPE_SUBTREE:
298 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) {
299 /* unpack 'l' and restart insert */
300 *p = NULL;
301 load_subtree(t, l, tree, n);
302 free(l);
303 return note_tree_insert(t, tree, n, entry, type,
304 combine_notes);
306 break;
309 /* non-matching leaf_node */
310 assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
311 GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
312 if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */
313 free(entry);
314 return 0;
316 new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
317 ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
318 combine_notes);
319 if (ret)
320 return ret;
321 *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
322 return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
325 /* Free the entire notes data contained in the given tree */
326 static void note_tree_free(struct int_node *tree)
328 unsigned int i;
329 for (i = 0; i < 16; i++) {
330 void *p = tree->a[i];
331 switch (GET_PTR_TYPE(p)) {
332 case PTR_TYPE_INTERNAL:
333 note_tree_free(CLR_PTR_TYPE(p));
334 /* fall through */
335 case PTR_TYPE_NOTE:
336 case PTR_TYPE_SUBTREE:
337 free(CLR_PTR_TYPE(p));
342 static int non_note_cmp(const struct non_note *a, const struct non_note *b)
344 return strcmp(a->path, b->path);
347 /* note: takes ownership of path string */
348 static void add_non_note(struct notes_tree *t, char *path,
349 unsigned int mode, const unsigned char *sha1)
351 struct non_note *p = t->prev_non_note, *n;
352 n = (struct non_note *) xmalloc(sizeof(struct non_note));
353 n->next = NULL;
354 n->path = path;
355 n->mode = mode;
356 oidread(&n->oid, sha1);
357 t->prev_non_note = n;
359 if (!t->first_non_note) {
360 t->first_non_note = n;
361 return;
364 if (non_note_cmp(p, n) < 0)
365 ; /* do nothing */
366 else if (non_note_cmp(t->first_non_note, n) <= 0)
367 p = t->first_non_note;
368 else {
369 /* n sorts before t->first_non_note */
370 n->next = t->first_non_note;
371 t->first_non_note = n;
372 return;
375 /* n sorts equal or after p */
376 while (p->next && non_note_cmp(p->next, n) <= 0)
377 p = p->next;
379 if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
380 assert(strcmp(p->path, n->path) == 0);
381 p->mode = n->mode;
382 oidcpy(&p->oid, &n->oid);
383 free(n);
384 t->prev_non_note = p;
385 return;
388 /* n sorts between p and p->next */
389 n->next = p->next;
390 p->next = n;
393 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
394 struct int_node *node, unsigned int n)
396 struct object_id object_oid;
397 size_t prefix_len;
398 void *buf;
399 struct tree_desc desc;
400 struct name_entry entry;
401 const unsigned hashsz = the_hash_algo->rawsz;
403 buf = fill_tree_descriptor(the_repository, &desc, &subtree->val_oid);
404 if (!buf)
405 die("Could not read %s for notes-index",
406 oid_to_hex(&subtree->val_oid));
408 prefix_len = subtree->key_oid.hash[KEY_INDEX];
409 if (prefix_len >= hashsz)
410 BUG("prefix_len (%"PRIuMAX") is out of range", (uintmax_t)prefix_len);
411 if (prefix_len * 2 < n)
412 BUG("prefix_len (%"PRIuMAX") is too small", (uintmax_t)prefix_len);
413 memcpy(object_oid.hash, subtree->key_oid.hash, prefix_len);
414 while (tree_entry(&desc, &entry)) {
415 unsigned char type;
416 struct leaf_node *l;
417 size_t path_len = strlen(entry.path);
419 if (path_len == 2 * (hashsz - prefix_len)) {
420 /* This is potentially the remainder of the SHA-1 */
422 if (!S_ISREG(entry.mode))
423 /* notes must be blobs */
424 goto handle_non_note;
426 if (hex_to_bytes(object_oid.hash + prefix_len, entry.path,
427 hashsz - prefix_len))
428 goto handle_non_note; /* entry.path is not a SHA1 */
430 type = PTR_TYPE_NOTE;
431 } else if (path_len == 2) {
432 /* This is potentially an internal node */
433 size_t len = prefix_len;
435 if (!S_ISDIR(entry.mode))
436 /* internal nodes must be trees */
437 goto handle_non_note;
439 if (hex_to_bytes(object_oid.hash + len++, entry.path, 1))
440 goto handle_non_note; /* entry.path is not a SHA1 */
443 * Pad the rest of the SHA-1 with zeros,
444 * except for the last byte, where we write
445 * the length:
447 memset(object_oid.hash + len, 0, hashsz - len - 1);
448 object_oid.hash[KEY_INDEX] = (unsigned char)len;
450 type = PTR_TYPE_SUBTREE;
451 } else {
452 /* This can't be part of a note */
453 goto handle_non_note;
456 CALLOC_ARRAY(l, 1);
457 oidcpy(&l->key_oid, &object_oid);
458 oidcpy(&l->val_oid, &entry.oid);
459 oid_set_algo(&l->key_oid, the_hash_algo);
460 oid_set_algo(&l->val_oid, the_hash_algo);
461 if (note_tree_insert(t, node, n, l, type,
462 combine_notes_concatenate))
463 die("Failed to load %s %s into notes tree "
464 "from %s",
465 type == PTR_TYPE_NOTE ? "note" : "subtree",
466 oid_to_hex(&object_oid), t->ref);
468 continue;
470 handle_non_note:
472 * Determine full path for this non-note entry. The
473 * filename is already found in entry.path, but the
474 * directory part of the path must be deduced from the
475 * subtree containing this entry based on our
476 * knowledge that the overall notes tree follows a
477 * strict byte-based progressive fanout structure
478 * (i.e. using 2/38, 2/2/36, etc. fanouts).
481 struct strbuf non_note_path = STRBUF_INIT;
482 const char *q = oid_to_hex(&subtree->key_oid);
483 size_t i;
484 for (i = 0; i < prefix_len; i++) {
485 strbuf_addch(&non_note_path, *q++);
486 strbuf_addch(&non_note_path, *q++);
487 strbuf_addch(&non_note_path, '/');
489 strbuf_addstr(&non_note_path, entry.path);
490 oid_set_algo(&entry.oid, the_hash_algo);
491 add_non_note(t, strbuf_detach(&non_note_path, NULL),
492 entry.mode, entry.oid.hash);
495 free(buf);
499 * Determine optimal on-disk fanout for this part of the notes tree
501 * Given a (sub)tree and the level in the internal tree structure, determine
502 * whether or not the given existing fanout should be expanded for this
503 * (sub)tree.
505 * Values of the 'fanout' variable:
506 * - 0: No fanout (all notes are stored directly in the root notes tree)
507 * - 1: 2/38 fanout
508 * - 2: 2/2/36 fanout
509 * - 3: 2/2/2/34 fanout
510 * etc.
512 static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
513 unsigned char fanout)
516 * The following is a simple heuristic that works well in practice:
517 * For each even-numbered 16-tree level (remember that each on-disk
518 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
519 * entries at that tree level. If all of them are either int_nodes or
520 * subtree entries, then there are likely plenty of notes below this
521 * level, so we return an incremented fanout.
523 unsigned int i;
524 if ((n % 2) || (n > 2 * fanout))
525 return fanout;
526 for (i = 0; i < 16; i++) {
527 switch (GET_PTR_TYPE(tree->a[i])) {
528 case PTR_TYPE_SUBTREE:
529 case PTR_TYPE_INTERNAL:
530 continue;
531 default:
532 return fanout;
535 return fanout + 1;
538 /* hex oid + '/' between each pair of hex digits + NUL */
539 #define FANOUT_PATH_MAX GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS_MAX + 1
541 static void construct_path_with_fanout(const unsigned char *hash,
542 unsigned char fanout, char *path)
544 unsigned int i = 0, j = 0;
545 const char *hex_hash = hash_to_hex(hash);
546 assert(fanout < the_hash_algo->rawsz);
547 while (fanout) {
548 path[i++] = hex_hash[j++];
549 path[i++] = hex_hash[j++];
550 path[i++] = '/';
551 fanout--;
553 xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_hash + j);
556 static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
557 unsigned char n, unsigned char fanout, int flags,
558 each_note_fn fn, void *cb_data)
560 unsigned int i;
561 void *p;
562 int ret = 0;
563 struct leaf_node *l;
564 static char path[FANOUT_PATH_MAX];
566 fanout = determine_fanout(tree, n, fanout);
567 for (i = 0; i < 16; i++) {
568 redo:
569 p = tree->a[i];
570 switch (GET_PTR_TYPE(p)) {
571 case PTR_TYPE_INTERNAL:
572 /* recurse into int_node */
573 ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
574 fanout, flags, fn, cb_data);
575 break;
576 case PTR_TYPE_SUBTREE:
577 l = (struct leaf_node *) CLR_PTR_TYPE(p);
579 * Subtree entries in the note tree represent parts of
580 * the note tree that have not yet been explored. There
581 * is a direct relationship between subtree entries at
582 * level 'n' in the tree, and the 'fanout' variable:
583 * Subtree entries at level 'n < 2 * fanout' should be
584 * preserved, since they correspond exactly to a fanout
585 * directory in the on-disk structure. However, subtree
586 * entries at level 'n >= 2 * fanout' should NOT be
587 * preserved, but rather consolidated into the above
588 * notes tree level. We achieve this by unconditionally
589 * unpacking subtree entries that exist below the
590 * threshold level at 'n = 2 * fanout'.
592 if (n < 2 * fanout &&
593 flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
594 /* invoke callback with subtree */
595 unsigned int path_len =
596 l->key_oid.hash[KEY_INDEX] * 2 + fanout;
597 assert(path_len < FANOUT_PATH_MAX - 1);
598 construct_path_with_fanout(l->key_oid.hash,
599 fanout,
600 path);
601 /* Create trailing slash, if needed */
602 if (path[path_len - 1] != '/')
603 path[path_len++] = '/';
604 path[path_len] = '\0';
605 ret = fn(&l->key_oid, &l->val_oid,
606 path,
607 cb_data);
609 if (n >= 2 * fanout ||
610 !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
611 /* unpack subtree and resume traversal */
612 tree->a[i] = NULL;
613 load_subtree(t, l, tree, n);
614 free(l);
615 goto redo;
617 break;
618 case PTR_TYPE_NOTE:
619 l = (struct leaf_node *) CLR_PTR_TYPE(p);
620 construct_path_with_fanout(l->key_oid.hash, fanout,
621 path);
622 ret = fn(&l->key_oid, &l->val_oid, path,
623 cb_data);
624 break;
626 if (ret)
627 return ret;
629 return 0;
632 struct tree_write_stack {
633 struct tree_write_stack *next;
634 struct strbuf buf;
635 char path[2]; /* path to subtree in next, if any */
638 static inline int matches_tree_write_stack(struct tree_write_stack *tws,
639 const char *full_path)
641 return full_path[0] == tws->path[0] &&
642 full_path[1] == tws->path[1] &&
643 full_path[2] == '/';
646 static void write_tree_entry(struct strbuf *buf, unsigned int mode,
647 const char *path, unsigned int path_len, const
648 unsigned char *hash)
650 strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
651 strbuf_add(buf, hash, the_hash_algo->rawsz);
654 static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
655 const char *path)
657 struct tree_write_stack *n;
658 assert(!tws->next);
659 assert(tws->path[0] == '\0' && tws->path[1] == '\0');
660 n = (struct tree_write_stack *)
661 xmalloc(sizeof(struct tree_write_stack));
662 n->next = NULL;
663 strbuf_init(&n->buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries per tree */
664 n->path[0] = n->path[1] = '\0';
665 tws->next = n;
666 tws->path[0] = path[0];
667 tws->path[1] = path[1];
670 static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
672 int ret;
673 struct tree_write_stack *n = tws->next;
674 struct object_id s;
675 if (n) {
676 ret = tree_write_stack_finish_subtree(n);
677 if (ret)
678 return ret;
679 ret = write_object_file(n->buf.buf, n->buf.len, OBJ_TREE, &s);
680 if (ret)
681 return ret;
682 strbuf_release(&n->buf);
683 free(n);
684 tws->next = NULL;
685 write_tree_entry(&tws->buf, 040000, tws->path, 2, s.hash);
686 tws->path[0] = tws->path[1] = '\0';
688 return 0;
691 static int write_each_note_helper(struct tree_write_stack *tws,
692 const char *path, unsigned int mode,
693 const struct object_id *oid)
695 size_t path_len = strlen(path);
696 unsigned int n = 0;
697 int ret;
699 /* Determine common part of tree write stack */
700 while (tws && 3 * n < path_len &&
701 matches_tree_write_stack(tws, path + 3 * n)) {
702 n++;
703 tws = tws->next;
706 /* tws point to last matching tree_write_stack entry */
707 ret = tree_write_stack_finish_subtree(tws);
708 if (ret)
709 return ret;
711 /* Start subtrees needed to satisfy path */
712 while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
713 tree_write_stack_init_subtree(tws, path + 3 * n);
714 n++;
715 tws = tws->next;
718 /* There should be no more directory components in the given path */
719 assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
721 /* Finally add given entry to the current tree object */
722 write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
723 oid->hash);
725 return 0;
728 struct write_each_note_data {
729 struct tree_write_stack *root;
730 struct non_note **nn_list;
731 struct non_note *nn_prev;
734 static int write_each_non_note_until(const char *note_path,
735 struct write_each_note_data *d)
737 struct non_note *p = d->nn_prev;
738 struct non_note *n = p ? p->next : *d->nn_list;
739 int cmp = 0, ret;
740 while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
741 if (note_path && cmp == 0)
742 ; /* do nothing, prefer note to non-note */
743 else {
744 ret = write_each_note_helper(d->root, n->path, n->mode,
745 &n->oid);
746 if (ret)
747 return ret;
749 p = n;
750 n = n->next;
752 d->nn_prev = p;
753 return 0;
756 static int write_each_note(const struct object_id *object_oid,
757 const struct object_id *note_oid, char *note_path,
758 void *cb_data)
760 struct write_each_note_data *d =
761 (struct write_each_note_data *) cb_data;
762 size_t note_path_len = strlen(note_path);
763 unsigned int mode = 0100644;
765 if (note_path[note_path_len - 1] == '/') {
766 /* subtree entry */
767 note_path_len--;
768 note_path[note_path_len] = '\0';
769 mode = 040000;
771 assert(note_path_len <= GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS);
773 /* Weave non-note entries into note entries */
774 return write_each_non_note_until(note_path, d) ||
775 write_each_note_helper(d->root, note_path, mode, note_oid);
778 struct note_delete_list {
779 struct note_delete_list *next;
780 const unsigned char *sha1;
783 static int prune_notes_helper(const struct object_id *object_oid,
784 const struct object_id *note_oid, char *note_path,
785 void *cb_data)
787 struct note_delete_list **l = (struct note_delete_list **) cb_data;
788 struct note_delete_list *n;
790 if (has_object_file(object_oid))
791 return 0; /* nothing to do for this note */
793 /* failed to find object => prune this note */
794 n = (struct note_delete_list *) xmalloc(sizeof(*n));
795 n->next = *l;
796 n->sha1 = object_oid->hash;
797 *l = n;
798 return 0;
801 int combine_notes_concatenate(struct object_id *cur_oid,
802 const struct object_id *new_oid)
804 char *cur_msg = NULL, *new_msg = NULL, *buf;
805 unsigned long cur_len, new_len, buf_len;
806 enum object_type cur_type, new_type;
807 int ret;
809 /* read in both note blob objects */
810 if (!is_null_oid(new_oid))
811 new_msg = read_object_file(new_oid, &new_type, &new_len);
812 if (!new_msg || !new_len || new_type != OBJ_BLOB) {
813 free(new_msg);
814 return 0;
816 if (!is_null_oid(cur_oid))
817 cur_msg = read_object_file(cur_oid, &cur_type, &cur_len);
818 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
819 free(cur_msg);
820 free(new_msg);
821 oidcpy(cur_oid, new_oid);
822 return 0;
825 /* we will separate the notes by two newlines anyway */
826 if (cur_msg[cur_len - 1] == '\n')
827 cur_len--;
829 /* concatenate cur_msg and new_msg into buf */
830 buf_len = cur_len + 2 + new_len;
831 buf = (char *) xmalloc(buf_len);
832 memcpy(buf, cur_msg, cur_len);
833 buf[cur_len] = '\n';
834 buf[cur_len + 1] = '\n';
835 memcpy(buf + cur_len + 2, new_msg, new_len);
836 free(cur_msg);
837 free(new_msg);
839 /* create a new blob object from buf */
840 ret = write_object_file(buf, buf_len, OBJ_BLOB, cur_oid);
841 free(buf);
842 return ret;
845 int combine_notes_overwrite(struct object_id *cur_oid,
846 const struct object_id *new_oid)
848 oidcpy(cur_oid, new_oid);
849 return 0;
852 int combine_notes_ignore(struct object_id *cur_oid,
853 const struct object_id *new_oid)
855 return 0;
859 * Add the lines from the named object to list, with trailing
860 * newlines removed.
862 static int string_list_add_note_lines(struct string_list *list,
863 const struct object_id *oid)
865 char *data;
866 unsigned long len;
867 enum object_type t;
869 if (is_null_oid(oid))
870 return 0;
872 /* read_sha1_file NUL-terminates */
873 data = read_object_file(oid, &t, &len);
874 if (t != OBJ_BLOB || !data || !len) {
875 free(data);
876 return t != OBJ_BLOB || !data;
880 * If the last line of the file is EOL-terminated, this will
881 * add an empty string to the list. But it will be removed
882 * later, along with any empty strings that came from empty
883 * lines within the file.
885 string_list_split(list, data, '\n', -1);
886 free(data);
887 return 0;
890 static int string_list_join_lines_helper(struct string_list_item *item,
891 void *cb_data)
893 struct strbuf *buf = cb_data;
894 strbuf_addstr(buf, item->string);
895 strbuf_addch(buf, '\n');
896 return 0;
899 int combine_notes_cat_sort_uniq(struct object_id *cur_oid,
900 const struct object_id *new_oid)
902 struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
903 struct strbuf buf = STRBUF_INIT;
904 int ret = 1;
906 /* read both note blob objects into unique_lines */
907 if (string_list_add_note_lines(&sort_uniq_list, cur_oid))
908 goto out;
909 if (string_list_add_note_lines(&sort_uniq_list, new_oid))
910 goto out;
911 string_list_remove_empty_items(&sort_uniq_list, 0);
912 string_list_sort(&sort_uniq_list);
913 string_list_remove_duplicates(&sort_uniq_list, 0);
915 /* create a new blob object from sort_uniq_list */
916 if (for_each_string_list(&sort_uniq_list,
917 string_list_join_lines_helper, &buf))
918 goto out;
920 ret = write_object_file(buf.buf, buf.len, OBJ_BLOB, cur_oid);
922 out:
923 strbuf_release(&buf);
924 string_list_clear(&sort_uniq_list, 0);
925 return ret;
928 static int string_list_add_one_ref(const char *refname,
929 const struct object_id *oid UNUSED,
930 int flag UNUSED, void *cb)
932 struct string_list *refs = cb;
933 if (!unsorted_string_list_has_string(refs, refname))
934 string_list_append(refs, refname);
935 return 0;
939 * The list argument must have strdup_strings set on it.
941 void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
943 assert(list->strdup_strings);
944 if (has_glob_specials(glob)) {
945 for_each_glob_ref(string_list_add_one_ref, glob, list);
946 } else {
947 struct object_id oid;
948 if (get_oid(glob, &oid))
949 warning("notes ref %s is invalid", glob);
950 if (!unsorted_string_list_has_string(list, glob))
951 string_list_append(list, glob);
955 void string_list_add_refs_from_colon_sep(struct string_list *list,
956 const char *globs)
958 struct string_list split = STRING_LIST_INIT_NODUP;
959 char *globs_copy = xstrdup(globs);
960 int i;
962 string_list_split_in_place(&split, globs_copy, ':', -1);
963 string_list_remove_empty_items(&split, 0);
965 for (i = 0; i < split.nr; i++)
966 string_list_add_refs_by_glob(list, split.items[i].string);
968 string_list_clear(&split, 0);
969 free(globs_copy);
972 static int notes_display_config(const char *k, const char *v, void *cb)
974 int *load_refs = cb;
976 if (*load_refs && !strcmp(k, "notes.displayref")) {
977 if (!v)
978 return config_error_nonbool(k);
979 string_list_add_refs_by_glob(&display_notes_refs, v);
982 return 0;
985 const char *default_notes_ref(void)
987 const char *notes_ref = NULL;
988 if (!notes_ref)
989 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
990 if (!notes_ref)
991 notes_ref = notes_ref_name; /* value of core.notesRef config */
992 if (!notes_ref)
993 notes_ref = GIT_NOTES_DEFAULT_REF;
994 return notes_ref;
997 void init_notes(struct notes_tree *t, const char *notes_ref,
998 combine_notes_fn combine_notes, int flags)
1000 struct object_id oid, object_oid;
1001 unsigned short mode;
1002 struct leaf_node root_tree;
1004 if (!t)
1005 t = &default_notes_tree;
1006 assert(!t->initialized);
1008 if (!notes_ref)
1009 notes_ref = default_notes_ref();
1010 update_ref_namespace(NAMESPACE_NOTES, xstrdup(notes_ref));
1012 if (!combine_notes)
1013 combine_notes = combine_notes_concatenate;
1015 t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1016 t->first_non_note = NULL;
1017 t->prev_non_note = NULL;
1018 t->ref = xstrdup_or_null(notes_ref);
1019 t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1020 t->combine_notes = combine_notes;
1021 t->initialized = 1;
1022 t->dirty = 0;
1024 if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1025 get_oid_treeish(notes_ref, &object_oid))
1026 return;
1027 if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, &object_oid))
1028 die("Cannot use notes ref %s", notes_ref);
1029 if (get_tree_entry(the_repository, &object_oid, "", &oid, &mode))
1030 die("Failed to read notes tree referenced by %s (%s)",
1031 notes_ref, oid_to_hex(&object_oid));
1033 oidclr(&root_tree.key_oid);
1034 oidcpy(&root_tree.val_oid, &oid);
1035 load_subtree(t, &root_tree, t->root, 0);
1038 struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1040 struct string_list_item *item;
1041 int counter = 0;
1042 struct notes_tree **trees;
1043 ALLOC_ARRAY(trees, refs->nr + 1);
1044 for_each_string_list_item(item, refs) {
1045 struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1046 init_notes(t, item->string, combine_notes_ignore, flags);
1047 trees[counter++] = t;
1049 trees[counter] = NULL;
1050 return trees;
1053 void init_display_notes(struct display_notes_opt *opt)
1055 memset(opt, 0, sizeof(*opt));
1056 opt->use_default_notes = -1;
1059 void enable_default_display_notes(struct display_notes_opt *opt, int *show_notes)
1061 opt->use_default_notes = 1;
1062 *show_notes = 1;
1065 void enable_ref_display_notes(struct display_notes_opt *opt, int *show_notes,
1066 const char *ref) {
1067 struct strbuf buf = STRBUF_INIT;
1068 strbuf_addstr(&buf, ref);
1069 expand_notes_ref(&buf);
1070 string_list_append(&opt->extra_notes_refs,
1071 strbuf_detach(&buf, NULL));
1072 *show_notes = 1;
1075 void disable_display_notes(struct display_notes_opt *opt, int *show_notes)
1077 opt->use_default_notes = -1;
1078 /* we have been strdup'ing ourselves, so trick
1079 * string_list into free()ing strings */
1080 opt->extra_notes_refs.strdup_strings = 1;
1081 string_list_clear(&opt->extra_notes_refs, 0);
1082 opt->extra_notes_refs.strdup_strings = 0;
1083 *show_notes = 0;
1086 void load_display_notes(struct display_notes_opt *opt)
1088 char *display_ref_env;
1089 int load_config_refs = 0;
1090 display_notes_refs.strdup_strings = 1;
1092 assert(!display_notes_trees);
1094 if (!opt || opt->use_default_notes > 0 ||
1095 (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1096 string_list_append(&display_notes_refs, default_notes_ref());
1097 display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1098 if (display_ref_env) {
1099 string_list_add_refs_from_colon_sep(&display_notes_refs,
1100 display_ref_env);
1101 load_config_refs = 0;
1102 } else
1103 load_config_refs = 1;
1106 git_config(notes_display_config, &load_config_refs);
1108 if (opt) {
1109 struct string_list_item *item;
1110 for_each_string_list_item(item, &opt->extra_notes_refs)
1111 string_list_add_refs_by_glob(&display_notes_refs,
1112 item->string);
1115 display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1116 string_list_clear(&display_notes_refs, 0);
1119 int add_note(struct notes_tree *t, const struct object_id *object_oid,
1120 const struct object_id *note_oid, combine_notes_fn combine_notes)
1122 struct leaf_node *l;
1124 if (!t)
1125 t = &default_notes_tree;
1126 assert(t->initialized);
1127 t->dirty = 1;
1128 if (!combine_notes)
1129 combine_notes = t->combine_notes;
1130 l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1131 oidcpy(&l->key_oid, object_oid);
1132 oidcpy(&l->val_oid, note_oid);
1133 return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1136 int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1138 struct leaf_node l;
1140 if (!t)
1141 t = &default_notes_tree;
1142 assert(t->initialized);
1143 oidread(&l.key_oid, object_sha1);
1144 oidclr(&l.val_oid);
1145 note_tree_remove(t, t->root, 0, &l);
1146 if (is_null_oid(&l.val_oid)) /* no note was removed */
1147 return 1;
1148 t->dirty = 1;
1149 return 0;
1152 const struct object_id *get_note(struct notes_tree *t,
1153 const struct object_id *oid)
1155 struct leaf_node *found;
1157 if (!t)
1158 t = &default_notes_tree;
1159 assert(t->initialized);
1160 found = note_tree_find(t, t->root, 0, oid->hash);
1161 return found ? &found->val_oid : NULL;
1164 int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1165 void *cb_data)
1167 if (!t)
1168 t = &default_notes_tree;
1169 assert(t->initialized);
1170 return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1173 int write_notes_tree(struct notes_tree *t, struct object_id *result)
1175 struct tree_write_stack root;
1176 struct write_each_note_data cb_data;
1177 int ret;
1178 int flags;
1180 if (!t)
1181 t = &default_notes_tree;
1182 assert(t->initialized);
1184 /* Prepare for traversal of current notes tree */
1185 root.next = NULL; /* last forward entry in list is grounded */
1186 strbuf_init(&root.buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries */
1187 root.path[0] = root.path[1] = '\0';
1188 cb_data.root = &root;
1189 cb_data.nn_list = &(t->first_non_note);
1190 cb_data.nn_prev = NULL;
1192 /* Write tree objects representing current notes tree */
1193 flags = FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1194 FOR_EACH_NOTE_YIELD_SUBTREES;
1195 ret = for_each_note(t, flags, write_each_note, &cb_data) ||
1196 write_each_non_note_until(NULL, &cb_data) ||
1197 tree_write_stack_finish_subtree(&root) ||
1198 write_object_file(root.buf.buf, root.buf.len, OBJ_TREE, result);
1199 strbuf_release(&root.buf);
1200 return ret;
1203 void prune_notes(struct notes_tree *t, int flags)
1205 struct note_delete_list *l = NULL;
1207 if (!t)
1208 t = &default_notes_tree;
1209 assert(t->initialized);
1211 for_each_note(t, 0, prune_notes_helper, &l);
1213 while (l) {
1214 if (flags & NOTES_PRUNE_VERBOSE)
1215 printf("%s\n", hash_to_hex(l->sha1));
1216 if (!(flags & NOTES_PRUNE_DRYRUN))
1217 remove_note(t, l->sha1);
1218 l = l->next;
1222 void free_notes(struct notes_tree *t)
1224 if (!t)
1225 t = &default_notes_tree;
1226 if (t->root)
1227 note_tree_free(t->root);
1228 free(t->root);
1229 while (t->first_non_note) {
1230 t->prev_non_note = t->first_non_note->next;
1231 free(t->first_non_note->path);
1232 free(t->first_non_note);
1233 t->first_non_note = t->prev_non_note;
1235 free(t->ref);
1236 memset(t, 0, sizeof(struct notes_tree));
1240 * Fill the given strbuf with the notes associated with the given object.
1242 * If the given notes_tree structure is not initialized, it will be auto-
1243 * initialized to the default value (see documentation for init_notes() above).
1244 * If the given notes_tree is NULL, the internal/default notes_tree will be
1245 * used instead.
1247 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1248 * for human consumption.
1250 static void format_note(struct notes_tree *t, const struct object_id *object_oid,
1251 struct strbuf *sb, const char *output_encoding, int raw)
1253 static const char utf8[] = "utf-8";
1254 const struct object_id *oid;
1255 char *msg, *msg_p;
1256 unsigned long linelen, msglen;
1257 enum object_type type;
1259 if (!t)
1260 t = &default_notes_tree;
1261 if (!t->initialized)
1262 init_notes(t, NULL, NULL, 0);
1264 oid = get_note(t, object_oid);
1265 if (!oid)
1266 return;
1268 if (!(msg = read_object_file(oid, &type, &msglen)) || type != OBJ_BLOB) {
1269 free(msg);
1270 return;
1273 if (output_encoding && *output_encoding &&
1274 !is_encoding_utf8(output_encoding)) {
1275 char *reencoded = reencode_string(msg, output_encoding, utf8);
1276 if (reencoded) {
1277 free(msg);
1278 msg = reencoded;
1279 msglen = strlen(msg);
1283 /* we will end the annotation by a newline anyway */
1284 if (msglen && msg[msglen - 1] == '\n')
1285 msglen--;
1287 if (!raw) {
1288 const char *ref = t->ref;
1289 if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1290 strbuf_addstr(sb, "\nNotes:\n");
1291 } else {
1292 skip_prefix(ref, "refs/", &ref);
1293 skip_prefix(ref, "notes/", &ref);
1294 strbuf_addf(sb, "\nNotes (%s):\n", ref);
1298 for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1299 linelen = strchrnul(msg_p, '\n') - msg_p;
1301 if (!raw)
1302 strbuf_addstr(sb, " ");
1303 strbuf_add(sb, msg_p, linelen);
1304 strbuf_addch(sb, '\n');
1307 free(msg);
1310 void format_display_notes(const struct object_id *object_oid,
1311 struct strbuf *sb, const char *output_encoding, int raw)
1313 int i;
1314 assert(display_notes_trees);
1315 for (i = 0; display_notes_trees[i]; i++)
1316 format_note(display_notes_trees[i], object_oid, sb,
1317 output_encoding, raw);
1320 int copy_note(struct notes_tree *t,
1321 const struct object_id *from_obj, const struct object_id *to_obj,
1322 int force, combine_notes_fn combine_notes)
1324 const struct object_id *note = get_note(t, from_obj);
1325 const struct object_id *existing_note = get_note(t, to_obj);
1327 if (!force && existing_note)
1328 return 1;
1330 if (note)
1331 return add_note(t, to_obj, note, combine_notes);
1332 else if (existing_note)
1333 return add_note(t, to_obj, null_oid(), combine_notes);
1335 return 0;
1338 void expand_notes_ref(struct strbuf *sb)
1340 if (starts_with(sb->buf, "refs/notes/"))
1341 return; /* we're happy */
1342 else if (starts_with(sb->buf, "notes/"))
1343 strbuf_insertstr(sb, 0, "refs/");
1344 else
1345 strbuf_insertstr(sb, 0, "refs/notes/");
1348 void expand_loose_notes_ref(struct strbuf *sb)
1350 struct object_id object;
1352 if (get_oid(sb->buf, &object)) {
1353 /* fallback to expand_notes_ref */
1354 expand_notes_ref(sb);